
We have looked at how to use public key crypto (mixed with just the right
amount of trust) for a website to authenticate itself to a user's browser.
What about when Alice needs to authenticate herself to an online service?

Conceptually, Alice could follow the same procedure as an online service: she
could generate a public/private key pair, and either directly share the public
key with the online service, or she could obtain a certificate from a trusted
third party.  This is not uncommon in practice: most Unix distributions have a
file in each user's home directory, $HOME/.ssh/authorized_keys2 in which a user
can list a set of public keys.  If Alice can prove that she has one of the
equivalent secret keys, then the system allows her to log in as the user.

Unfortunately, this process is too cumbersome for many users, and can decrease
a system's usability.  To log into, say, Gmail, you would always have to have
your private keys on you.  This may be easy from your personal computer, but
what if you want to log in from a friend's machine?

Moreover, what happens if you lose your private key?  Expecting users to
remember a 2048 bit number is too cumbersome for most (and as we have seen, it
would violate the principle that "Human factors matter").

This motivates the need for a different way to authenticate users.

===============================================================================

USER AUTHENTICATION

   Ultimately, what we need is a way to uniquely identify a user.  There are
   three broad things that differentiate us from one another:

      (1) WHAT WE KNOW

            The canonical approach to solving user authentication is 
            PASSWORDS: a password is useful only if the individual user is
            the only one who knows it.

            There are other examples, as well: friends can authenticate one
            another by sharing private details that only the two of them
            could know (see every body-swap movie ever).  When accessing a
            credit report, you are often asked questions that few people
            besides yourself would be able to answer (all of your prior
            addresses, business affiliations, etc.).  Of course, anyone
            with access to your credit report gains access to these things.

            Because we so often prove our identities with what we know,
            our private information often becomes somehow intermingled with
            our very identity.  As a result, when someone obtains
            information that is typically used to authenticate a victim, we
            say that that victim has had his or her identity stolen.

            The main challenge with authenticating based on what we know is
            that .. um .. wait, I forgot.
            
      (2) WHAT WE HAVE

            Another common form of authentication is to have a physical
            object that would be very difficult for us to obtain if we were
            not who we claimed to be.  Classic examples include badges and
            keys.

            A more recent example is a "token": a small device that is easy
            to carry around (people often attach them to their physical key
            ring), and that has a small LED screen and a button.  Upon
            pressing the button, a small piece of code generates a seemingly
            random number and displays it on the screen.  When Alice wishes



            to authenticate herself using this token, she enters the number
            (almost always along with another mode of authentication, like
            user name and password).  The server authenticating Alice runs a
            corresponding piece of code that generates the same seemingly
            random number as Alice's token.  If they match, then the user
            who entered it is very likely to have the physical token.

            In practice, security based on things that we have boils down to
            two very difficult tasks: (1) developing a physical object that
            is difficult to forge, and (2) developing a physical object that
            is difficult to tamper with or reverse engineer.

            In the case of the token, it is imperative that an attacker who
            gains temporary physical access not be able to extract the seed
            used in computing new numbers.

      (3) WHAT WE ARE

            Often viewed as the holy grail of authentication, BIOMETRICS
            are physical properties of our bodies that make us unique and
            that are easy to measure.  The canonical example is
            fingerprints: surprisingly, it was not until the late 19th
            century until anyone floated the idea of using fingerprints to
            identify people!  And it was not until the early 20th century
            when fingerprint analysis was applied in a criminal
            investigation in the US.

            There are other examples, each with a different trade-off
            between accuracy and cost:

                  Body part     Accuracy  |  Cost   
                 -----------    -----------+-------- 
                       Face      Low      | Low     
                Fingerprint      Medium   | Medium  
                       Iris      High     | High    

            What makes biometrics so appealing is that, if it works, it
            requires virtually no effort on behalf of a user to
            authenticate himself or herself.  Simply by existing and being
            our unique special selves, we are doing our job.  Go us!

            The problem is that, at least with many existing techniques,
            it has been quite easy to forge another's biometrics, from
            taking a picture of someone's eye to making a mould of
            someone's fingerprints.

