CMSC 330: Organization of
Programming Languages

DFAs, and NFAs, and Regexps
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The story so far, and what’'s next

» Goal: Develop an algorithm that determines
whether a string s is matched by regex R

* |l.e., whether sis a member of R’'s language

» Approach: Convert R to a finite automaton FA
and see whether s is accepted by FA

* Details: Convert R to a nondeterministic FA (NFA),
which we then convert to a deterministic FA (DFA),
» which enjoys a fast acceptance algorithm
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Two Types of Finite Automata

» Deterministic Finite Automata (DFA)

* Exactly one sequence of steps for each string
» Easy to implement acceptance check

e All examples so far

» Nondeterministic Finite Automata (NFA)
* May have many sequences of steps for each string
* Accepts if any path ends in final state at end of string
* More compact than DFA

» But more expensive to test whether a string matches
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Comparing DFAs and NFAs

» NFAS can have more than one transition
leaving a state on the same symbol

d
O=<_
» DFAs allow only one transition per symbol

e |.e., transition function must be a valid function
* DFA is a special case of NFA
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Comparing DFAs and NFAs (cont.)

» NFAs may have transitions with empty string label
* May move to new state without consuming character

€ .
O > e-transition

» DFA transition must be labeled with symbol
* DFA is a special case of NFA
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DFA for (alb)*abb

RE®



NFA for (alb)*abb

* Has paths to either SO or S1
* Neither is final, so rejected

» babaabb

* Has paths to different states
* One path leads to S3, so accepts string
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NFA for (ablaba)*

» aba
* Has paths to states SO, S1

» ababa

* Has paths to S0, S1
 Need to use g-transition
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Comparing NFA and DFA for (ablaba)*

DFA
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Quiz 1: Which DFA matches this regexp?

b(b|at+b?)

D. None of the above
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Formal Definition

» A deterministic finite automaton (DFA) is a
o-tuple (2, Q, qo, F, 0) where

* 2 iIs an alphabet

* Qis a nonempty set of states

* o € Qis the start state

F € Qs the set of final states

0 : Q x 2 — Q specifies the DFA's transitions
» What's this definition saying that o is?

» A DFA accepts s if it stops at a final state on s
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Formal Definition: Example

¢ Z={O, 1} \ 1
cEe T
®* Jdo = SO .
. F={S1)
. symbol 0
o) 0 1
2 50| S0| St
£ S1| S0| S

or as { (S0,0,50),(S0,1,51),(S1,0,S0),(S1,1,51) }
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Implementing DFAs (one-off)

cur_state = 0;
while (1) {

It's easy to build symbol = getohar ()
a program WhiCh switch (cur_state) {

mimiCS a DFA case 0: switch (symbol) {
case '0': cur_state = 0; break;
case 'l': cur state = 1; break;
case '\n': pri;tf("rejected\n"); return O;
1 default: printf ("rejected\n"); return O;
\ \
break;
<::::> case 1: switch (symbol) {
case '0': cur state = 0; break;
0 case 'l1l': cur:state = 1; break;

case '\n': printf("accepted\n"); return 1
default: printf ("rejected\n"); return 0

0 1 } /

break;

default: printf ("unknown state; I'm confused\n");
break;
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Implementing DFAs (generic)

More generally, use generic table-driven DFA

given components (2, Q, g, F, 0) of a DFA:

let g = qo

while (there exists another symbol ¢ of the input string)
q :=4(q, 0);

if g € Fthen
accept

else reject

* gisjust an integer
* Represent 6 using arrays or hash tables
* Represent F as a set
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Nondeterministic Finite Automata (NFA)

» An NFA is a 5-tuple (2, Q, q,, F, ) where
e 2,Q, g0, F as with DFAs
* 0 € Qx(2u{e}) x Q specifies the NFA's transitions

* 2={a}

« Q={S1, S2, S3}

* Qo= S1

e F={S3}

e 6={(51,a,51), (S1,a,52), (S2,¢,S3) }

Example

» An NFA accepts s if there is at least one path via s
from the NFA's start state to a final state
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NFA Acceptance Algorithm (Sketch)

» When NFA processes a string s
* NFA must keep track of several “current states”
» Due to multiple transitions with same label, and e-transitions
* |f any current state is final when done then accept s

» Example

* After processing “a”
> NFA may be in states
S1
S2
S3
» Since S3 is final, s is accepted

» Algorithm is slow, space-inefficient; prefer DFAs!
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Relating REs to DFAs and NFAs

