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TODAY’S PAPERS



WHY DOES THE INTERNET WORK?

1. PROTOCOLS Agreements on how to communicate

Publicly standardized, esp. via Requests for Comments (RFCs)

RFC 826: ARP RFC 103{4,5}: DNS RFC 793: TCP

Code to the protocol and your product will work with other products



WHY DOES THE INTERNET WORK?

4-bit 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Header len
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Total length (bytes)

16-bit 
Identification
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Fragment offset
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Protocol
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Header checksum
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Source IP address

32-bit 
Destination IP address

Payload

20-byte  
header

The payload is the “data” that IP is delivering: 
May contain another protocol’s header & payload, and so on



WHY DOES THE INTERNET WORK?
2. THE NETWORK IS DUMB

End-hosts are the periphery (users, devices)

Routers and switches are interior nodes that

Route (figure out where to forward) 

Forward (actually send)

• Principle: the routers have no knowledge of ongoing 
connections through them 
• They do “destination-based” routing and forwarding 

- Given the destination in the packet, send it to the “next hop” that is best 
suited to help ultimately get the packet there
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End-hosts are the periphery (users, devices)

Routers and switches are interior nodes that

Route (figure out where to forward) 

Forward (actually send)

• Principle: the routers have no knowledge of ongoing 
connections through them 
• They do “destination-based” routing and forwarding 

- Given the destination in the packet, send it to the “next hop” that is best 
suited to help ultimately get the packet there

Mental model: The postal system



WHY DOES THE INTERNET WORK?
3. LAYERS

• The design of the Internet is strongly partitioned into layers 
• Each layer relies on the services provided by the layer 

immediately below it… 
• … and provides service to the layer immediately above it
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PHYSICAL Send / receive bit Broadcasts on shared link
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LAYERS OF THE INTERNET

PHYSICAL Send / receive bit Broadcasts on shared link

LINK Local send/recv
Adds framing & destination;  
Still assumes shared link

NETWORK (IP) Global send/recv
Adds global addresses;  
Requires routing

TRANSPORT (TCP,UDP) Process send/recv
E2E communication between  
processes; Adds ports/reliability

APPLICATION Arbitrary Application-specific semantics



Hop-by-hop vs. end-to-end layers

End-host A

End-host B

End-host C End-host D

Router 1

Router 6

Router 2

Router 3

Router 4
Router 5

End-host E

Host C communicates with host A



Hop-by-hop vs. end-to-end layers

End-host A

End-host B

End-host C End-host D

Router 1

Router 6

Router 2

Router 3

Router 4
Router 5

End-host E

Different physical & link layers

WiFi

Ethernet



Hop-by-hop vs. end-to-end layers

End-host A

End-host B

End-host C End-host D

Router 1

Router 6

Router 2

Router 3

Router 4
Router 5

End-host E

Same network, transport, and application layers (3/4/7) 
Routers ignore transport & application

E.g., HTTP over  
TCP over IP



IP packet “header”
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Payload
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header



IP Packet Header Fields  (1)
• Version number (4 bits) 

• Indicates the version of the IP protocol 
• Necessary for knowing what fields follow 
• “4” (for IPv4) or “6” (for IPv6) 

• Header length (4 bits) 
• How many 32-bit words (rows) in the header 
• Typically 5 
• Can provide IP options, too 

• Type-of-service (8 bits) 
• Allow packets to be treated differently based on different needs 
• Low delay for audio, high bandwidth for bulk transfer, etc.



• Two IP addresses 
• Source (32 bits) 
• Destination (32 bits) 

• Destination address 
• Unique identifier/locator for the receiving host 
• Allows each node (end-host and router) to make 

forwarding decisions 

• Source address 
• Unique identifier/locator for the sending host 
• Recipient can decide whether to accept the packet 
• Allows destination to reply to the source

IP Packet Header Fields  (2)



IP: “Best effort” packet delivery
• Routers inspect destination address, determine 

“next hop” in the forwarding table 

• Best effort = “I’ll give it a try” 
• Packets may be lost 
• Packets may be corrupted 
• Packets may be delivered out of order

Fixing these is the job of the transport layer!



