
CMSC 330: Organization of
Programming Languages

DFAs, and NFAs, and Regexps

CMSC330 Fall 2019

The story so far, and what’s next

Goal: Develop an algorithm that determines
whether a string s is matched by regex R
• I.e., whether s is a member of R’s language

Approach: Convert R to a finite automaton FA
and see whether s is accepted by FA
• Details: Convert R to a nondeterministic FA (NFA),

which we then convert to a deterministic FA (DFA),
Ø which enjoys a fast acceptance algorithm

CMSC 330 Fall 2019

Two Types of Finite Automata

Deterministic Finite Automata (DFA)
• Exactly one sequence of steps for each string

Ø Easy to implement acceptance check

• All examples so far

Nondeterministic Finite Automata (NFA)
• May have many sequences of steps for each string
• Accepts if any path ends in final state at end of string
• More compact than DFA

Ø But more expensive to test whether a string matches

CMSC 330 Fall 2019

Comparing DFAs and NFAs

NFAs can have more than one transition
leaving a state on the same symbol

DFAs allow only one transition per symbol
• I.e., transition function must be a valid function
• DFA is a special case of NFA

a
a

CMSC 330 Fall 2019

Comparing DFAs and NFAs (cont.)

NFAs may have transitions with empty string label
• May move to new state without consuming character

DFA transition must be labeled with symbol
• DFA is a special case of NFA

ε e-transition

CMSC 330 Fall 2019

DFA for (a|b)*abb

CMSC 330 Fall 2019

NFA for (a|b)*abb

ba
• Has paths to either S0 or S1
• Neither is final, so rejected

babaabb
• Has paths to different states
• One path leads to S3, so accepts string

CMSC 330 Fall 2019

NFA for (ab|aba)*

aba
• Has paths to states S0, S1

ababa
• Has paths to S0, S1
• Need to use ε-transition

CMSC 330 Fall 2019

Comparing NFA and DFA for (ab|aba)*
DFA

NFA

CMSC 330 Fall 2019

Quiz 1: Which DFA matches this regexp?

b(b|a+b?)

0 1

2

3 4

b

b

ab
43 ab

0 1

32

b

2 3

b

b

a

0 1

02

a

b

a,b

A. B. C.

D. None of the above

a

CMSC 330 Fall 2019

Quiz 1: Which DFA matches this regexp?

b(b|a+b?)

0 1

2

3 4

b

b

ab
43 ab

0 1

32

b

2 3

b

b

a

0 1

02

a

b

a,b

A. B. C.

D. None of the above

a

CMSC 330 Fall 2019

Formal Definition

A deterministic finite automaton (DFA) is a
5-tuple (Σ, Q, q0, F, δ) where
• Σ is an alphabet
• Q is a nonempty set of states
• q0 Î Q is the start state
• F ⊆ Q is the set of final states
• δ : Q x Σ → Q specifies the DFA's transitions

Ø What's this definition saying that δ is?

A DFA accepts s if it stops at a final state on s

CMSC 330 Fall 2019

Formal Definition: Example
• Σ = {0, 1}
• Q = {S0, S1}
• q0 = S0
• F = {S1}
•

or as { (S0,0,S0),(S0,1,S1),(S1,0,S0),(S1,1,S1) }

δ 0 1
S0 S0 S1
S1 S0 S1in

pu
t s

ta
te

symbol

CMSC 330 Fall 2019

14

Implementing DFAs (one-off)
cur_state = 0;
while (1) {

symbol = getchar();

switch (cur_state) {

case 0: switch (symbol) {
case '0': cur_state = 0; break;
case '1': cur_state = 1; break;
case '\n': printf("rejected\n"); return 0;
default: printf("rejected\n"); return 0;

}
break;

case 1: switch (symbol) {
case '0': cur_state = 0; break;
case '1': cur_state = 1; break;
case '\n': printf("accepted\n"); return 1;
default: printf("rejected\n"); return 0;

}
break;

default: printf("unknown state; I'm confused\n");
break;