» Regular expressions, NFAs, and DFAs accept
the same languages! Can convert between them

can
reduce
DFA < NFA
can transform can reduce
RE

NB. Both transform and reduce are historical terms; they mean “convert”
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Reducing Regular Expressions to NFAs

» Goal: Given regular expression A, construct
NFA: <A>=(2, Q, qp, F, 0)

* Remember regular expressions are defined
recursively from primitive RE languages

* |Invariant: |F| =1 inour NFAs
> Recall F = set of final states

» Will define <A> for base cases: 0,¢, @
* Where o is a symbol in 2

» And for inductive cases: AB, A|B, A*
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Reducing Regular Expressions to NFAs

» Base case: o

jOR=0

Recall: NFAis (2, Q, qq, F, )
where
2 is the alphabet
Q is set of states
Qo is starting state
F is set of final states
O is transition relation

<o> = ({0}, {S0, S1}, SO, {S1}, {(SO, o, S1)})
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Reduction

» Base case: ¢

Y

<e> = (@, {S0}, S0, {SO0}, @)

» Base case: ¢

=

<¢> = (@, {S0, S1}, SO, {S1}, )
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Reduction: Concatenation

» Induction: AB

<A> <B>

e <A>= (24, Qa, Qa, {fa}, On)
¢ <B>= (23, Qg, gs, {fs}, OB)
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Reduction: Concatenation

» Induction: AB
T oo e
_ ~- J - ~ /

<A> <B>

o <A> = (ZA, QA, Ja, {fA}’ 6A)
* <B>= (2, Qg, gs, {fs}, Os)
* <AB>= (2a U 25, Qa U Qg, a, {fa}, 04w 0s U {(fa£,08)} )

CMSC 330 Fall 2019



Reduction: Union

» Induction: A|B »@
{0

© <A>= (Z,, Qa, Qp, {fa), Oa)
 <B>= (25, Qg, gg, {fg}, Og)
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Reduction: Union

» Induction: A|B I @
\ )

© <A>= (2p, Qa, Qa, {fa}, O4)
* <B>= (2g, Qg, O, {fs}, OB)
o <A|B>= (25U 25, Qa U Qg U {S0,S1}, SO, {S1},
O U 0p U {(S0,€,94), (S0,€,08), (fa,€,51), (fz,€,51)})
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Reduction: Closure

» Induction: A*

oSS

e <A>= (24, Qa, Qa, {fa}, On)
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Reduction: Closure

» Induction: A*

* <A>= (2a, Qa, ga, {fa}, On)
o <A*>= (Z,, Q) U {S0,S1}, SO, {S1},
Oa U {(fa,€,51), (S0,¢,9,), (S0,£,S1), (S1,£,S0)})
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Quiz 2: Which NFA matches a* ?

CMSC 330 Fall 2019



Quiz 2: Which NFA matches a* ?

o (N
i

CMSC 330 Fall 2019




Quiz 3: Which NFA matches a|b* ?

A.
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Quiz 3: Which NFA matches a|b* ?
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Reduction Complexity

» Given a regular expression A of size n...
Size = # of symbols + # of operations

» How many states does <A> have?

* Two added for each |, two added for each *
* O(n)
* That's pretty good!
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Reducing NFA to DFA

can
reduce

DFA < NFA

can reduce

RE
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Reducing NFA to DFA

» NFA may be reduced to DFA
* By explicitly tracking the set of NFA states

» Intuition
e Build DFA where

» Each DFA state represents a set of NFA “current states”

» Example
d

\ / a
RO DS
NFA DFA
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Algorithm for Reducing NFA to DFA

» Reduction applied using the subset algorithm
 DFA state is a subset of set of all NFA states

» Algorithm
* Input
> NFA (Z, Q, qo, Fp, 0)
e Qutput
> DFA (%, R, ro, Fg, 8)
* Using two subroutines
> e-closure(d, p) (and e-closure(s, Q))

> move(d, p, o) (and move(s, Q, o))
- (where p is an NFA state)
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e-tfransitions and g-closure

» Wesayp & q

* Ifitis possible to go from state p to state g by taking only
e-transitions in 0

e If3p, p1, P2, ... Py d € Q such that

> {p.&,p1} € O, {P1,&,p2} €O, ... , {Pn,€E,Q} € O
» €-closure(0, p)

* Set of states reachable from p using e-transitions alone
> Set of states g such that p £, g according to 0
> e-closure(®, p)={q|p & qind}
> e-closure(d, Q)={q|p e Q, p£—> qgind}

* Notes

» €-closure(0, p) always includes p

» We write e-closure(p) or e-closure(Q) when 0 is clear from context
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e-closure: Example 1

