
TCP/IP 
SECURITY

GRAD SEC
NOV 14 2017

TODAY’S PAPERS

WHY DOES THE INTERNET WORK?

1. PROTOCOLS Agreements on how to communicate

Publicly standardized, esp. via Requests for Comments (RFCs)

RFC 826: ARP RFC 103{4,5}: DNS RFC 793: TCP

Code to the protocol and your product will work with other products

WHY DOES THE INTERNET WORK?

4-bit 
Version

4-bit 
Header len

8-bit 
Type of service (TOS)

16-bit 
Total length (bytes)

16-bit 
Identification

3-bit 
Flags

13-bit 
Fragment offset

8-bit 
Time-to-live (TTL)

8-bit 
Protocol

16-bit 
Header checksum

32-bit 
Source IP address

32-bit 
Destination IP address

Payload

20-byte  
header

The payload is the “data” that IP is delivering:
May contain another protocol’s header & payload, and so on

WHY DOES THE INTERNET WORK?
2. THE NETWORK IS DUMB

End-hosts are the periphery (users, devices)

Routers and switches are interior nodes that

Route (figure out where to forward)

Forward (actually send)

• Principle: the routers have no knowledge of ongoing
connections through them
• They do “destination-based” routing and forwarding

- Given the destination in the packet, send it to the “next hop” that is best
suited to help ultimately get the packet there

WHY DOES THE INTERNET WORK?
2. THE NETWORK IS DUMB

End-hosts are the periphery (users, devices)

Routers and switches are interior nodes that

Route (figure out where to forward)

Forward (actually send)

• Principle: the routers have no knowledge of ongoing
connections through them
• They do “destination-based” routing and forwarding

- Given the destination in the packet, send it to the “next hop” that is best
suited to help ultimately get the packet there

Mental model: The postal system

WHY DOES THE INTERNET WORK?
3. LAYERS

• The design of the Internet is strongly partitioned into layers
• Each layer relies on the services provided by the layer

immediately below it…
• … and provides service to the layer immediately above it

LAYERS OF THE INTERNET

PHYSICAL Send / receive bit Broadcasts on shared link

LAYERS OF THE INTERNET

PHYSICAL Send / receive bit Broadcasts on shared link

LINK Local send/recv
Adds framing & destination;  
Still assumes shared link

LAYERS OF THE INTERNET

PHYSICAL Send / receive bit Broadcasts on shared link

LINK Local send/recv
Adds framing & destination;  
Still assumes shared link

NETWORK (IP) Global send/recv
Adds global addresses;  
Requires routing

LAYERS OF THE INTERNET

PHYSICAL Send / receive bit Broadcasts on shared link

LINK Local send/recv
Adds framing & destination;  
Still assumes shared link

NETWORK (IP) Global send/recv
Adds global addresses;  
Requires routing

TRANSPORT (TCP,UDP) Process send/recv
E2E communication between  
processes; Adds ports/reliability

LAYERS OF THE INTERNET

PHYSICAL Send / receive bit Broadcasts on shared link

LINK Local send/recv
Adds framing & destination;  
Still assumes shared link

NETWORK (IP) Global send/recv
Adds global addresses;  
Requires routing

TRANSPORT (TCP,UDP) Process send/recv
E2E communication between  
processes; Adds ports/reliability

APPLICATION Arbitrary Application-specific semantics

Hop-by-hop vs. end-to-end layers

End-host A

End-host B

End-host C End-host D

Router 1

Router 6

Router 2

Router 3

Router 4
Router 5

End-host E

Host C communicates with host A

Hop-by-hop vs. end-to-end layers

End-host A

End-host B

End-host C End-host D

Router 1

Router 6

Router 2

Router 3

Router 4
Router 5

End-host E

Different physical & link layers

WiFi

Ethernet

Hop-by-hop vs. end-to-end layers

End-host A

End-host B

End-host C End-host D

Router 1

Router 6

Router 2

Router 3

Router 4
Router 5

End-host E

Same network, transport, and application layers (3/4/7) 
Routers ignore transport & application

E.g., HTTP over  
TCP over IP

IP packet “header”
4-bit 

Version
4-bit 

Header len
8-bit 

Type of service (TOS)
16-bit 

Total length (bytes)

16-bit 
Identification

3-bit 
Flags

13-bit 
Fragment offset

8-bit 
Time-to-live (TTL)

8-bit 
Protocol

16-bit 
Header checksum

32-bit 
Source IP address

32-bit 
Destination IP address

Payload

20-byte  
header

IP Packet Header Fields (1)
• Version number (4 bits)

• Indicates the version of the IP protocol
• Necessary for knowing what fields follow
• “4” (for IPv4) or “6” (for IPv6)

• Header length (4 bits)
• How many 32-bit words (rows) in the header
• Typically 5
• Can provide IP options, too

• Type-of-service (8 bits)
• Allow packets to be treated differently based on different needs
• Low delay for audio, high bandwidth for bulk transfer, etc.

• Two IP addresses
• Source (32 bits)
• Destination (32 bits)

• Destination address
• Unique identifier/locator for the receiving host
• Allows each node (end-host and router) to make

forwarding decisions

• Source address
• Unique identifier/locator for the sending host
• Recipient can decide whether to accept the packet
• Allows destination to reply to the source

IP Packet Header Fields (2)

IP: “Best effort” packet delivery
• Routers inspect destination address, determine

“next hop” in the forwarding table

• Best effort = “I’ll give it a try”
• Packets may be lost
• Packets may be corrupted
• Packets may be delivered out of order

Fixing these is the job of the transport layer!

Attacks on IP

Attacks on IP

Source-spoof
There is nothing in IP that  
enforces that your source  

IP address is really “yours”

Attacks on IP

Source-spoof
There is nothing in IP that  
enforces that your source  

IP address is really “yours”

Eavesdrop / Tamper

IP provides no protection  
of the payload or header

Source-spoofing
• Why source-spoof?

• Consider spam: send many emails from one
computer

• Easy defense: block many emails from a given
(source) IP address

• Easy countermeasure: spoof the source IP address
• Counter-countermeasure?

• How do you know if a packet you receive has a
spoofed source?

Salient network features
• Recall: The Internet operates via destination-based

routing

• attacker: pkt (spoofed source) -> destination  
destination: pkt -> spoofed source

• In other words, the response goes to the spoofed
source, not the attacker

Defending against source-spoofing

• How do you know if a packet you receive has a
spoofed source?
• Send a challenge packet to the (possibly spoofed)

source (e.g., a difficult to guess, random nonce)
• If the recipient can answer the challenge, then likely

that the source was not spoofed

• So do you have to do this with every packet??
• Every packet should have something that’s difficult to

guess
• Recall the query ID in the DNS queries! Easy to

predict => Kaminsky attack

Source spoofing
• Why source-spoof?

• Consider DoS attacks: generate as much traffic as
possible to congest the victim’s network

• Easy defense: block all traffic from a given source
near the edge of your network

• Easy countermeasure: spoof the source address

• Challenges won’t help here; the damage has been
done by the time the packets reach the core of our
network

• Ideally, detect such spoofing near the source

Egress filtering
• The point (router/switch) at which traffic enters your

network is the ingress point

• The point (router/switch) at which traffic leaves your
network is the egress point

• You don’t know who owns all IP addresses in the
world, but you do know who in your own network
gets what IP addresses
• If you see a packet with a source IP address that

doesn’t belong to your network trying to cross your
egress point, then drop it

Egress filtering is not widely deployed

Eavesdropping / Tampering

• No security built into IP

• => Deploy secure IP over IP

Virtual Private Networks (VPNs)
Trusted network

Trusted Client

Untrusted network

C

Goal: Allow the client to connect to the trusted network  
from within an untrusted network

Example: Connect to your company’s network (for payroll,
file access, etc.) while visiting a competitor’s office

servers

Virtual Private Networks (VPNs)
Trusted network

Trusted Client

Untrusted network

C S

Idea: A VPN “client” and “server” together create
end-to-end encryption/authentication

serversEncrypted

Not necessarily 
encrypted

Predominate way of doing this: IPSec

IPSec
• Operates in a few different modes

• Transport mode: Simply encrypt the payload but not
the headers

• Tunnel mode: Encrypt the payload and the headers

• But how do you encrypt the headers? How does
routing work?
• Encrypt the entire IP packet and make that the

payload of another IP packet

Tunnel mode

Trusted Client

C S serversEncrypted

Not necessarily 
encrypted

Packet {E(P)}
P

The VPN server decrypts and then sends the
payload (itself a full IP packet) as if it had just  

received it from the network

From the client/servers’ perspective:  
Looks like the client is physically connected to the network!