Attacks on IP



Attacks on IP

Source-spoof
There is nothing in IP that  
enforces that your source  

IP address is really “yours”



Attacks on IP

Source-spoof
There is nothing in IP that  
enforces that your source  

IP address is really “yours”

Eavesdrop / Tamper

IP provides no protection  
of the payload or header



Source-spoofing
• Why source-spoof? 

• Consider spam: send many emails from one 
computer 

• Easy defense: block many emails from a given 
(source) IP address 

• Easy countermeasure: spoof the source IP address 
• Counter-countermeasure? 

• How do you know if a packet you receive has a 
spoofed source?



Salient network features
• Recall: The Internet operates via destination-based 

routing 

• attacker: pkt (spoofed source) -> destination  
destination: pkt -> spoofed source 

• In other words, the response goes to the spoofed 
source, not the attacker



Defending against source-spoofing

• How do you know if a packet you receive has a 
spoofed source? 
• Send a challenge packet to the (possibly spoofed) 

source (e.g., a difficult to guess, random nonce) 
• If the recipient can answer the challenge, then likely 

that the source was not spoofed 

• So do you have to do this with every packet?? 
• Every packet should have something that’s difficult to 

guess 
• Recall the query ID in the DNS queries! Easy to 

predict => Kaminsky attack



Source spoofing
• Why source-spoof? 

• Consider DoS attacks: generate as much traffic as 
possible to congest the victim’s network 

• Easy defense: block all traffic from a given source 
near the edge of your network 

• Easy countermeasure: spoof the source address 

• Challenges won’t help here; the damage has been 
done by the time the packets reach the core of our 
network 

• Ideally, detect such spoofing near the source



Egress filtering
• The point (router/switch) at which traffic enters your 

network is the ingress point 

• The point (router/switch) at which traffic leaves your 
network is the egress point 

• You don’t know who owns all IP addresses in the 
world, but you do know who in your own network 
gets what IP addresses 
• If you see a packet with a source IP address that 

doesn’t belong to your network trying to cross your 
egress point, then drop it

Egress filtering is not widely deployed



Eavesdropping / Tampering

• No security built into IP 

• => Deploy secure IP over IP



Virtual Private Networks (VPNs)
Trusted network

Trusted Client

Untrusted network

C

Goal: Allow the client to connect to the trusted network  
from within an untrusted network

Example: Connect to your company’s network (for payroll, 
file access, etc.) while visiting a competitor’s office

servers



Virtual Private Networks (VPNs)
Trusted network

Trusted Client

Untrusted network

C S

Idea: A VPN “client” and “server” together create 
end-to-end encryption/authentication

serversEncrypted

Not necessarily 
encrypted

Predominate way of doing this: IPSec



IPSec
• Operates in a few different modes 

• Transport mode: Simply encrypt the payload but not 
the headers 

• Tunnel mode: Encrypt the payload and the headers 

• But how do you encrypt the headers? How does 
routing work? 
• Encrypt the entire IP packet and make that the 

payload of another IP packet 



Tunnel mode

Trusted Client

C S serversEncrypted

Not necessarily 
encrypted

Packet {E(P)}
P

The VPN server decrypts and then sends the 
payload (itself a full IP packet) as if it had just  

received it from the network

From the client/servers’ perspective:  
Looks like the client is physically connected to the network!



Layer 4: Transport layer

Application

Transport

(Inter)network

Link

Physical

7

4

3

2

1

• End-to-end communication 
between processes 

• Different types of services 
provided: 

• UDP: unreliable datagrams 

• TCP: reliable byte stream 

• “Reliable” = keeps track of what 
data were received properly 
and retransmits as necessary



TCP: reliability
• Given best-effort deliver, the goal is to ensure 

reliability 
• All packets are delivered to applications 
• … in order 
• … unmodified (with reasonably high probability) 

• Must robustly detect and retransmit lost data



TCP’s bytestream service
• Process A on host 1: 

• Send byte 0, byte 1, byte 2, byte 3, … 

• Process B on host 2: 
• Receive byte 0, byte 1, byte 2, byte 3, … 

• The applications do not see: 
• packet boundaries (looks like a stream of bytes) 
• lost or corrupted packets (they’re all correct) 
• retransmissions (they all only appear once)