}
}

It's easy to build
a program which
mimics a DFA

CMSC 330 Fall 2019

15

Implementing DFAs (generic)

More generally, use generic table-driven DFA

• q is just an integer
• Represent d using arrays or hash tables
• Represent F as a set

given components (Σ, Q, q0, F, d) of a DFA:
let q = q0

while (there exists another symbol σ of the input string)
q := d(q, σ);

if q Î F then
accept

else reject

CMSC 330 Fall 2019

Nondeterministic Finite Automata (NFA)

An NFA is a 5-tuple (Σ, Q, q0, F, δ) where
• Σ, Q, q0, F as with DFAs
• δ ⊆ Q x (Σ È {ε}) x Q specifies the NFA's transitions

An NFA accepts s if there is at least one path via s
from the NFA’s start state to a final state

a

ε
S1 S2

a

Example

S3

• Σ = {a}
• Q = {S1, S2, S3}
• q0 = S1
• F = {S3}
• δ = { (S1,a,S1), (S1,a,S2), (S2,ε,S3) }

CMSC 330 Fall 2019

17

NFA Acceptance Algorithm (Sketch)

When NFA processes a string s
• NFA must keep track of several “current states”

Ø Due to multiple transitions with same label, and ε-transitions

• If any current state is final when done then accept s

Example
• After processing “a”

Ø NFA may be in states
S1
S2
S3

Ø Since S3 is final, s is accepted

Algorithm is slow, space-inefficient; prefer DFAs!

a

ε
S1 S2

a
S3

CMSC 330 Fall 2019

Relating REs to DFAs and NFAs

Regular expressions, NFAs, and DFAs accept
the same languages! Can convert between them

DFA NFA

RE

can transform

can
reduce

can reducecan reduce

NB. Both transform and reduce are historical terms; they mean “convert”
CMSC 330 Fall 2019

Reducing Regular Expressions to NFAs

Goal: Given regular expression A, construct
NFA: <A> = (Σ, Q, q0, F, δ)
• Remember regular expressions are defined

recursively from primitive RE languages
• Invariant: |F| = 1 in our NFAs

Ø Recall F = set of final states

Will define <A> for base cases: σ , ε , ∅
• Where σ is a symbol in Σ

And for inductive cases: AB, A|B, A*

CMSC 330 Fall 2019

Reducing Regular Expressions to NFAs

Base case: σ

<σ> = ({σ}, {S0, S1}, S0, {S1}, {(S0, σ, S1)})

σ

Recall: NFA is (Σ, Q, q0, F, δ)
where

Σ is the alphabet
Q is set of states
q0 is starting state
F is set of final states
δ is transition relation

CMSC 330 Fall 2019

Reduction

Base case: ε

<ε> = (∅, {S0}, S0, {S0}, ∅)

Base case: ∅

<∅> = (∅, {S0, S1}, S0, {S1}, ∅)
CMSC 330 Fall 2019

Reduction: Concatenation

Induction: AB

• <A> = (ΣA, QA, qA, {fA}, δA)
• = (ΣB, QB, qB, {fB}, δB)

<A>

CMSC 330 Fall 2019

Reduction: Concatenation

Induction: AB

• <A> = (ΣA, QA, qA, {fA}, δA)
• = (ΣB, QB, qB, {fB}, δB)
• <AB> = (ΣA È ΣB, QA È QB, qA, {fB}, δA È δB È {(fA,ε,qB)})

<A>

CMSC 330 Fall 2019

Reduction: Union

Induction: A|B

• <A> = (ΣA, QA, qA, {fA}, δA)
• = (ΣB, QB, qB, {fB}, δB)

CMSC 330 Fall 2019

Reduction: Union

Induction: A|B

• <A> = (ΣA, QA, qA, {fA}, δA)
• = (ΣB, QB, qB, {fB}, δB)
• <A|B> = (ΣA È ΣB, QA È QB È {S0,S1}, S0, {S1},

δA È δB È {(S0,ε,qA), (S0,ε,qB), (fA,ε,S1), (fB,ε,S1)})
CMSC 330 Fall 2019

Reduction: Closure

Induction: A*

• <A> = (ΣA, QA, qA, {fA}, δA)

CMSC 330 Fall 2019

Reduction: Closure

Induction: A*

• <A> = (ΣA, QA, qA, {fA}, δA)
• <A*> = (ΣA, QA È {S0,S1}, S0, {S1},

δA È {(fA,ε,S1), (S0,ε,qA), (S0,ε,S1), (S1,ε,S0)})

CMSC 330 Fall 2019

Quiz 2: Which NFA matches a* ?