Layer 4: Transport layer

Application

Transport

(Inter)network

Link

Physical

7

4

3

2

1

• End-to-end communication
between processes

• Different types of services
provided:

• UDP: unreliable datagrams

• TCP: reliable byte stream

• “Reliable” = keeps track of what
data were received properly
and retransmits as necessary

TCP: reliability
• Given best-effort deliver, the goal is to ensure

reliability
• All packets are delivered to applications
• … in order
• … unmodified (with reasonably high probability)

• Must robustly detect and retransmit lost data

TCP’s bytestream service
• Process A on host 1:

• Send byte 0, byte 1, byte 2, byte 3, …

• Process B on host 2:
• Receive byte 0, byte 1, byte 2, byte 3, …

• The applications do not see:
• packet boundaries (looks like a stream of bytes)
• lost or corrupted packets (they’re all correct)
• retransmissions (they all only appear once)

TCP bytestream service

byte1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 byte 8

byte1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 byte 8

Process A on host H1

Process B on host H2

Abstraction: Each byte reliably delivered in order

TCP bytestream service

byte1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 byte 8

Reality: Packets sometimes retransmitted,
sometimes arrive out of order

Packet 1 Packet 2 Packet 3

Needs to be  
retransmitted Needs to be 

buffered

TCP bytestream service

byte1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 byte 8

Reality: Packets sometimes retransmitted,
sometimes arrive out of order

Packet 1 Packet 2 Packet 3

Needs to be  
retransmitted Needs to be 

buffered
TCP’s first job: achieve the abstraction while  

hiding the reality from the application

How does TCP achieve reliability?
A B

Ti
m

e

Waterfall 
diagram

How does TCP achieve reliability?
A B

Expecting byte 1000

Ti
m

e

Waterfall 
diagram

How does TCP achieve reliability?
A B

Bytes 1000-1500 Expecting byte 1000

Ti
m

e

Waterfall 
diagram

How does TCP achieve reliability?
A B

Bytes 1000-1500 Expecting byte 1000

Expecting byte 1501

Ti
m

e

Waterfall 
diagram

How does TCP achieve reliability?
A B

Bytes 1000-1500 Expecting byte 1000

Expecting byte 1501

Ti
m

e

Waterfall 
diagram ACK 1501

How does TCP achieve reliability?
A B

Bytes 1000-1500 Expecting byte 1000

Expecting byte 1501

Ti
m

e

Waterfall 
diagram ACK 1501

Reliability through acknowledgments  
to determine whether something was received.

How does TCP achieve reliability?
A B

Ti
m

e

Waterfall 
diagram

How does TCP achieve reliability?
A B

Expecting byte 1000

Ti
m

e

Waterfall 
diagram

How does TCP achieve reliability?
A B

Bytes 1000-1500 Expecting byte 1000

Ti
m

e

Waterfall 
diagram

How does TCP achieve reliability?
A B

Bytes 1000-1500

Bytes 1501-2000

Expecting byte 1000

Ti
m

e

Waterfall 
diagram

How does TCP achieve reliability?
A B

Bytes 1000-1500

Bytes 1501-2000
Bytes 2001-3000

Expecting byte 1000

Ti
m

e

Waterfall 
diagram

How does TCP achieve reliability?
A B

Bytes 1000-1500

Bytes 1501-2000
Bytes 2001-3000

Expecting byte 1000

Still expecting byte 1000

Ti
m

e

Waterfall 
diagram

How does TCP achieve reliability?
A B

Bytes 1000-1500

Bytes 1501-2000
Bytes 2001-3000

Expecting byte 1000

Still expecting byte 1000

Ti
m

e

Waterfall 
diagram

ACK 1000

How does TCP achieve reliability?
A B

Bytes 1000-1500

Bytes 1501-2000
Bytes 2001-3000

Expecting byte 1000

Still expecting byte 1000
Still expecting byte 1000Ti

m
e

Waterfall 
diagram

ACK 1000

How does TCP achieve reliability?
A B

Bytes 1000-1500

Bytes 1501-2000
Bytes 2001-3000

Expecting byte 1000

Still expecting byte 1000
Still expecting byte 1000Ti

m
e

Waterfall 
diagram

ACK 1000

ACK 1000

How does TCP achieve reliability?
A B

Bytes 1000-1500

Bytes 1501-2000
Bytes 2001-3000

Expecting byte 1000

Bytes 1000-1500

Still expecting byte 1000
Still expecting byte 1000Ti

m
e

Waterfall 
diagram

ACK 1000

ACK 1000

How does TCP achieve reliability?
A B

Bytes 1000-1500

Bytes 1501-2000
Bytes 2001-3000

Expecting byte 1000

Bytes 1000-1500

Still expecting byte 1000
Still expecting byte 1000

Expecting packet 3001

Ti
m

e

Waterfall 
diagram

ACK 1000

ACK 1000

How does TCP achieve reliability?
A B

Bytes 1000-1500

Bytes 1501-2000
Bytes 2001-3000

Expecting byte 1000

Bytes 1000-1500

Still expecting byte 1000
Still expecting byte 1000

Expecting packet 3001

Ti
m

e

Waterfall 
diagram

ACK 1000

ACK 1000

ACK 3001

How does TCP achieve reliability?
A B

Bytes 1000-1500

Bytes 1501-2000
Bytes 2001-3000

Expecting byte 1000

Bytes 1000-1500

Still expecting byte 1000
Still expecting byte 1000

Expecting packet 3001

Ti
m

e

Waterfall 
diagram

ACK 1000

ACK 1000

ACK 3001

Buffer these until

TCP congestion control

• Try to use as much of the network as is safe (does
not adversely affect others’ performance) and
efficient (makes use of network capacity)

• Dynamically adapt how quickly you send based on
the network path’s capacity

• When an ACK doesn’t come back, the network may
be beyond capacity: slow down.

TCP’s second job: don’t break the network!

TCP header
16-bit 

Source port
16-bit 

Destination port
32-bit

Sequence number
32-bit

Acknowledgment
4-bit 

Header
Length

Reserved 6-bit 
Flags

16-bit 
Advertised window

16-bit 
Checksum

16-bit 
Urgent pointer

Options (variable) Padding

Data

TCP header
16-bit 

Source port
16-bit 

Destination port
32-bit

Sequence number
32-bit

Acknowledgment
4-bit 

Header
Length

Reserved 6-bit 
Flags

16-bit 
Advertised window

16-bit 
Checksum

16-bit 
Urgent pointer

Options (variable) Padding

Data

IP Header

TCP ports
• Ports are associated with OS processes

• Sandwiched between IP header and the
application data

• {src IP/port, dst IP/port} : this 4-tuple uniquely
identifies a TCP connection

• Some port numbers are well-known
• 80 = HTTP
• 53 = DNS

TCP header
16-bit 

Source port
16-bit 

Destination port
32-bit

Sequence number
32-bit

Acknowledgment
4-bit 

Header
Length

Reserved 6-bit 
Flags

16-bit 
Advertised window

16-bit 
Checksum

16-bit 
Urgent pointer

Options (variable) Padding

Data

IP Header

TCP seqno
• Each byte in the byte stream has a unique

“sequence number”
• Unique for both directions

• “Sequence number” in the header = sequence
number of the first byte in the packet’s data

• Next sequence number = previous seqno +
previous packet’s data size

• “Acknowledgment” in the header = the next seqno
you expect from the other end-host