TCP bytestream service

byte1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 byte 8

byte1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 byte 8

Process A on host H1

Process B on host H2

Abstraction: Each byte reliably delivered in order



TCP bytestream service

byte1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 byte 8

Reality: Packets sometimes retransmitted, 
sometimes arrive out of order

Packet 1 Packet 2 Packet 3

Needs to be  
retransmitted Needs to be 

buffered



TCP bytestream service

byte1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 byte 8

Reality: Packets sometimes retransmitted, 
sometimes arrive out of order

Packet 1 Packet 2 Packet 3

Needs to be  
retransmitted Needs to be 

buffered
TCP’s first job: achieve the abstraction while  

hiding the reality from the application
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How does TCP achieve reliability?
A B

Bytes 1000-1500 Expecting byte 1000

Expecting byte 1501

Ti
m

e

Waterfall 
diagram ACK 1501

Reliability through acknowledgments  
to determine whether something was received.
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How does TCP achieve reliability?
A B

Bytes 1000-1500

Bytes 1501-2000
Bytes 2001-3000

Expecting byte 1000

Bytes 1000-1500

Still expecting byte 1000
Still expecting byte 1000

Expecting packet 3001

Ti
m

e

Waterfall 
diagram

ACK 1000

ACK 1000

ACK 3001

Buffer these until



TCP congestion control

• Try to use as much of the network as is safe (does 
not adversely affect others’ performance) and 
efficient (makes use of network capacity) 

• Dynamically adapt how quickly you send based on 
the network path’s capacity 

• When an ACK doesn’t come back, the network may 
be beyond capacity: slow down.

TCP’s second job: don’t break the network!
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Data
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TCP ports
• Ports are associated with OS processes 

• Sandwiched between IP header and the 
application data 

• {src IP/port, dst IP/port} : this 4-tuple uniquely 
identifies a TCP connection 

• Some port numbers are well-known 
• 80 = HTTP 
• 53 = DNS
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TCP seqno
• Each byte in the byte stream has a unique 

“sequence number” 
• Unique for both directions 

• “Sequence number” in the header = sequence 
number of the first byte in the packet’s data 

• Next sequence number = previous seqno + 
previous packet’s data size 

• “Acknowledgment” in the header = the next seqno 
you expect from the other end-host



TCP header
16-bit 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16-bit 

Destination port
32-bit

Sequence number
32-bit

Acknowledgment
4-bit 

Header 
Length

Reserved 6-bit 
Flags

16-bit 
Advertised window

16-bit 
Checksum

16-bit 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Options (variable) Padding

Data

IP Header



TCP flags
• SYN 

• Used for setting up a connection 

• ACK 
• Acknowledgments, for data and “control” packets 

• FIN 

• RST
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Setting up a connection
A B
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Got yours, too



TCP flags
• SYN 

• ACK 

• FIN: Let’s shut this down (two-way) 
• FIN 
• FIN+ACK 

• RST: I’m shutting you down 
• Says “delete all your local state, because I don’t know 

what you’re talking about



Attacks
• SYN flooding 

• Injection attacks 

• Opt-ack attack



SYN flooding
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Waterfall 
diagram

SYN + ACK

Recall the three-way handshake:

At this point, B 
allocates state  
for this new 
connection 
(incl. IP, port, 
maximum  
segment size)

IP/port, 
MSS,…

ACK

B will hold onto this local state and retransmit SYN+ACK’s  
until it hears back or times out (up to 63 sec).