A. B.

C. D.

CMSC 330 Fall 2019

Quiz 2: Which NFA matches a* ?

A. B.

C. D.

CMSC 330 Fall 2019

Quiz 3: Which NFA matches a|b* ?

B.

D.

A.

C.

CMSC 330 Fall 2019

Quiz 3: Which NFA matches a|b* ?

D.

A.

C.

B.

CMSC 330 Fall 2019

Reduction Complexity

Given a regular expression A of size n...
Size = # of symbols + # of operations

How many states does <A> have?
• Two added for each |, two added for each *
• O(n)
• That’s pretty good!

CMSC 330 Fall 2019

Reducing NFA to DFA

DFA NFA

RE

can
reduce

can reduce

CMSC 330 Fall 2019

37

Reducing NFA to DFA

NFA may be reduced to DFA
• By explicitly tracking the set of NFA states

Intuition
• Build DFA where

Ø Each DFA state represents a set of NFA “current states”

Example

S1
a

S1, S2, S3

a

ε
S1 S2

a

NFA DFA

S3

a

CMSC 330 Fall 2019

38

Algorithm for Reducing NFA to DFA

Reduction applied using the subset algorithm
• DFA state is a subset of set of all NFA states

Algorithm
• Input

Ø NFA (Σ, Q, q0, Fn, δ)

• Output
Ø DFA (Σ, R, r0, Fd, d)

• Using two subroutines
Ø ε-closure(d, p) (and ε-closure(d, Q))
Ø move(d, p, σ) (and move(d, Q, σ))

• (where p is an NFA state)

CMSC 330 Fall 2019

39

ε-transitions and ε-closure

We say p → q
• If it is possible to go from state p to state q by taking only
e-transitions in δ

• If $ p, p1, p2, … pn, q Î Q such that
Ø {p,ε,p1} Î δ, {p1,ε,p2} Î δ, … , {pn,ε,q} Î δ

ε-closure(δ, p)
• Set of states reachable from p using ε-transitions alone

Ø Set of states q such that p → q according to δ
Ø ε-closure(δ, p) = {q | p → q in δ }
Ø ε-closure(δ, Q) = { q | p Î Q, p → q in δ }

• Notes
Ø ε-closure(δ, p) always includes p
Ø We write ε-closure(p) or ε-closure(Q) when δ is clear from context

ε

ε
ε

ε

CMSC 330 Fall 2019

40

ε-closure: Example 1

Following NFA contains
• p1 → p2
• p2 → p3
• p1 → p3

Ø Since p1 → p2 and p2 → p3

ε-closures
• ε-closure(p1) =
• ε-closure(p2) =
• ε-closure(p3) =
• ε-closure({ p1, p2 }) =

ε
p1 p2 p3

εε

ε

ε

{ p1, p2, p3 }
{ p2, p3 }
{ p3 }

a

{ p1, p2, p3 } È { p2, p3 }

ε ε

CMSC 330 Fall 2019

41

ε-closure: Example 2

Following NFA contains
• p1 → p3
• p3 → p2
• p1 → p2

Ø Since p1 → p3 and p3 → p2

ε-closures
• ε-closure(p1) =
• ε-closure(p2) =
• ε-closure(p3) =
• ε-closure({ p2,p3 }) =

b
p1 p2 p3

aε

ε

{ p1, p2, p3 }
{ p2 }
{ p2, p3 }

ε

ε

{ p2 } È { p2, p3 }

ε
ε ε

CMSC 330 Fall 2019

CMSC 330 42

ε-closure Algorithm: Approach
Input: NFA (Σ, Q, q0, Fn, δ), State Set R
Output: State Set R’
Algorithm
Let R’ = R // start states
Repeat