TCP header
16-bit 

Source port
16-bit 

Destination port
32-bit

Sequence number
32-bit

Acknowledgment
4-bit 

Header
Length

Reserved 6-bit 
Flags

16-bit 
Advertised window

16-bit 
Checksum

16-bit 
Urgent pointer

Options (variable) Padding

Data

IP Header

TCP flags
• SYN

• Used for setting up a connection

• ACK
• Acknowledgments, for data and “control” packets

• FIN

• RST

Setting up a connection
A B

Ti
m

e

Waterfall 
diagram

Three-way handshake

Setting up a connection
A B

SYN

Ti
m

e

Waterfall 
diagram

Three-way handshake

Setting up a connection
A B

SYN

Ti
m

e

Waterfall 
diagram

Three-way handshake

Let’s SYNchronize 
sequence numbers

Setting up a connection
A B

SYN

Ti
m

e

Waterfall 
diagram SYN + ACK

Three-way handshake

Let’s SYNchronize 
sequence numbers

Setting up a connection
A B

SYN

Ti
m

e

Waterfall 
diagram SYN + ACK

Three-way handshake

Let’s SYNchronize 
sequence numbers

Got yours; here’s mine

Setting up a connection
A B

SYN

Ti
m

e

Waterfall 
diagram SYN + ACK

ACK

Three-way handshake

Let’s SYNchronize 
sequence numbers

Got yours; here’s mine

Setting up a connection
A B

SYN

Ti
m

e

Waterfall 
diagram SYN + ACK

ACK

Three-way handshake

Let’s SYNchronize 
sequence numbers

Got yours; here’s mine

Got yours, too

Setting up a connection
A B

SYN

Ti
m

e

Waterfall 
diagram SYN + ACK

ACK

Data

Three-way handshake

Let’s SYNchronize 
sequence numbers

Got yours; here’s mine

Got yours, too

Setting up a connection
A B

SYN

Ti
m

e

Waterfall 
diagram SYN + ACK

ACK

Data
Data

Three-way handshake

Let’s SYNchronize 
sequence numbers

Got yours; here’s mine

Got yours, too

Setting up a connection
A B

SYN

Ti
m

e

Waterfall 
diagram SYN + ACK

ACK

Data
Data
Data

Three-way handshake

Let’s SYNchronize 
sequence numbers

Got yours; here’s mine

Got yours, too

Setting up a connection
A B

SYN seqno=x

Ti
m

e

Waterfall 
diagram SYN seqno=y  

+ACK x+1

ACK y+1

Data
Data
Data

Three-way handshake

Let’s SYNchronize 
sequence numbers

Got yours; here’s mine

Got yours, too

TCP flags
• SYN

• ACK

• FIN: Let’s shut this down (two-way)
• FIN
• FIN+ACK

• RST: I’m shutting you down
• Says “delete all your local state, because I don’t know

what you’re talking about

Attacks
• SYN flooding

• Injection attacks

• Opt-ack attack

SYN flooding

SYN flooding
A B

Ti
m

e

Waterfall 
diagram

Recall the three-way handshake:

SYN flooding
A B

SYN

Ti
m

e

Waterfall 
diagram

Recall the three-way handshake:

SYN flooding
A B

SYN

Ti
m

e

Waterfall 
diagram

Recall the three-way handshake:

At this point, B
allocates state  
for this new 
connection
(incl. IP, port, 
maximum  
segment size)

SYN flooding
A B

SYN

Ti
m

e

Waterfall 
diagram

Recall the three-way handshake:

At this point, B
allocates state  
for this new 
connection
(incl. IP, port, 
maximum  
segment size)

IP/port,
MSS,…

SYN flooding
A B

SYN

Ti
m

e

Waterfall 
diagram

SYN + ACK

Recall the three-way handshake:

At this point, B
allocates state  
for this new 
connection
(incl. IP, port, 
maximum  
segment size)

IP/port,
MSS,…

SYN flooding
A B

SYN

Ti
m

e

Waterfall 
diagram

SYN + ACK

Recall the three-way handshake:

At this point, B
allocates state  
for this new 
connection
(incl. IP, port, 
maximum  
segment size)

IP/port,
MSS,…

ACK

SYN flooding
A B

SYN

Ti
m

e

Waterfall 
diagram

SYN + ACK

Recall the three-way handshake:

At this point, B
allocates state  
for this new 
connection
(incl. IP, port, 
maximum  
segment size)

IP/port,
MSS,…

ACK

SYN + ACK

SYN flooding
A B

SYN

Ti
m

e

Waterfall 
diagram

SYN + ACK

Recall the three-way handshake:

At this point, B
allocates state  
for this new 
connection
(incl. IP, port, 
maximum  
segment size)

IP/port,
MSS,…

ACK

B will hold onto this local state and retransmit SYN+ACK’s  
until it hears back or times out (up to 63 sec).

SYN + ACK

SYN flooding
A B

The attack
C

SYN flooding
A B

SYN

The attack
C

SYN flooding
A B

SYN

The attack

IP/port,
MSS,…

C

SYN flooding
A B

SYN

The attack

IP/port,
MSS,…SYN

C

SYN flooding
A B

SYN

The attack

IP/port,
MSS,…SYN

IP/port,
MSS,…

C

SYN flooding
A B

SYN

The attack

IP/port,
MSS,…SYN

IP/port,
MSS,…SYN

C

SYN flooding
A B

SYN

The attack

IP/port,
MSS,…SYN

IP/port,
MSS,…SYN

IP/port,
MSS,…

C

SYN flooding
A B

SYN

The attack

IP/port,
MSS,…SYN

IP/port,
MSS,…SYN

IP/port,
MSS,…

SYNSYNSYNSYNSYNSYNSYNSYN

C

SYN flooding
A B

SYN

The attack

IP/port,
MSS,…SYN

IP/port,
MSS,…SYN

IP/port,
MSS,…

SYNSYNSYNSYNSYNSYNSYNSYN
IP/port,
MSS,…
IP/port,
MSS,…
IP/port,
MSS,…
IP/port,
MSS,…

C

SYN flooding
A B

SYN

The attack

IP/port,
MSS,…SYN

IP/port,
MSS,…SYN

IP/port,
MSS,…

SYNSYNSYNSYNSYNSYNSYNSYN
IP/port,
MSS,…
IP/port,
MSS,…
IP/port,
MSS,…
IP/port,
MSS,…

Exhaust memory  
at the victim B.

C

SYN flooding
A B

SYN

The attack

IP/port,
MSS,…SYN

IP/port,
MSS,…SYN

IP/port,
MSS,…

SYNSYNSYNSYNSYNSYNSYNSYN
IP/port,
MSS,…
IP/port,
MSS,…
IP/port,
MSS,…
IP/port,
MSS,…

Exhaust memory  
at the victim B.

C

SYN

SYN flooding
A B

SYN

The attack

IP/port,
MSS,…SYN

IP/port,
MSS,…SYN

IP/port,
MSS,…

SYNSYNSYNSYNSYNSYNSYNSYN
IP/port,
MSS,…
IP/port,
MSS,…
IP/port,
MSS,…
IP/port,
MSS,…

Exhaust memory  
at the victim B.

C

SYN

New connections 
will fail (insufficient 
memory)

SYN flooding details
• Easy to detect many incomplete handshakes from a

single IP address

• Spoof the source IP address
• It’s just a field in a header: set it to whatever you like

• Problem: the host who really owns that spoofed IP
address may respond to the SYN+ACK with a RST,
deleting the local state at the victim

• Ideally, spoof an IP address of a host you know won’t
respond

SYN cookies
A B

The defense

SYN cookies
A B

SYN

The defense

SYN cookies
A B

SYN

The defense

IP/port,
MSS,…

SYN cookies
A B

SYN

The defense

IP/port,
MSS,…

Rather than store this data,
send it to the host who
is initiating the
connection and have
him return it to you

SYN cookies
A B

SYN

The defense

IP/port,
MSS,…

Rather than store this data,
send it to the host who
is initiating the
connection and have
him return it to youSYN + ACK  

seqno = f(data)

Store the necessary  
state in your seqno

SYN cookies
A B

SYN

The defense

Rather than store this data,
send it to the host who
is initiating the
connection and have
him return it to youSYN + ACK  

seqno = f(data)

Store the necessary  
state in your seqno

SYN cookies
A B

SYN

The defense

Rather than store this data,
send it to the host who
is initiating the
connection and have
him return it to youSYN + ACK  

seqno = f(data)

Store the necessary  
state in your seqno

ACK f(data)+1

SYN cookies
A B

SYN

The defense

Rather than store this data,
send it to the host who
is initiating the
connection and have
him return it to youSYN + ACK  

seqno = f(data)

Store the necessary  
state in your seqno

ACK f(data)+1
Check that f(data) is valid
for this connection. Only
at that point do you
allocate state.