SYN + ACK



SYN flooding
A B

The attack
C



SYN flooding
A B

SYN

The attack
C



SYN flooding
A B

SYN

The attack

IP/port, 
MSS,…

C



SYN flooding
A B

SYN

The attack

IP/port, 
MSS,…SYN

C



SYN flooding
A B

SYN

The attack

IP/port, 
MSS,…SYN

IP/port, 
MSS,…

C



SYN flooding
A B

SYN

The attack

IP/port, 
MSS,…SYN

IP/port, 
MSS,…SYN

C



SYN flooding
A B

SYN

The attack

IP/port, 
MSS,…SYN

IP/port, 
MSS,…SYN

IP/port, 
MSS,…

C



SYN flooding
A B

SYN

The attack

IP/port, 
MSS,…SYN

IP/port, 
MSS,…SYN

IP/port, 
MSS,…

SYNSYNSYNSYNSYNSYNSYNSYN

C



SYN flooding
A B

SYN

The attack

IP/port, 
MSS,…SYN

IP/port, 
MSS,…SYN

IP/port, 
MSS,…

SYNSYNSYNSYNSYNSYNSYNSYN
IP/port, 
MSS,…
IP/port, 
MSS,…
IP/port, 
MSS,…
IP/port, 
MSS,…

C



SYN flooding
A B

SYN

The attack

IP/port, 
MSS,…SYN

IP/port, 
MSS,…SYN

IP/port, 
MSS,…

SYNSYNSYNSYNSYNSYNSYNSYN
IP/port, 
MSS,…
IP/port, 
MSS,…
IP/port, 
MSS,…
IP/port, 
MSS,…

Exhaust memory  
at the victim B.

C



SYN flooding
A B

SYN

The attack

IP/port, 
MSS,…SYN

IP/port, 
MSS,…SYN

IP/port, 
MSS,…

SYNSYNSYNSYNSYNSYNSYNSYN
IP/port, 
MSS,…
IP/port, 
MSS,…
IP/port, 
MSS,…
IP/port, 
MSS,…

Exhaust memory  
at the victim B.

C

SYN



SYN flooding
A B

SYN

The attack

IP/port, 
MSS,…SYN

IP/port, 
MSS,…SYN

IP/port, 
MSS,…

SYNSYNSYNSYNSYNSYNSYNSYN
IP/port, 
MSS,…
IP/port, 
MSS,…
IP/port, 
MSS,…
IP/port, 
MSS,…
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New connections 
will fail (insufficient 
memory)



SYN flooding details
• Easy to detect many incomplete handshakes from a 

single IP address 

• Spoof the source IP address 
• It’s just a field in a header: set it to whatever you like 

• Problem: the host who really owns that spoofed IP 
address may respond to the SYN+ACK with a RST, 
deleting the local state at the victim 

• Ideally, spoof an IP address of a host you know won’t 
respond
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SYN cookies
A B

SYN

The defense

Rather than store this data, 
send it to the host who 
is initiating the 
connection and have 
him return it to youSYN + ACK  

seqno = f(data)

Store the necessary  
state in your seqno

ACK f(data)+1
Check that f(data) is valid 
for this connection.  Only 
at that point do you 
allocate state.IP/port, 

MSS,…



SYN cookie format 
A B

SYN

SYN + ACK  

seqno = f(data)

ACK f(data)+1

IP/port, 
MSS,…

The secure hash makes  
it difficult for the attacker  
to guess what f() will be, 
and therefore the attacker  
cannot guess a correct ACK 
if he spoofs.

f(.) = 
Slow-moving 
timestamp MSS Secure hash

Prevents 
replay 
attacks

The info we 
need for this 
connection

Includes: 
IPs/ports, MSS, 

timestamp

32-bit seqno



Injection attacks
• Suppose you are on the path between src and dst; 

what can you do? 
• Trivial to inject packets with the correct sequence 

number 

• What if you are not on the path? 
• Need to guess the sequence number 
• Is this difficult to do?



Initial sequence numbers
• Initial sequence numbers used to be deterministic 

• What havoc can we wreak? 
• Send RSTs 
• Inject data packets into an existing connection (TCP 

veto attacks) 
• Initiate and use an entire connection without ever 

hearing the other end
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Any connection initiated  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allowed access to the 
X-terminal server

1. SYN flood the trusted server
2. Spoof trusted server’s IP addr  
     in SYN to X-terminal

SYN src:

SYN+ACK  
seqno

3. Trusted server too busy to RST

ACK src: 
seqno+1

4. ACK with the guessed seqno
“echo ++ >> ./rhosts”

5. Grant access to all sources

ACK

6. RSTs to trusted server (cleanup)



Defenses
• Initial sequence number must be difficult to predict!
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Amplification
• The big deal with this attack is its Amplification 