» Following NFA contains
* p1 :, P2

* p2 LN p3
e p1 5 p3 a
> Since p1 A p2 and p2 LN p3
» €-closures
* e-closure(p1)= {p1,p2, p3}
* ¢-closure(p2) = {p2, p3}
* g-closure(p3)= {p3}
 eclosure({p1,p2})= {p1,p2,p3}u{p2 p3}
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e-closure: Example 2

» Following NFA contains
* p1 LN p3

e p3 5 p2
¢ p1 5 p2
> Since p1 5 p3 and p3 LN P2 €
» €-closures
e e-closure(p1)= {p1,p2, p3}
» e-closure(p2) = {p2}

* g-Closure
¢ g-Closure

p3)= {p2,p3}
{p2,p3})= {pP2}u{p2 p3}
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e-closure Algorithm: Approach

» Input: NFA (2, Q, qo, F,,, 0), State Set R
» Output: State Set R’

» Algorithm
Let R’=R /[ start states
Repeat
LetR =R’ /[ continue from previous

LetR"=Ru{q|peR,(p,e q) € b} // new g-reachable states

Until R = R’ /[ stop when no new states

This algorithm computes a fixed point
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e-closure Algorithm Example

» Calculate s-closure(5.{p1})

R R’
{p1} {p1}
{p1} 1, p2} copoat
Let R=R’
LetR’'=R U eR,(p, g, q)ed
{p1,p2} {p1, p2, p3} SRt {alpeR (p g q) < d)

{p1, p2, p3} {p1, p2, p3}
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Calculating move(p,o)

» move(d,p,0)

* Set of states reachable from p using exactly one
transition on symbol o
> Set of states q such that {p, 0, q} € 0

> move(6,p,0)={q|{p,0,q}d}
> move(0,Q,0)={q|lpeQ{p,0,q}cd}
- i.e., can “lift” move() to a set of states Q

 Notes:

» move(d,p,o) is @ if no transition (p,o0,q) € 9, for any g
» We write move(p,o0) or move(R,0) when 0 clear from context

CMSC 330 Fall 2019 44



move(p,o) : Example 1

» Following NFA

» Move a

* move(p1,a)= {P2, p3}

* move(p1,b)= @ move({p1,p2},b) = { p3}
* move(p2, a) = Z

* move(p2, b)= 1P3}

* move(p3, a) = 9

e move(p3,b)= 9
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move(p,o0) : Example 2

» Following NFA

e 2={a,b}
» Move

* move(p1,a)= {P2}
* move(p1, b)= {p3}
* move(p2,a)= {p3}
* move(p2,b)= O

* move(p3,a)= 9

e move(p3,b)= 9
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NFA — DFA Reduction Algorithm (“subset”)

. Input NFA (Z, Q, qq, F.,, 8), Output DFA (Z, R, r,, Fy, &)

» Algorithm
Let ry = e-closure(d,qp), add it to R // DFA start state
While 3 an unmarked stater e R /[ process DFA state r
Mark r // each state visited once
Foreacho € X /[ for each symbol o
Let E = move(d,r,0) // states reached via o
Let e = e-closure(d,E) /] states reached via ¢
Ife ¢ R /I if state e is new
Let R =R U {e} // add e to R (unmarked)
Letd' =06 u{r, o, e} // add transition r-e on o
LetFy={r|3s erwiths € F,} // final if include state in F,
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NFA — DFA Example 1

e Start = e-closure(0,p1) = {{p1,p3} } NFA
R={{p1,p3}}
re R={p1,p3}
* move(d,{p1,p3},a) = {p2}

» e = g-closure(d,{p2}) = {p2}
> R=Ru{{p2}} = {{p1.p3}, {p2} } DFA

> 8 =8 u{{p1,p3} a, {p2}}
* move(d,{p1,p3},b) = @ @
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NFA — DFA Example 1 (cont.)

* R={{p1,p3}, {p2} }

* re R={p2}

* move(d,{p2},a)=0O

* move(d,{p2},b) = {p3}
» e = g-closure(d,{p3}) = {p3}
> R=R U {{p3}} = {{p1,p3}, {p2}, {P3}} DFA

> 8 =8 w{{p2}, b, {p3}} @ a @ b @
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NFA — DFA Example 1 (cont.)