SYN cookies
A B

SYN

The defense

Rather than store this data,
send it to the host who
is initiating the
connection and have
him return it to youSYN + ACK  

seqno = f(data)

Store the necessary  
state in your seqno

ACK f(data)+1
Check that f(data) is valid
for this connection. Only
at that point do you
allocate state.IP/port,

MSS,…

SYN cookie format
A B

SYN

SYN + ACK  

seqno = f(data)

ACK f(data)+1

IP/port,
MSS,…

The secure hash makes  
it difficult for the attacker  
to guess what f() will be,
and therefore the attacker  
cannot guess a correct ACK 
if he spoofs.

f(.) =
Slow-moving
timestamp MSS Secure hash

Prevents 
replay 
attacks

The info we 
need for this 
connection

Includes: 
IPs/ports, MSS, 

timestamp

32-bit seqno

Injection attacks
• Suppose you are on the path between src and dst;

what can you do?
• Trivial to inject packets with the correct sequence

number

• What if you are not on the path?
• Need to guess the sequence number
• Is this difficult to do?

Initial sequence numbers
• Initial sequence numbers used to be deterministic

• What havoc can we wreak?
• Send RSTs
• Inject data packets into an existing connection (TCP

veto attacks)
• Initiate and use an entire connection without ever

hearing the other end

Mitnick attack

X-terminal 
server

Server that X-
term trusts

Attacker

Any connection initiated  
from this IP address is 
allowed access to the 
X-terminal server

Mitnick attack

X-terminal 
server

Server that X-
term trusts

Attacker

Any connection initiated  
from this IP address is 
allowed access to the 
X-terminal server

1. SYN flood the trusted server

Mitnick attack

X-terminal 
server

Server that X-
term trusts

Attacker

Any connection initiated  
from this IP address is 
allowed access to the 
X-terminal server

1. SYN flood the trusted server

Mitnick attack

X-terminal 
server

Server that X-
term trusts

Attacker

Any connection initiated  
from this IP address is 
allowed access to the 
X-terminal server

1. SYN flood the trusted server
2. Spoof trusted server’s IP addr  
 in SYN to X-terminal

Mitnick attack

X-terminal 
server

Server that X-
term trusts

Attacker

Any connection initiated  
from this IP address is 
allowed access to the 
X-terminal server

1. SYN flood the trusted server
2. Spoof trusted server’s IP addr  
 in SYN to X-terminal

SYN src:

Mitnick attack

X-terminal 
server

Server that X-
term trusts

Attacker

Any connection initiated  
from this IP address is 
allowed access to the 
X-terminal server

1. SYN flood the trusted server
2. Spoof trusted server’s IP addr  
 in SYN to X-terminal

SYN src:

SYN+ACK  
seqno

Mitnick attack

X-terminal 
server

Server that X-
term trusts

Attacker

Any connection initiated  
from this IP address is 
allowed access to the 
X-terminal server

1. SYN flood the trusted server
2. Spoof trusted server’s IP addr  
 in SYN to X-terminal

SYN src:

SYN+ACK  
seqno

3. Trusted server too busy to RST

Mitnick attack

X-terminal 
server

Server that X-
term trusts

Attacker

Any connection initiated  
from this IP address is 
allowed access to the 
X-terminal server

1. SYN flood the trusted server
2. Spoof trusted server’s IP addr  
 in SYN to X-terminal

SYN src:

SYN+ACK  
seqno

3. Trusted server too busy to RST
4. ACK with the guessed seqno

Mitnick attack

X-terminal 
server

Server that X-
term trusts

Attacker

Any connection initiated  
from this IP address is 
allowed access to the 
X-terminal server

1. SYN flood the trusted server
2. Spoof trusted server’s IP addr  
 in SYN to X-terminal

SYN src:

SYN+ACK  
seqno

3. Trusted server too busy to RST

ACK src: 
seqno+1

4. ACK with the guessed seqno

Mitnick attack

X-terminal 
server

Server that X-
term trusts

Attacker

Any connection initiated  
from this IP address is 
allowed access to the 
X-terminal server

1. SYN flood the trusted server
2. Spoof trusted server’s IP addr  
 in SYN to X-terminal

SYN src:

SYN+ACK  
seqno

3. Trusted server too busy to RST

ACK src: 
seqno+1

4. ACK with the guessed seqno
“echo ++ >> ./rhosts”

Mitnick attack

X-terminal 
server

Server that X-
term trusts

Attacker

Any connection initiated  
from this IP address is 
allowed access to the 
X-terminal server

1. SYN flood the trusted server
2. Spoof trusted server’s IP addr  
 in SYN to X-terminal

SYN src:

SYN+ACK  
seqno

3. Trusted server too busy to RST

ACK src: 
seqno+1

4. ACK with the guessed seqno
“echo ++ >> ./rhosts”

5. Grant access to all sources

Mitnick attack

X-terminal 
server

Server that X-
term trusts

Attacker

Any connection initiated  
from this IP address is 
allowed access to the 
X-terminal server

1. SYN flood the trusted server
2. Spoof trusted server’s IP addr  
 in SYN to X-terminal

SYN src:

SYN+ACK  
seqno

3. Trusted server too busy to RST

ACK src: 
seqno+1

4. ACK with the guessed seqno
“echo ++ >> ./rhosts”

5. Grant access to all sources

ACK

Mitnick attack

X-terminal 
server

Server that X-
term trusts

Attacker

Any connection initiated  
from this IP address is 
allowed access to the 
X-terminal server

1. SYN flood the trusted server
2. Spoof trusted server’s IP addr  
 in SYN to X-terminal

SYN src:

SYN+ACK  
seqno

3. Trusted server too busy to RST

ACK src: 
seqno+1

4. ACK with the guessed seqno
“echo ++ >> ./rhosts”

5. Grant access to all sources

ACK

6. RSTs to trusted server (cleanup)

Mitnick attack

X-terminal 
server

Server that X-
term trusts

Attacker

Any connection initiated  
from this IP address is 
allowed access to the 
X-terminal server

1. SYN flood the trusted server
2. Spoof trusted server’s IP addr  
 in SYN to X-terminal

SYN src:

SYN+ACK  
seqno

3. Trusted server too busy to RST

ACK src: 
seqno+1

4. ACK with the guessed seqno
“echo ++ >> ./rhosts”

5. Grant access to all sources

ACK

6. RSTs to trusted server (cleanup)

Defenses
• Initial sequence number must be difficult to predict!

Opt-ack attack
A B

TCP uses ACKs not only for reliability, but also for  
congestion control:  

the more ACKs come back, the faster I can send

Opt-ack attack
A B

Expecting byte 1000

TCP uses ACKs not only for reliability, but also for  
congestion control:  

the more ACKs come back, the faster I can send

Opt-ack attack
A B

Bytes 1000-1500 Expecting byte 1000

TCP uses ACKs not only for reliability, but also for  
congestion control:  

the more ACKs come back, the faster I can send

Opt-ack attack
A B

Bytes 1000-1500 Expecting byte 1000

Expecting byte 1501

TCP uses ACKs not only for reliability, but also for  
congestion control:  

the more ACKs come back, the faster I can send

Opt-ack attack
A B

Bytes 1000-1500 Expecting byte 1000

Expecting byte 1501
ACK 1501

TCP uses ACKs not only for reliability, but also for  
congestion control:  

the more ACKs come back, the faster I can send

Opt-ack attack
A B

Bytes 1000-1500 Expecting byte 1000

Expecting byte 1501
ACK 1501

TCP uses ACKs not only for reliability, but also for  
congestion control:  

the more ACKs come back, the faster I can send

Bytes 1501-2001

Opt-ack attack
A B

Bytes 1000-1500 Expecting byte 1000

Expecting byte 1501
ACK 1501

TCP uses ACKs not only for reliability, but also for  
congestion control:  

the more ACKs come back, the faster I can send

Bytes 1501-2001Bytes 2002-2502

Opt-ack attack
A B

Bytes 1000-1500

ACK 1501

Bytes 1501-2001Bytes 2002-2502

Opt-ack attack
A B

Bytes 1000-1500

ACK 1501

Bytes 1501-2001Bytes 2002-2502 If I could convince you to send  
REALLY quickly, then you would  
effectively DoS your own network!