Factor 
• Attacker sends x bytes of data, causing the victim to 

send many more bytes of data in response 
• Recent examples: NTP, DNSSEC 

• Amplified in TCP due to cumulative ACKs 
• “ACK x” says “I’ve seen all bytes up to but not 

including x”



Opt-ack’s amplification factor
• Max bytes sent by victim per ACK:

• Max ACKs attacker can send per second:
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Opt-ack’s amplification factor
• Max bytes sent by victim per ACK:

Max window size
MSS

x (14 + 40 + MSS)

Packets sent per ACK Bytes per packet

Ethe
rne

t

TC
P/IP

Pay
loa

d

• Max ACKs attacker can send per second:

Attacker bandwidth (bytes/sec)
(14 + 40)

Size of ACK packet



Opt-ack’s amplification factor
• Boils down to max window size and MSS 

• Default max window size: 65,536 
• Default MSS: 536 

• Default amp factor: 65536 * (1/536 + 1/54) ~ 1336x 

• Window scaling lets you increase this by a factor of 2^14 

• Window scaling amp factor: ~1336 * 2^14 ~ 22M 

• Using minimum MSS of 88: ~ 32M



Opt-ack defenses
• Is there a way we could defend against opt-ack in 

a way that is still compatible with existing 
implementations of TCP? 

• An important goal in networking is incremental 
deployment: ideally, we should be able to benefit 
from a system/modification when even a subset of 
hosts deploy it.



NAMING

• IP addresses allow global connectivity 

• But they’re pretty useless for humans! 
• Can’t be expected to pick their own IP address 
• Can’t be expected to remember another’s IP address 

• DHCP : Setting IP addresses 

• DNS : Mapping a memorable name to a routable IP 
address



DHCP

New host DHCP server

DYNAMIC HOST CONFIGURATION PROTOCOL
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DHCP

New host DHCP server

DHCP discover (L2 broadcast)

DHCP offer

Doesn’t have an  
IP address yet  
(can’t set src addr)

Doesn’t know who 
to ask for one

Solution: Discover  
one on the local 
subnet

offer includes: IP 
address, DNS server, 
gateway router, and 
duration of this offer 
(“lease” time)

DHCP request (L2 broadcast)

DHCP ACK request asks for the  
offered IP address

DYNAMIC HOST CONFIGURATION PROTOCOL



DHCP ATTACKS

• Requests are broadcast: attackers on the same subnet 
can hear new host’s request 

• Race the actual DHCP server to replace: 
• DNS server 

- Redirect any of a host’s lookups (“what IP address should I use 
when trying to connect to google.com?”) to a machine of the 
attacker’s choice 

• Gateway 
- The gateway is where the host sends all of its outgoing traffic (so 

that the host doesn’t have to figure out routes himself) 
- Modify the gateway to intercept all of a user’s traffic 
- Then relay it to the gateway (MITM) 
- How could the user detect this?

http://google.com


HOSTNAMES AND IP ADDRESSES

gold:~ dml$ ping google.com 
PING google.com (74.125.228.65): 56 data bytes 
64 bytes from 74.125.228.65: icmp_seq=0 ttl=52 time=22.330 ms 
64 bytes from 74.125.228.65: icmp_seq=1 ttl=52 time=6.304 ms 
64 bytes from 74.125.228.65: icmp_seq=2 ttl=52 time=5.186 ms 
64 bytes from 74.125.228.65: icmp_seq=3 ttl=52 time=12.805 ms
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HOSTNAMES AND IP ADDRESSES

gold:~ dml$ ping google.com 
PING google.com (74.125.228.65): 56 data bytes 
64 bytes from 74.125.228.65: icmp_seq=0 ttl=52 time=22.330 ms 
64 bytes from 74.125.228.65: icmp_seq=1 ttl=52 time=6.304 ms 
64 bytes from 74.125.228.65: icmp_seq=2 ttl=52 time=5.186 ms 
64 bytes from 74.125.228.65: icmp_seq=3 ttl=52 time=12.805 ms

google.com is easy to remember, but not routable

74.125.228.65 is routable

Name resolution: 
The process of mapping from one to the other



TERMINOLOGY
• www.cs.umd.edu = “domain name” 