      (4) OTHERS

            There have also been other schemes, such as WHERE we are, how
            we react to emotional stimuli (such as Rorschach tests), and so
            on.  These are more difficult to classify into the above three,
            but they all serve a very similar purpose: the goal is to try
            to set an individual apart from others in a way that "comes
            naturally", that is, without requiring users to have to worry
            about forgetting or creating a good way to authenticate
            themselves.

   Often, two of the above approaches are used in conjunction, a process 
   called TWO-FACTOR AUTHENTICATION.  The most common form of two-factor
   authentication combines something we know (our password) and something we
   have (a secure token).  Either one of these alone can be relatively easy
   to guess (after all, we often use pretty poor passwords, and the token
   only generates a relatively small string of numbers), but when taken
   together, they are often an effective means of secure authentication.

   There are many interesting results in designing and building trusted,



   tamper-resistant hardware, as well as in designing and building devices
   to accurately measure biometrics.  But these are beyond the scope of this
   discussion.  We will focus on what is by far the most common forms of user
   authentication: passwords.

===============================================================================

PASSWORDS

   Abstractly, a password scheme is one that consists of three algorithms:

      (1) SETTING the password: here, Alice establishes an initial password
         with Bob, and Bob updates some of his local state.  (Imagine for
         the time being that he stores her password, but we will see in a
         moment that this does not achieve the security properties we want).

      (2) LOGGING IN: after setup, Alice provides her password to Bob.  Bob
         checks this against his local state, and if there is a match, then
         he grants Alice access to his system.  Otherwise, he rejects
         access, possibly even locking anyone from logging in as Alice for
         some period of time.

      (3) RECOVERING a forgotten password: We've all been there.  If Alice 
         forgets her password, then ideally there is a protocol by which she
         can recover it.  This often requires falling back on a different
         form of authentication---going to the IT help desk would be a form
         of what we are plus what we have (student ID); having a new
         password sent via text to our cellphones is a form of what we have
         (a phone tied to that phone number).

   These should all seem very familiar to you.  But take a moment and
   consider: what kind of information does Bob store to be able to verify
   Alice's password?

===============================================================================

STORING PASSWORD DATA AT A SERVER

   Just like with our cryptographic primitives, we can also define the
   correctness and security properties that we want from a user authentication
   scheme:

      CORRECTNESS:

         If Alice has set up a password P, and if she tries to log in with
         P, then she gains access.

      SECURITY: While we normally thing of security from the perspective of
      how difficult Alice's password is to predict, we are going to focus
      on the security at the *server*:

         Suppose an attacker has gained access to Bob's server, and all of
         the local state that he has stored for all of his users.  A user
         authenticating service is secure if gaining access to this server
         does not allow an attacker to recover users' passwords.

   This security property has two important ramifications that will help guide
   our design.  In particular, it makes the following two approaches fail:

      FAILED ATTEMPT 1: Store the passwords in plaintext

         In this strawman protocol, Bob simply store the user's password in
         plaintext in some server-side file.  Setting, verifying, and
         recovering a password becomes trivial---for both the server and the
         attacker!



      FAILED ATTEMPT 2: Store the passwords encrypted with Bob's secret key

         Next up, suppose that Bob generates a symmetric key K and, instead
         of storing the password in plaintext, stores Enc(K,password), e.g.,
         with AES-128 in CBC mode and a properly generated IV.  Verifying a
         user's login would thus involve decrypting the stored password and
         checking it against what the user provided.
         
         If the attacker is unable to gain access to K, then this protocol
         has promise for a few reasons: if Bob uses a properly generated,
         random IV for each user's password, then recovering a single user's
         password does not reveal another user's password.  This is because
         each invocation of Enc(K,password) is likely to result in a
         seemingly random value.
         
         However, recall our assumption: that the attacker gains access to
         *all* of Bob's local state.  This includes not just the file in
         which he stores the encrypted passwords, but also his secret key K
         used for encrypting and decrypting the passwords.  As a result, the
         attacker can simply decrypt all users' passwords---no better than
         storing all of the user passwords in plaintext!