° R={{p1,p3}, {p2}, {p3} } NFA

* re R={p3} a b
 Move({p3},a) =Q Q @
 Move({p3},b) =Q ¢

* Mark {p3}, exit loop
* Fy={{p1.,p3}, {p3}} DFA

> Since p3 e F, a b
* Done!
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NFA — DFA Example 2

» NFA » DFA

R = { [{a}, |{B,D}, |{C,D}
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Quiz 4: Which DFA is equiv to this NFA?

NFA:

&I -0

&

b

None of the above

B. !E C. 'u
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&
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Actual Answer




NFA — DFA Example 3

» NFA » DFA

R={/{AE}, |{B,D,E}, {C,D}, {E}|}
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NFA — DFA Practice
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NFA — DFA Practice
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Analyzing the Reduction

» Can reduce any NFA to a DFA using subset alg.

» How many states in the DFA?
e Each DFA state is a subset of the set of NFA states
* Given NFA with n states, DFA may have 2" states

» Since a set with n items may have 2" subsets

* Corollary
» Reducing a NFA with n states may be O(2")

NFA DFA
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Recap: Matching a Regexp R

» Given R, construct NFA. Takes time O(R)
» Convert NFA to DFA. Takes time O(2/~1)

* But usually not the worst case in practice

» Use DFA to accept/reject string s
* Assume we can compute 06(q,0) in constant time

* Then time to process s is O(]s|)
» Can’t get much faster!

» Constructing the DFA is a one-time cost
* But then processing strings is fast
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Closing the Loop: Reducing DFA to RE

can
reduce
DFA < NFA
can transform can transform
RE
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Reducing DFAs to REs

» General idea

* Remove states one by one, labeling transitions with
regular expressions

* When two states are left (start and final), the
transition label is the regular expression for the DFA

CMSC 330 Fall 2019
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Minimizing DFAs

» Every regular language is recognizable by a
unigue minimum-state DFA

* |gnoring the particular names of states

» |In other words

* For every DFA, there is a unique DFA with minimum
number of states that accepts the same language
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J. Hopcroft, “An n log n algorithm for minimizing states in a finite automaton,” 1971

Minimizing DFA: Hopcroft Reduction

» Intuition

* Look to distinguish states from each other
» End up in different accept / non-accept state with identical input

» Algorithm

* Construct initial partition
» Accepting & non-accepting states

* |teratively split partitions (until partitions remain fixed)

> Split a partition if members in partition have transitions to
different partitions for same input

- Two states x, y belong in same partition if and only if for all
symbols in 2 they transition to the same partition

e Update transitions & remove dead states
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Splitting Partitions

» No need to split partition {S,T,U,V}
* All transitions on a lead to identical partition P2
* Even though transitions on a lead to different states

4 P P2\
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Splitting Partitions (cont.)

» Need to split partition {S,T,U} into {S,T}, {U}
* Transitions on a from S, T lead to partition P2
* Transition on a from U lead to partition P3

&
n
.....
¥y
Ny

p1 )
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Resplitting Partitions

» Need to reexamine partitions after splits
* |nitially no need to split partition {S, T,U}

* After splitting partition {X,Y} into {X}, {Y} we need to split
partition {S,T,U} into {S, T}, {U}

\ B Y,
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Minimizing DFA: Example 1

» DFA

» Initial partitions

» Split partition
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Minimizing DFA: Example 1

» DFA

» Initial partitions

« Accept {R} = P1
* Reject {S, T} = P2

» Split partition? — Not required, minimization done
* move(S,a) =T e P2 — move(S,b) =R e P1

* move(T,a) =T e P2 —move (T,b) =R € P1

CMSC 330 Fall 2019 76



Minimizing DFA: Example 2
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Minimizing DFA: Example 2

» DFA
DFA
» Initial partitions already
« Accept {R} = P1 minimal
* Reject {S, T} = P2
» Split partition? — Yes, different partitions for B
* move(S,a) =T e P2 —move(S,b) =T € P2

* move(T,a) =T e P2 —move (T,b) =R € P1
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Complement of DFA

» Given a DFA accepting language L

* How can we create a DFA accepting its complement?

 Example DFA
» 2 = {a,b}

d

lo@B O

b
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Complement of DFA

» Algorithm
* Add explicit transitions to a dead state

* Change every accepting state to a non-accepting state
& every non-accepting state to an accepting state

» Note this only works with DFAs
* Why not with NFAs?

CMSC 330 Fall 2019 82



Summary of Regular Expression Theory

» Finite automata
 DFA, NFA

» Equivalence of RE, NFA, DFA
e RE — NFA

> Concatenation, union, closure

* NFA — DFA

» g-closure & subset algorithm

» DFA

* Minimization, complementation
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