Opt-ack attack
A B

Bytes 1000-1500

ACK 1501

Bytes 1501-2001Bytes 2002-2502 If I could convince you to send  
REALLY quickly, then you would  
effectively DoS your own network!

But to get you to send faster, I need  
to get data in order to ACK, so I  
need to receive quickly

Opt-ack attack
A B

Bytes 1000-1500

ACK 1501

Bytes 1501-2001Bytes 2002-2502 If I could convince you to send  
REALLY quickly, then you would  
effectively DoS your own network!

But to get you to send faster, I need  
to get data in order to ACK, so I  
need to receive quickly …or do I?

Opt-ack attack
A B

Opt-ack attack
A B

Bytes 1000-1500

Opt-ack attack
A B

Bytes 1000-1500
If I can predict what the last seqno will be  
and when A will send it

Opt-ack attack
A B

Bytes 1000-1500
If I can predict what the last seqno will be  
and when A will send it

ACK 1501

Opt-ack attack
A B

Bytes 1000-1500
If I can predict what the last seqno will be  
and when A will send it

ACK 1501 Then I could ACK early! (“optimistically”)

Opt-ack attack
A B

Bytes 1000-1500
If I can predict what the last seqno will be  
and when A will send it

ACK 1501 Then I could ACK early! (“optimistically”)
ACK 2001

Opt-ack attack
A B

Bytes 1000-1500
If I can predict what the last seqno will be  
and when A will send it

ACK 1501 Then I could ACK early! (“optimistically”)
ACK 2001
ACK 2502

Opt-ack attack
A B

Bytes 1000-1500
If I can predict what the last seqno will be  
and when A will send it

ACK 1501

Bytes 1501-2001

Then I could ACK early! (“optimistically”)
ACK 2001
ACK 2502

Opt-ack attack
A B

Bytes 1000-1500
If I can predict what the last seqno will be  
and when A will send it

ACK 1501

Bytes 1501-2001Bytes 2002-2502

Then I could ACK early! (“optimistically”)
ACK 2001
ACK 2502

Opt-ack attack
A B

Bytes 1000-1500
If I can predict what the last seqno will be  
and when A will send it

ACK 1501

Bytes 1501-2001Bytes 2002-2502

Then I could ACK early! (“optimistically”)

A will think “what a fast, legit connection!”

ACK 2001
ACK 2502

Opt-ack attack
A B

Bytes 1000-1500
If I can predict what the last seqno will be  
and when A will send it

ACK 1501

Bytes 1501-2001Bytes 2002-2502

Then I could ACK early! (“optimistically”)

A will think “what a fast, legit connection!”

ACK 2001
ACK 2502

Eventually, A’s outgoing packets will start to  
get dropped.

Opt-ack attack
A B

Bytes 1000-1500
If I can predict what the last seqno will be  
and when A will send it

ACK 1501

Bytes 1501-2001Bytes 2002-2502

Then I could ACK early! (“optimistically”)

A will think “what a fast, legit connection!”

ACK 2001
ACK 2502

Eventually, A’s outgoing packets will start to  
get dropped.

Opt-ack attack
A B

Bytes 1000-1500
If I can predict what the last seqno will be  
and when A will send it

ACK 1501

Bytes 1501-2001Bytes 2002-2502

Then I could ACK early! (“optimistically”)

A will think “what a fast, legit connection!”

ACK 2001
ACK 2502

ACK Eventually, A’s outgoing packets will start to  
get dropped.

Opt-ack attack
A B

Bytes 1000-1500
If I can predict what the last seqno will be  
and when A will send it

ACK 1501

Bytes 1501-2001Bytes 2002-2502

Then I could ACK early! (“optimistically”)

A will think “what a fast, legit connection!”

ACK 2001
ACK 2502

ACK Eventually, A’s outgoing packets will start to  
get dropped.

But so long as I keep ACKing correctly, it  
doesn’t matter.

Opt-ack attack
A B

Bytes 1000-1500
If I can predict what the last seqno will be  
and when A will send it

ACK 1501

Bytes 1501-2001Bytes 2002-2502

Then I could ACK early! (“optimistically”)

A will think “what a fast, legit connection!”

ACK 2001
ACK 2502

ACK Eventually, A’s outgoing packets will start to  
get dropped.

But so long as I keep ACKing correctly, it  
doesn’t matter.

Amplification
• The big deal with this attack is its Amplification

Factor
• Attacker sends x bytes of data, causing the victim to

send many more bytes of data in response
• Recent examples: NTP, DNSSEC

• Amplified in TCP due to cumulative ACKs
• “ACK x” says “I’ve seen all bytes up to but not

including x”

Opt-ack’s amplification factor
• Max bytes sent by victim per ACK:

• Max ACKs attacker can send per second:

Opt-ack’s amplification factor
• Max bytes sent by victim per ACK:

Max window size
MSS

x (14 + 40 + MSS)

Packets sent per ACK Bytes per packet

Ethe
rne

t

TC
P/IP

Pay
loa

d

• Max ACKs attacker can send per second:

Opt-ack’s amplification factor
• Max bytes sent by victim per ACK:

Max window size
MSS

x (14 + 40 + MSS)

Packets sent per ACK Bytes per packet

Ethe
rne

t

TC
P/IP

Pay
loa

d

• Max ACKs attacker can send per second:

Attacker bandwidth (bytes/sec)
(14 + 40)

Size of ACK packet

Opt-ack’s amplification factor
• Boils down to max window size and MSS

• Default max window size: 65,536
• Default MSS: 536

• Default amp factor: 65536 * (1/536 + 1/54) ~ 1336x

• Window scaling lets you increase this by a factor of 2^14

• Window scaling amp factor: ~1336 * 2^14 ~ 22M

• Using minimum MSS of 88: ~ 32M

Opt-ack defenses
• Is there a way we could defend against opt-ack in

a way that is still compatible with existing
implementations of TCP?

• An important goal in networking is incremental
deployment: ideally, we should be able to benefit
from a system/modification when even a subset of
hosts deploy it.

NAMING

• IP addresses allow global connectivity

• But they’re pretty useless for humans!
• Can’t be expected to pick their own IP address
• Can’t be expected to remember another’s IP address

• DHCP : Setting IP addresses

• DNS : Mapping a memorable name to a routable IP
address

DHCP

New host DHCP server

DYNAMIC HOST CONFIGURATION PROTOCOL

DHCP

New host DHCP server
Doesn’t have an  
IP address yet  
(can’t set src addr)

DYNAMIC HOST CONFIGURATION PROTOCOL

DHCP

New host DHCP server
Doesn’t have an  
IP address yet  
(can’t set src addr)

Doesn’t know who
to ask for one

DYNAMIC HOST CONFIGURATION PROTOCOL

DHCP

New host DHCP server
Doesn’t have an  
IP address yet  
(can’t set src addr)

Doesn’t know who
to ask for one

Solution: Discover  
one on the local
subnet

DYNAMIC HOST CONFIGURATION PROTOCOL

DHCP

New host DHCP server

DHCP discover (L2 broadcast)

Doesn’t have an  
IP address yet  
(can’t set src addr)

Doesn’t know who
to ask for one

Solution: Discover  
one on the local
subnet

DYNAMIC HOST CONFIGURATION PROTOCOL

DHCP

New host DHCP server

DHCP discover (L2 broadcast)

DHCP offer

Doesn’t have an  
IP address yet  
(can’t set src addr)

Doesn’t know who
to ask for one

Solution: Discover  
one on the local
subnet

DYNAMIC HOST CONFIGURATION PROTOCOL

DHCP

New host DHCP server

DHCP discover (L2 broadcast)