• www.cs.umd.edu is a “subdomain” of cs.umd.edu 

• Domain names can map to a set of IP addresses
gold:~ dml$ dig google.com 

; <<>> DiG 9.8.3-P1 <<>> google.com 
;; global options: +cmd 
;; Got answer: 
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 35815 
;; flags: qr rd ra; QUERY: 1, ANSWER: 11, AUTHORITY: 0, ADDITIONAL: 0 

;; QUESTION SECTION: 
;google.com.   IN A 

;; ANSWER SECTION: 
google.com.  105 IN A 74.125.228.70 
google.com.  105 IN A 74.125.228.66 
google.com.  105 IN A 74.125.228.64 
google.com.  105 IN A 74.125.228.69 
google.com.  105 IN A 74.125.228.78 
google.com.  105 IN A 74.125.228.73 
google.com.  105 IN A 74.125.228.68 
google.com.  105 IN A 74.125.228.65 
google.com.  105 IN A 74.125.228.72 

We’ll understand this 
more in a bit; for now,  
note that google.com  
is mapped to many  

IP addresses

http://www.cs.umd.edu
http://www.cs.umd.edu
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TERMINOLOGY
• “zone” = a portion of the DNS namespace, divided 

up for administrative reasons 
• Think of it like a collection of hostname/IP address 

pairs that happen to be lumped together 
- www.google.com, mail.google.com, dev.google.com, … 

• Subdomains do not need to be in the same zone 
• Allows the owner of one zone (umd.edu) to delegate 

responsibility to another (cs.umd.edu)

http://www.google.com
http://mail.google.com
http://dev.google.com
http://cs.umd.edu


NAMESPACE HIERARCHY

www.cs.umd.edu

cs.umd.edu

umd.edu

edu

.

com net

duke.edu

Zones



TERMINOLOGY
• “Nameserver” = A piece of code that answers 

queries of the form “What is the IP address for 
foo.bar.com?” 
• Every zone must run ≥2 nameservers  
• Several very common nameserver implementations: 

BIND, PowerDNS (more popular in Europe) 

• “Authoritative nameserver”: 
• Every zone has to maintain a file that maps IP 

addresses and hostnames (“www.cs.umd.edu is 
128.8.127.3”) 

• One of the name servers in the zone has the master 
copy of this file.  It is the authority on the mapping.

http://www.cs.umd.edu


TERMINOLOGY
• “Resolver” - while name servers answer queries, 

resolvers ask queries. 

• Every OS has a resolver.  Typically small and pretty dumb.  
All it typically does it forward the query to a local… 

• “Recursive nameserver” - a nameserver which will do 
the heavy lifting, issuing queries on behalf of the client 
resolver until an authoritative answer returns. 

• Prevalence 
• There is almost always a local (private) recursive name server 
• But very rare for name servers to support recursive queries 

otherwise



TERMINOLOGY
• “Record” (or “resource record”) = usually think of it 

as a mapping between hostname and IP address 

• But more generally, it can map virtually anything to 
virtually anything 

• Many record types: 
• (A)ddress records (IP <-> hostname) 
• Mail server (MX, mail exchanger) 
• SOA (start of authority, to delineate different zones) 
• Others for DNSSEC to be able to share keys 

• Records are the unit of information



TERMINOLOGY

• Authoritative answers (A) for hostnames in that zone  
• The umd.edu zone’s nameservers must be able to tell us 

what the IP address for umd.edu is 

• Pointers to name servers (NS) who host zones in its 
subdomains 
• The umd.edu zone’s nameservers must be able to tell us 

what the name and IP address of the cs.umd.edu zone’s 
nameservers

“A” record: umd.edu = 54.84.241.99

Nameservers within a zone must be able to give:

54.84.241.99 is a valid  
IP address for umd.edu

“NS” record: cs.umd.edu = ipa01.cs.umd.edu. Ask ipa01.cs.umd.edu for all 
cs.umd.edu subdomains

http://umd.edu
http://umd.edu
http://umd.edu
http://cs.umd.edu
http://umd.edu
http://umd.edu
http://ipa01.cs.umd.edu
http://ipa01.cs.umd.edu
http://cs.umd.edu
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what the IP address for umd.edu is 

