
CMSC 132 Quiz 4 Worksheet 
 
The next quiz for the course will be on Wed, Nov 20. The following list provides additional information about the quiz: 
   

• The quiz will be a written quiz (no computer). 
• The quiz will be in lab. 
• Closed book, closed notes quiz. 
• Answers must be neat and legible. 
• Quiz instructions can be found at http://www.cs.umd.edu/~nelson/classes/utilities/examRules.html 

 
The following exercises cover the material to be included in this quiz. Solutions to these exercises will not be 
provided, but you are welcome to discuss your solutions with the TAs or instructors during office hours.  It is 
recommended that you try these exercises on paper first (without using a computer).   
 
Some recursion problems require an auxiliary method.  For example, a recursive implementation for the tree size() 
method may use an auxiliary method that takes as parameter a reference to a Node.  Keep this in mind while solving 
the problems below.    
 
The following Java class definition for a binary search tree will be used to answer the questions that follow.  We use 
null to represent an empty tree.  For example, an empty BinarySearchTree has a null root, and a leaf node has null 
left and right fields. You may not add any variables (instance or static) to the class in order to answer the questions 
below.   

 
public class BinarySearchTree <K extends Comparable<K>, V> { 
 private class Node { 
        private K key; 
        private V data; 
        private Node left, right; 
        public Node(K key, V data) { 
         this.key = key; 
         this.data = data; 
        } 
 } 
 
 private Node root; 
} 

 
1. Define a constructor that creates an empty tree. 
2. Define a recursive method add(K key, V data) that adds a key,value pair to the proper location in the tree. 
3. Define a recursive method size() that returns the number of entries in the tree. 
4. Define a non-recursive method max() that returns the data associated with the maximum key value in the tree. 
5. Define a recursive method max() that returns the data associated with maximum key value in the tree. 
6. Define a recursive method min() that returns the data associated with minimum key value in the tree. 
7. Define a recursive method named postOrderTraversal() which returns a string representing a post-order 

traversal of the tree. 
8. Define a recursive method getNumInteriorNodes() that returns the number of non-leaf nodes in the tree. 
9. Define a recursive method getHeight() that returns the height of the tree. 

10. Define a recursive method leaves(ArrayList<K> L) that adds to the ArrayList L, the key value of leaf nodes. 
11. Define a recursive method getDecreasingOrderList() that returns an ArrayList with the  data elements of the 

tree inserted into the list based on decreasing key order. 
12. Define a recursive method getDataOneChildNodes(ArrayList<V> L) that adds to the ArrayList argument the 
    data of nodes in the tree that have only one child.  Add the elements to the ArrayList in any order.  

13. Implement the RECURSIVE method getKeyNodesAtLevel that returns an ArrayList with the key component of 
nodes found at the level specified by the targetLevel parameter.  For this problem you can assume the root is at 
level 1 and the targetLevel parameter will be greater than or equal to 1. You may only add one auxiliary method.  
The prototype for this method is public ArrayList<K> getKeyNodesAtLevel(int targetLevel) 

14. Define a recursive method that places the keys and values of a Tree into a Java TreeMap. 
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