         The problem here is that, although we obfuscated the passwords
         (with encryption), this obfuscation was invertible using state
         local to Bob.

   The problem with the first failed approach was that we added no obfuscation
   of the passwords whatsoever.  The problem with the second failed approach
   was that, although we obfuscated the passwords (with encryption), this
   obfuscation was invertible using state local to Bob (the symmetric key).

   The idea is to use a *non-invertible* means of obfuscation: our trusty
   one-way friend, the hash function.  But, don't we need a way to recover the
   password from our saved local state?  No, we don't!  All we need to do is
   to be able to determine whether the password a user provides in a login
   attempt matches the latest password they asked Bob to save.  So, if we were
   to store H(p), then when a user tries to log in, she provides p', then all
   we need to do is to hash their login input, H(p'), and compare it to what
   we have stored, H(p).  Because a good hash function is collision resistant,
   it is extremely unlikely that H(p) = H(p') unless p = p'.

      PARTIAL SOLUTION 1: Hash functions

         So let's analyze a scheme where Bob locally stores H(password) for
         each user: is this going to be enough?  Recall that, so long as H
         is a good hash function (e.g., SHA-256), then it is pre-image
         resistant: given H(x) where x is chosen at random from a VERY LARGE
         SET, it is very difficult to recover x.  However, passwords are not
         chosen at random from a very large set!  Rather, users' passwords
         typically come from a very small set (as far as "large" goes in
         cryptography: case in point, AES keys are chosen at random from a
         set of size at least 2^128, while users' passwords typically come
         from a set of size about 2^22).

         What this means is that, if we only store H(password) for each
         user, then we are susceptible to an OFFLINE DICTIONARY ATTACK:

            1. For each word w in a "dictionary" of common user passwords
               - Store w and H(w)
            2. When the attacker gains access to the database of passwords
               - For each 'H(password)' stored in the database
               - For each w in the dictionary:
                  - Compare H(w) to the stored H(password)
                  - If they match, then the user's password is w.



         Note that step 1 can be precomputed, greatly reducing the amount of
         time the attacker needs access to Bob's server before being able to
         compromise a user's account.

         But that's not all: since two users may end up choosing the same
         password as one another ("123456" was recently named the most
         common password), an attacker could target his efforts by first
         seeing which H(password) appears most commonly in Bob's database:
         recovering that one password provides the attacker with access to
         multiple user accounts.

      PARTIAL SOLUTION 2: Salted hash functions

         The problem with the above partial solution is that there simply is
         not enough randomness in the inputs to the hash function to let us
         realize the hash function's properties of being pre-image resistant
         (i.e., difficult to "invert").

         Rather than ask users to "make more random passwords!", we can
         simply add in a source of randomness ourselves, by concatenating
         a large, random nonce to the user's password before hashing it.

         Nonces seem to take on different names depending on the context: in
         encryption, nonces were called "initialization vectors."  When it
         comes to hash functions, particularly when storing passwords, we
         refer to a nonce as a "salt".  But make no mistake: what matters is
         that it's random, and thus chosen from a good source of randomness.
   
         So here's our scheme thus far: when a user saves a password P,
         Bob's server generates a random salt S, and stores in his database:

            S and H(S || P)

         where "||" denotes concatenation.

         First the good news: the attacker cannot precompute the
         password-to-hash mapping like in the offline dictionary attack from
         above.  Rather, the attacker must launch an ONLINE DICTIONARY ATTACK:

            1. When the attacker gains access to the database of passwords
               - For each 'salt : H(salt || password)'
               - For each w in the dictionary
                  - Compare H(salt || w) to the stored H(salt || password)
                  - If they match, then the user's password is w.

         Because the attacker cannot precompute all of the hashes, this
         takes the attacker more time than in the offline attack: precisely,
         if the attacker has to try N different passwords before finding a
         match, and if it takes time T to compute one hash function, then it
         takes the attacker time N*T  to recover a password.  This is an
         improvement, since, without salts, the attacker was able to save
         this time via precomputation.