DHCP offer

Doesn’t have an  
IP address yet  
(can’t set src addr)

Doesn’t know who
to ask for one

Solution: Discover  
one on the local
subnet

offer includes: IP 
address, DNS server, 
gateway router, and
duration of this offer
(“lease” time)

DYNAMIC HOST CONFIGURATION PROTOCOL

DHCP

New host DHCP server

DHCP discover (L2 broadcast)

DHCP offer

Doesn’t have an  
IP address yet  
(can’t set src addr)

Doesn’t know who
to ask for one

Solution: Discover  
one on the local
subnet

offer includes: IP 
address, DNS server, 
gateway router, and
duration of this offer
(“lease” time)

DHCP request (L2 broadcast)

DYNAMIC HOST CONFIGURATION PROTOCOL

DHCP

New host DHCP server

DHCP discover (L2 broadcast)

DHCP offer

Doesn’t have an  
IP address yet  
(can’t set src addr)

Doesn’t know who
to ask for one

Solution: Discover  
one on the local
subnet

offer includes: IP 
address, DNS server, 
gateway router, and
duration of this offer
(“lease” time)

DHCP request (L2 broadcast)
request asks for the  
offered IP address

DYNAMIC HOST CONFIGURATION PROTOCOL

DHCP

New host DHCP server

DHCP discover (L2 broadcast)

DHCP offer

Doesn’t have an  
IP address yet  
(can’t set src addr)

Doesn’t know who
to ask for one

Solution: Discover  
one on the local
subnet

offer includes: IP 
address, DNS server, 
gateway router, and
duration of this offer
(“lease” time)

DHCP request (L2 broadcast)

DHCP ACK request asks for the  
offered IP address

DYNAMIC HOST CONFIGURATION PROTOCOL

DHCP ATTACKS

• Requests are broadcast: attackers on the same subnet
can hear new host’s request

• Race the actual DHCP server to replace:
• DNS server

- Redirect any of a host’s lookups (“what IP address should I use
when trying to connect to google.com?”) to a machine of the
attacker’s choice

• Gateway
- The gateway is where the host sends all of its outgoing traffic (so

that the host doesn’t have to figure out routes himself)
- Modify the gateway to intercept all of a user’s traffic
- Then relay it to the gateway (MITM)
- How could the user detect this?

http://google.com

HOSTNAMES AND IP ADDRESSES

gold:~ dml$ ping google.com
PING google.com (74.125.228.65): 56 data bytes
64 bytes from 74.125.228.65: icmp_seq=0 ttl=52 time=22.330 ms
64 bytes from 74.125.228.65: icmp_seq=1 ttl=52 time=6.304 ms
64 bytes from 74.125.228.65: icmp_seq=2 ttl=52 time=5.186 ms
64 bytes from 74.125.228.65: icmp_seq=3 ttl=52 time=12.805 ms

HOSTNAMES AND IP ADDRESSES

gold:~ dml$ ping google.com
PING google.com (74.125.228.65): 56 data bytes
64 bytes from 74.125.228.65: icmp_seq=0 ttl=52 time=22.330 ms
64 bytes from 74.125.228.65: icmp_seq=1 ttl=52 time=6.304 ms
64 bytes from 74.125.228.65: icmp_seq=2 ttl=52 time=5.186 ms
64 bytes from 74.125.228.65: icmp_seq=3 ttl=52 time=12.805 ms

HOSTNAMES AND IP ADDRESSES

gold:~ dml$ ping google.com
PING google.com (74.125.228.65): 56 data bytes
64 bytes from 74.125.228.65: icmp_seq=0 ttl=52 time=22.330 ms
64 bytes from 74.125.228.65: icmp_seq=1 ttl=52 time=6.304 ms
64 bytes from 74.125.228.65: icmp_seq=2 ttl=52 time=5.186 ms
64 bytes from 74.125.228.65: icmp_seq=3 ttl=52 time=12.805 ms

HOSTNAMES AND IP ADDRESSES

gold:~ dml$ ping google.com
PING google.com (74.125.228.65): 56 data bytes
64 bytes from 74.125.228.65: icmp_seq=0 ttl=52 time=22.330 ms
64 bytes from 74.125.228.65: icmp_seq=1 ttl=52 time=6.304 ms
64 bytes from 74.125.228.65: icmp_seq=2 ttl=52 time=5.186 ms
64 bytes from 74.125.228.65: icmp_seq=3 ttl=52 time=12.805 ms

google.com is easy to remember, but not routable

74.125.228.65 is routable

Name resolution: 
The process of mapping from one to the other

TERMINOLOGY
• www.cs.umd.edu = “domain name”

• www.cs.umd.edu is a “subdomain” of cs.umd.edu

• Domain names can map to a set of IP addresses
gold:~ dml$ dig google.com

; <<>> DiG 9.8.3-P1 <<>> google.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 35815
;; flags: qr rd ra; QUERY: 1, ANSWER: 11, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;google.com. IN A

;; ANSWER SECTION:
google.com. 105 IN A 74.125.228.70
google.com. 105 IN A 74.125.228.66
google.com. 105 IN A 74.125.228.64
google.com. 105 IN A 74.125.228.69
google.com. 105 IN A 74.125.228.78
google.com. 105 IN A 74.125.228.73
google.com. 105 IN A 74.125.228.68
google.com. 105 IN A 74.125.228.65
google.com. 105 IN A 74.125.228.72

We’ll understand this 
more in a bit; for now,  
note that google.com  
is mapped to many  

IP addresses

http://www.cs.umd.edu
http://www.cs.umd.edu
http://google.com

TERMINOLOGY
• www.cs.umd.edu = “domain name”

• www.cs.umd.edu is a “subdomain” of cs.umd.edu

• Domain names can map to a set of IP addresses
gold:~ dml$ dig google.com

; <<>> DiG 9.8.3-P1 <<>> google.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 35815
;; flags: qr rd ra; QUERY: 1, ANSWER: 11, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;google.com. IN A

;; ANSWER SECTION:
google.com. 105 IN A 74.125.228.70
google.com. 105 IN A 74.125.228.66
google.com. 105 IN A 74.125.228.64
google.com. 105 IN A 74.125.228.69
google.com. 105 IN A 74.125.228.78
google.com. 105 IN A 74.125.228.73
google.com. 105 IN A 74.125.228.68
google.com. 105 IN A 74.125.228.65
google.com. 105 IN A 74.125.228.72

We’ll understand this 
more in a bit; for now,  
note that google.com  
is mapped to many  

IP addresses

http://www.cs.umd.edu
http://www.cs.umd.edu
http://google.com

TERMINOLOGY
• “zone” = a portion of the DNS namespace, divided

up for administrative reasons
• Think of it like a collection of hostname/IP address

pairs that happen to be lumped together
- www.google.com, mail.google.com, dev.google.com, …

• Subdomains do not need to be in the same zone
• Allows the owner of one zone (umd.edu) to delegate

responsibility to another (cs.umd.edu)

http://www.google.com
http://mail.google.com
http://dev.google.com
http://cs.umd.edu

NAMESPACE HIERARCHY

www.cs.umd.edu

cs.umd.edu

umd.edu

edu

.

com net

duke.edu

Zones

TERMINOLOGY
• “Nameserver” = A piece of code that answers

queries of the form “What is the IP address for
foo.bar.com?”
• Every zone must run ≥2 nameservers
• Several very common nameserver implementations:

BIND, PowerDNS (more popular in Europe)

• “Authoritative nameserver”:
• Every zone has to maintain a file that maps IP

addresses and hostnames (“www.cs.umd.edu is
128.8.127.3”)

• One of the name servers in the zone has the master
copy of this file. It is the authority on the mapping.

http://www.cs.umd.edu

TERMINOLOGY
• “Resolver” - while name servers answer queries,

resolvers ask queries.

• Every OS has a resolver. Typically small and pretty dumb.
All it typically does it forward the query to a local…

• “Recursive nameserver” - a nameserver which will do
the heavy lifting, issuing queries on behalf of the client
resolver until an authoritative answer returns.