• Pointers to name servers (NS) who host zones in its 
subdomains 
• The umd.edu zone’s nameservers must be able to tell us 

what the name and IP address of the cs.umd.edu zone’s 
nameservers

“A” record: umd.edu = 54.84.241.99

Nameservers within a zone must be able to give:

54.84.241.99 is a valid  
IP address for umd.edu

“NS” record: cs.umd.edu = ipa01.cs.umd.edu. Ask ipa01.cs.umd.edu for all 
cs.umd.edu subdomains
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Caching responses is 
critical to DNS’s success
Every response (3,5,7,8)  
has a time-to-live (TTL). 

TTLs should be reasonably  
long (days), but  some 

are minutes.
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HOW DO THEY KNOW THESE IP ADDRESSES?

• Local DNS server: host learned this via DHCP 

• A parent knows its children: part of the registration process 

• Root nameserver: hardcoded into the local DNS server 
(and every DNS server) 
• 13 root servers (logically): A-root, B-root, …, M-root 
• These IP addresses change very infrequently 
• UMD runs D-root. 

- IP address changed beginning of 2013!! 
- For the most part, the change-over went alright, but Lots of weird 

things happened — ask me some time.



CACHING

• Central to DNS’s success 

• Also central to attacks 

• “Cache poisoning”: filling a victim’s cache with 
false information



QUERIES

Requesting 
host

What is an IP address  
for cs.umd.edu?

Local 
nameserver 

Root DNS 
server “.”
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5
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7
8

9

TLD DNS 
server 

Authoritative DNS 
server 

(“umd.edu”)

cs.umd.edu

Every query (2,4,6) has 
the same request in it 
(“what is the IP address for  
cs.umd.edu?”)

But different: 
   - dst IP (port = 53) 
   - query ID 

NS

NS

A
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WHAT’S IN A RESPONSE?

• Many things, but for the attacks we’re concerned with… 

• A record: gives “the authoritative response for the IP 
address of this hostname” 

• NS record: describes “this is the name of the 
nameserver who should know more about how to 
answer this query than I do” 
• Often also contains “glue” records (IP addresses of those 

name servers to avoid chicken and egg problems) 
• Resolver will generally cache all of this information



QUERY IDS

• The local resolver has a lot of 
incoming/outgoing queries at any 
point in time. 

• To determine which response maps 
to which queries, it uses a query ID 

• Query ID: 16-bit field in the DNS 
header 
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• Responder must provide the same 

value in its response
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incoming/outgoing queries at any 
point in time. 

• To determine which response maps 
to which queries, it uses a query ID 

• Query ID: 16-bit field in the DNS 
header 
• Requester sets it to whatever it 

wants 
• Responder must provide the same 

value in its response

Local 
nameserver 

2
3

4

5

6

7

How would you implement query IDs at a resolver?
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How would you attack this?
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DETAILS OF GETTING THE ATTACK TO WORK

• Must guess query ID: ask for it, and go from there 
• Partial fix: randomize query IDs 
• Problem: small space 
• Attack: issue a Lot of query IDs 

• Must guess source port number 
• Typically constant for a given server (often always 53) 

• The answer must not already be in the cache 
• It will avoid issuing a query in the first place
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SOLUTIONS?

• Randomizing query ID? 
• Not sufficient alone: only 16 bits of entropy 

• Randomize source port, as well 
• There’s no reason for it stay constant 
• Gets us another 16 bits of entropy 

• DNSSEC?
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PROPERTIES OF DNSSEC

• If everyone has deployed it, and if you know the root’s keys, 
then prevents spoofed responses 
• Very similar to PKIs in this sense 

• But unlike PKIs, we still want authenticity despite the fact 
that not everyone has deployed DNSSEC 
• What if someone replies back without DNSSEC? 
• Ignore = secure but you can’t connect to a lot of hosts 
• Accept = can connect but insecure 

• Back to our notion of incremental deployment 
• DNSSEC is not all that useful incrementally