         Now the bad news: by design, hash functions are FAST!  So even
         though it takes N*T time, T is very small, and thus the overall
         amount of time is still not a large speedbump to attackers.

   This brings us, at last, to our FULL SOLUTION.  The high-level idea is to
   make it take longer to test any one password by taking, not one, but MANY
   HASH FUNCTIONS of the user's password:

      (STORING)  When the user stores a password P
               - Compute a random salt S
               - Compute H(H(H(.....(H(S || P)))))....), i.e., the hash



                  of the hash of the hash of.... (k times)
                     * Refer to this is H^k(S || P)

      (VERIFYING) When the user attempts to log in with password P':
               - Look up the user's salt S and stored value H^k(S || P)
               - Compute H^k(S || P')
               - If H^k(S || P') == H^k(S || P), then it is very likely
                  that P == P', so allow the user access.

   The idea behind choosing k (the number of times we chain the hash function
   together) is to balance between:

      - Choose a k LARGE enough that it takes the attacker too long to find a
           password to be useful.  (i.e., N*T*k should be large).

      - Choose a k SMALL enough that users do not notice (or at least are not
         annoyed by) the extra time it takes to verify (i.e., T*k should not
         be extremely large: ideally less than 100 milliseconds, roughly the
         amount of time when users start to notice delays).

   H^k() (and other similar variants) are sometimes referred to as "slow hash
   functions", in that they serve the same purpose of H(), but take longer to
   do so.

===============================================================================

WHAT DO STRONG PASSWORDS GET US?

   Let us now consider what at first blush might seem like a silly question:
   do strong passwords really get us anything?  Well, of course they must,
   right?  They sure sound like the lynch pin of all security, based on how
   often we're expected to change them, how many special characters we're
   supposed to include, and so on.

   To understand what kinds of attacks strong passwords get us, let us first
   decompose the attacks into a taxonomy along two dimensions:

         - Is the attack:
            * ONLINE: the only way the attacker can try to guess the 
              password is by issuing login attempts), 

            * OFFLINE: the attacker can gain access to the database
              storing passwords (or coerce, bribe, or torture users).

         - Does the attack target:
            * a SINGLE TARGETED USER: that is, the attacker has one user
              in mind and wants to recover his or her password, alone.

            * ANY user: here, the attacker does not care which user's
              password he obtains, so long as it is at least one.

   Note that all OFFLINE attacks can be handled with our salted, repeated hash
   function strategy above.  We actually assumed poor passwords (which is why
   we needed unique, random salts for each user), so using a strong password
   would not help us there.

   Now let us consider an ONLINE attack targeting a single user.  One common
   mechanism is to use a "THREE-STRIKES YOU'RE OUT" rule: if, within some
   given amount of time, a user fails to provide the correct password, then
   lock the user out from attempting other passwords for some amount of time.
   Do we need good passwords if we have such a rule in place?  Let's consider
   an example:

      - Suppose passwords are 6 digit numbers (poor passwords!)
      - If a user issues 3 wrong login attempts within a 24 hour period, then
           the user is locked out of her account for 24 hours.



   Suppose an attacker was given 10 YEARS of attempts at such a password.
   This leaves the attacker 3 * 365 * 10 attempts, or roughly 10^4 attempts.
   The chances that the attacker attempted the right password after 10 years
   is therefore

         10^4 / 10^6 = 1%

   So, after ten YEARS of attempts to guess a 6-digit number, the attacker
   only had a 1% chance of getting it right.  Strong passwords did not help
   here, either.  Of course, there is a tradeoff here: it is also trivial to
   lock a user out of his or her account.

   This leaves us with one remaining class of attack: ONLINE ATTACKS AGAINST
   ANY TARGET.  If we use salted, repeated hash functions and the
   three-strikes you're out rule, then the attacker can still issue a small
   number of login attempts for EACH user in the system.  If there are many
   users, and if users choose their passwords from a small set, then the
   attacker will be likely to recover at least one user's password.

   So yes, strong passwords do matter, but they are not the sole solution to
   remaining resilient to attackers trying to recover victims' passwords.