• Prevalence
• There is almost always a local (private) recursive name server
• But very rare for name servers to support recursive queries

otherwise

TERMINOLOGY
• “Record” (or “resource record”) = usually think of it

as a mapping between hostname and IP address

• But more generally, it can map virtually anything to
virtually anything

• Many record types:
• (A)ddress records (IP <-> hostname)
• Mail server (MX, mail exchanger)
• SOA (start of authority, to delineate different zones)
• Others for DNSSEC to be able to share keys

• Records are the unit of information

TERMINOLOGY

• Authoritative answers (A) for hostnames in that zone
• The umd.edu zone’s nameservers must be able to tell us

what the IP address for umd.edu is

• Pointers to name servers (NS) who host zones in its
subdomains
• The umd.edu zone’s nameservers must be able to tell us

what the name and IP address of the cs.umd.edu zone’s
nameservers

“A” record: umd.edu = 54.84.241.99

Nameservers within a zone must be able to give:

54.84.241.99 is a valid  
IP address for umd.edu

“NS” record: cs.umd.edu = ipa01.cs.umd.edu. Ask ipa01.cs.umd.edu for all 
cs.umd.edu subdomains

http://umd.edu
http://umd.edu
http://umd.edu
http://cs.umd.edu
http://umd.edu
http://umd.edu
http://ipa01.cs.umd.edu
http://ipa01.cs.umd.edu
http://cs.umd.edu

TERMINOLOGY

• Authoritative answers (A) for hostnames in that zone
• The umd.edu zone’s nameservers must be able to tell us

what the IP address for umd.edu is

• Pointers to name servers (NS) who host zones in its
subdomains
• The umd.edu zone’s nameservers must be able to tell us

what the name and IP address of the cs.umd.edu zone’s
nameservers

“A” record: umd.edu = 54.84.241.99

Nameservers within a zone must be able to give:

54.84.241.99 is a valid  
IP address for umd.edu

“NS” record: cs.umd.edu = ipa01.cs.umd.edu. Ask ipa01.cs.umd.edu for all 
cs.umd.edu subdomains

http://umd.edu
http://umd.edu
http://umd.edu
http://cs.umd.edu
http://umd.edu
http://umd.edu
http://ipa01.cs.umd.edu
http://ipa01.cs.umd.edu
http://cs.umd.edu

DNS
Domain Name Service at a very high level

Requesting
host

What is an IP address  
for cs.umd.edu?

http://cs.umd.edu

DNS
Domain Name Service at a very high level

Requesting
host

What is an IP address  
for cs.umd.edu?

Local
nameserver

http://cs.umd.edu

DNS
Domain Name Service at a very high level

Requesting
host

What is an IP address  
for cs.umd.edu?

Local
nameserver

1

http://cs.umd.edu

DNS
Domain Name Service at a very high level

Requesting
host

What is an IP address  
for cs.umd.edu?

Local
nameserver

Root DNS
server “.”

1

http://cs.umd.edu

DNS
Domain Name Service at a very high level

Requesting
host

What is an IP address  
for cs.umd.edu?

Local
nameserver

Root DNS
server “.”

1

2

http://cs.umd.edu

DNS
Domain Name Service at a very high level

Requesting
host

What is an IP address  
for cs.umd.edu?

Local
nameserver

Root DNS
server “.”

1

2
3

http://cs.umd.edu

DNS
Domain Name Service at a very high level

Requesting
host

What is an IP address  
for cs.umd.edu?

Local
nameserver

Root DNS
server “.”

1

2
3

TLD DNS
server

NS

http://cs.umd.edu

DNS
Domain Name Service at a very high level

Requesting
host

What is an IP address  
for cs.umd.edu?

Local
nameserver

Root DNS
server “.”

1

2
3

4 TLD DNS
server

NS

http://cs.umd.edu

DNS
Domain Name Service at a very high level

Requesting
host

What is an IP address  
for cs.umd.edu?

Local
nameserver

Root DNS
server “.”

1

2
3

4

5

TLD DNS
server

NS

http://cs.umd.edu

DNS
Domain Name Service at a very high level

Requesting
host

What is an IP address  
for cs.umd.edu?

Local
nameserver

Root DNS
server “.”

1

2
3

4

5

TLD DNS
server

Authoritative DNS
server

NS

NS

http://cs.umd.edu

6

DNS
Domain Name Service at a very high level

Requesting
host

What is an IP address  
for cs.umd.edu?

Local
nameserver

Root DNS
server “.”

1

2
3

4

5

TLD DNS
server

Authoritative DNS
server

NS

NS

http://cs.umd.edu

6

DNS
Domain Name Service at a very high level

Requesting
host

What is an IP address  
for cs.umd.edu?

Local
nameserver

Root DNS
server “.”

1

2
3

4

5

7

TLD DNS
server

Authoritative DNS
server

NS

NS

http://cs.umd.edu

6

DNS
Domain Name Service at a very high level

Requesting
host

What is an IP address  
for cs.umd.edu?

Local
nameserver

Root DNS
server “.”

1

2
3

4

5

7

TLD DNS
server

Authoritative DNS
server

cs.umd.edu

NS

NS

A

http://cs.umd.edu

6

DNS
Domain Name Service at a very high level

Requesting
host

What is an IP address  
for cs.umd.edu?

Local
nameserver

Root DNS
server “.”

1

2
3

4

5

7
8

TLD DNS
server

Authoritative DNS
server

cs.umd.edu

NS

NS

A

http://cs.umd.edu

6

DNS
Domain Name Service at a very high level

Requesting
host

What is an IP address  
for cs.umd.edu?

Local
nameserver

Root DNS
server “.”

1

2
3

4

5

7
8

9

TLD DNS
server

Authoritative DNS
server

cs.umd.edu

NS

NS

A

http://cs.umd.edu

6

DNS
Domain Name Service at a very high level

Requesting
host

What is an IP address  
for cs.umd.edu?

Local
nameserver

Root DNS
server “.”

1

2
3

4

5

7
8

Caching responses is 
critical to DNS’s success
Every response (3,5,7,8)  
has a time-to-live (TTL). 

TTLs should be reasonably  
long (days), but some 

are minutes.

9

TLD DNS
server

Authoritative DNS
server

cs.umd.edu

NS

NS

A

http://cs.umd.edu

HOW DO THEY KNOW THESE IP ADDRESSES?

• Local DNS server: host learned this via DHCP

• A parent knows its children: part of the registration process

• Root nameserver: hardcoded into the local DNS server
(and every DNS server)
• 13 root servers (logically): A-root, B-root, …, M-root
• These IP addresses change very infrequently
• UMD runs D-root.

- IP address changed beginning of 2013!!
- For the most part, the change-over went alright, but Lots of weird

things happened — ask me some time.

CACHING

• Central to DNS’s success

• Also central to attacks

• “Cache poisoning”: filling a victim’s cache with
false information

QUERIES

Requesting
host

What is an IP address  
for cs.umd.edu?

Local
nameserver

Root DNS
server “.”

1

2
3

4

5

6

7
8

9

TLD DNS
server

Authoritative DNS
server

(“umd.edu”)

cs.umd.edu

Every query (2,4,6) has
the same request in it
(“what is the IP address for  
cs.umd.edu?”)

But different: 
 - dst IP (port = 53)
 - query ID

NS

NS

A

http://cs.umd.edu

WHAT’S IN A RESPONSE?

• Many things, but for the attacks we’re concerned with…

• A record: gives “the authoritative response for the IP
address of this hostname”

• NS record: describes “this is the name of the
nameserver who should know more about how to
answer this query than I do”
• Often also contains “glue” records (IP addresses of those

name servers to avoid chicken and egg problems)
• Resolver will generally cache all of this information

QUERY IDS

• The local resolver has a lot of
incoming/outgoing queries at any
point in time.

• To determine which response maps
to which queries, it uses a query ID

• Query ID: 16-bit field in the DNS
header
• Requester sets it to whatever it

wants
• Responder must provide the same

value in its response

Local
nameserver

2
3

4

5

6

7

QUERY IDS

• The local resolver has a lot of
incoming/outgoing queries at any
point in time.

• To determine which response maps
to which queries, it uses a query ID

• Query ID: 16-bit field in the DNS
header
• Requester sets it to whatever it

wants
• Responder must provide the same

value in its response

Local
nameserver

2
3

4

5

6

7

How would you implement query IDs at a resolver?

QUERY IDS USED TO INCREMENT

• Global query ID value

• Map outstanding query ID
to local state of who to
respond to (the client)

• Basically: 
 new Packet(queryID++)

Local
nameserver

16322

16322

16323

16323
16328

16328

QUERY IDS USED TO INCREMENT

• Global query ID value

• Map outstanding query ID
to local state of who to
respond to (the client)

• Basically: 
 new Packet(queryID++)

Local
nameserver

16322

16322

16323

16323
16328

16328

How would you attack this?

CACHE POISONING

Local
nameserver

Bad guy 6.6.6.6

CACHE POISONING

Local
nameserver

Bad guy

www.bank.com

6.6.6.6

CACHE POISONING

Local
nameserver

Bad guy

www.bank.com

Authoritative DNS
server

6.6.6.6

CACHE POISONING

Local
nameserver

16322

Bad guy

www.bank.com

Authoritative DNS
server

6.6.6.6

CACHE POISONING

Local
nameserver

16322

Bad guy

www.bank.com

Authoritative DNS
server

16322:  6.6.6.6

CACHE POISONING

Local
nameserver

16322

16322

Bad guy

www.bank.com

Authoritative DNS
server

16322:  6.6.6.6

CACHE POISONING

Local
nameserver

16322

16322

Bad guy

www.bank.com

Authoritative DNS
server

16322: Will cache 
www.bank.com = 6.6.6.6  
and ignore authority’s answer

6.6.6.6

http://www.bank.com

CACHE POISONING

Local
nameserver

16322

16322

Bad guy

www.bank.com

Authoritative DNS
server

How do you  
guess this?

16322: Will cache 
www.bank.com = 6.6.6.6  
and ignore authority’s answer

6.6.6.6

http://www.bank.com

CACHE POISONING

Local
nameserver

16322

16322

Bad guy

www.bank.com

Authoritative DNS
server

www.bad.com

How do you  
guess this?

16322: Will cache 
www.bank.com = 6.6.6.6  
and ignore authority’s answer

6.6.6.6

http://www.bank.com

CACHE POISONING

Local
nameserver

16322

16322

Bad guy

www.bank.com

Authoritative DNS
server

www.bad.com

16321

How do you  
guess this?

16322: Will cache 
www.bank.com = 6.6.6.6  
and ignore authority’s answer

6.6.6.6

http://www.bank.com

CACHE POISONING

Local
nameserver

16322

16322

Bad guy

www.bank.com

Authoritative DNS
server

www.bad.com

16321

How do you  
guess this?

16322: 

Next is likely  
16322

Will cache 
www.bank.com = 6.6.6.6  
and ignore authority’s answer

6.6.6.6

http://www.bank.com

DETAILS OF GETTING THE ATTACK TO WORK

• Must guess query ID: ask for it, and go from there
• Partial fix: randomize query IDs
• Problem: small space
• Attack: issue a Lot of query IDs

• Must guess source port number
• Typically constant for a given server (often always 53)

• The answer must not already be in the cache
• It will avoid issuing a query in the first place

CACHE POISONING

Local
nameserver

Bad guy

com. TLD

Can we do more harm than a single record?

6.6.6.6

CACHE POISONING

Local
nameserver

Bad guy

com. TLD

www.bad.com

Can we do more harm than a single record?

6.6.6.6

CACHE POISONING

Local
nameserver

Bad guy

com. TLD

www.bad.com

16321

Can we do more harm than a single record?

6.6.6.6

CACHE POISONING

Local
nameserver

Bad guy

com. TLD

www.bad.com

16321

Next is likely  
16322

Can we do more harm than a single record?

6.6.6.6

CACHE POISONING

Local
nameserver

Bad guy

com. TLD

www.bad.com

16321

somethingnotcached.bank.com

Next is likely  
16322

Can we do more harm than a single record?

6.6.6.6

CACHE POISONING

Local
nameserver

16322

Bad guy

com. TLD

www.bad.com

16321

somethingnotcached.bank.com

Next is likely  
16322

Can we do more harm than a single record?

6.6.6.6

CACHE POISONING

Local
nameserver

16322

Bad guy

com. TLD

www.bad.com

16321

somethingnotcached.bank.com

16322:  NS bank.com = ns.bank.com A ns.bank.com = 6.6.6.6   Next is likely  
16322

Can we do more harm than a single record?

6.6.6.6

CACHE POISONING

Local
nameserver

16322

16322

Bad guy

com. TLD

www.bad.com

16321

somethingnotcached.bank.com

16322:  NS bank.com = ns.bank.com A ns.bank.com = 6.6.6.6   Next is likely  
16322

Can we do more harm than a single record?

6.6.6.6

CACHE POISONING

Local
nameserver

16322

16322

Bad guy

com. TLD

www.bad.com

16321

somethingnotcached.bank.com

16322:  NS bank.com = ns.bank.com A ns.bank.com = 6.6.6.6   Next is likely  
16322

Will cache “the 
person to ask for ALL 
bank.com queries 
is 6.6.6.6”

Can we do more harm than a single record?

6.6.6.6

http://bank.com

SOLUTIONS?

• Randomizing query ID?
• Not sufficient alone: only 16 bits of entropy

• Randomize source port, as well
• There’s no reason for it stay constant
• Gets us another 16 bits of entropy

• DNSSEC?

DNSSEC
Root DNS
server “.”

www.cs.umd.edu?

DNSSEC
Root DNS
server “.”Ask “.edu” 

.edu’s public key = PKedu
(Plus “.”’s sig of this zone-key binding)

www.cs.umd.edu?

DNSSEC
Root DNS
server “.”Ask “.edu” 

.edu’s public key = PKedu
(Plus “.”’s sig of this zone-key binding)

www.cs.umd.edu?

TLD DNS
server

www.cs.umd.edu?

DNSSEC
Root DNS
server “.”Ask “.edu” 

.edu’s public key = PKedu
(Plus “.”’s sig of this zone-key binding)

www.cs.umd.edu?

TLD DNS
server

www.cs.umd.edu?

Ask “umd.edu” 
umd.edu’s public key = PKumd
(Plus “edu”’s sig of this zone-key binding)

DNSSEC
Root DNS
server “.”Ask “.edu” 

.edu’s public key = PKedu
(Plus “.”’s sig of this zone-key binding)

www.cs.umd.edu?

TLD DNS
server

www.cs.umd.edu?

Authoritative DNS
server

www.cs.umd.edu?

Ask “umd.edu” 
umd.edu’s public key = PKumd
(Plus “edu”’s sig of this zone-key binding)

DNSSEC
Root DNS
server “.”Ask “.edu” 

.edu’s public key = PKedu
(Plus “.”’s sig of this zone-key binding)

www.cs.umd.edu?

TLD DNS
server

www.cs.umd.edu?

Authoritative DNS
server

www.cs.umd.edu?

Ask “umd.edu” 
umd.edu’s public key = PKumd
(Plus “edu”’s sig of this zone-key binding)

IN A www.cs.umd.edu 128.8.127.3
(Plus “umd.edu”’s signature of 

the answer

DNSSEC
Root DNS
server “.”Ask “.edu” 

.edu’s public key = PKedu
(Plus “.”’s sig of this zone-key binding)

www.cs.umd.edu?

TLD DNS
server

www.cs.umd.edu?

Authoritative DNS
server

www.cs.umd.edu?

Ask “umd.edu” 
umd.edu’s public key = PKumd
(Plus “edu”’s sig of this zone-key binding)

IN A www.cs.umd.edu 128.8.127.3
(Plus “umd.edu”’s signature of 

the answer

Only the 
authoritative 

answer is 
signed

PROPERTIES OF DNSSEC

• If everyone has deployed it, and if you know the root’s keys,
then prevents spoofed responses
• Very similar to PKIs in this sense

• But unlike PKIs, we still want authenticity despite the fact
that not everyone has deployed DNSSEC
• What if someone replies back without DNSSEC?
• Ignore = secure but you can’t connect to a lot of hosts
• Accept = can connect but insecure

• Back to our notion of incremental deployment
• DNSSEC is not all that useful incrementally