Let R = R’ // continue from previous
Let R’ = R È {q | p Î R, (p, e, q) Î d} // new ε-reachable states

Until R = R’ // stop when no new states

42CMSC 330 Spring 2018

This algorithm computes a fixed point

CMSC 330 Fall 2019

CMSC 330 43

ε-closure Algorithm Example

Calculate ε-closure(d,{p1})
ε

p1 p2 p3
ε

a

CMSC 330 Spring 2018 43

R R’

{p1} {p1}

{p1} {p1, p2}

{p1, p2} {p1, p2, p3}

{p1, p2, p3} {p1, p2, p3}

Let R’ = R
Repeat

Let R= R’
Let R’ = R È {q | p Î R, (p, e, q) Î d}

Until R = R’

CMSC 330 Fall 2019

44

Calculating move(p,σ)

move(δ,p,σ)
• Set of states reachable from p using exactly one

transition on symbol σ
Ø Set of states q such that {p, σ, q} Î δ
Ø move(δ,p,σ) = { q | {p, σ, q} Î δ }
Ø move(δ,Q,σ) = { q | p Î Q, {p, σ, q} Î δ }

• i.e., can “lift” move() to a set of states Q

• Notes:
Ø move(δ,p,σ) is Ø if no transition (p,σ,q) Î δ, for any q
Ø We write move(p,σ) or move(R,σ) when δ clear from context

CMSC 330 Fall 2019

45

move(p,σ) : Example 1

Following NFA
• Σ = { a, b }

Move
• move(p1, a) =
• move(p1, b) =
• move(p2, a) =
• move(p2, b) =
• move(p3, a) =
• move(p3, b) =

b
p1 p2 p3

a

{ p2, p3 }

{ p3 }

a

Ø
Ø

Ø
Ø

move({p1,p2},b) = { p3 }

CMSC 330 Fall 2019

46

move(p,σ) : Example 2

Following NFA
• Σ = { a, b }

Move
• move(p1, a) =
• move(p1, b) =
• move(p2, a) =
• move(p2, b) =
• move(p3, a) =
• move(p3, b) =

a
p1 p2 p3

a

{ p2 }
b

{ p3 }
{ p3 }

Ø
Ø

ε

Ø

move({p1,p2},a) = {p2,p3}

CMSC 330 Fall 2019

47

NFA ® DFA Reduction Algorithm (“subset”)

Input NFA (Σ, Q, q0, Fn, δ), Output DFA (Σ, R, r0, Fd, d’)
Algorithm

Let r0 = e-closure(δ,q0), add it to R // DFA start state

While $ an unmarked state r Î R // process DFA state r

Mark r // each state visited once

For each σ Î S // for each symbol σ

Let E = move(δ,r,σ) // states reached via σ

Let e = e-closure(δ,E) // states reached via e
If e Ï R // if state e is new

Let R = R È {e} // add e to R (unmarked)

Let d’ = d’ È {r, σ, e} // add transition r→e on σ

Let Fd = {r | $ s Î r with s Î Fn} // final if include state in Fn

CMSC 330 Fall 2019

48

NFA ® DFA Example 1
• Start = e-closure(δ,p1) = { {p1,p3} }
• R = { {p1,p3} }
• r Î R = {p1,p3}
• move(δ,{p1,p3},a) = {p2}

Ø e = e-closure(δ,{p2}) = {p2}
Ø R = R È {{p2}} = { {p1,p3}, {p2} }
Ø d’ = d’ È {{p1,p3}, a, {p2}}

• move(δ,{p1,p3},b) = Ø

b
p1 p2 p3

a

ε

a
{2}{1,3}

NFA

DFA

CMSC 330 Fall 2019

49

NFA ® DFA Example 1 (cont.)
• R = { {p1,p3}, {p2} }
• r Î R = {p2}
• move(δ,{p2},a) = Ø
• move(δ,{p2},b) = {p3}

Ø e = e-closure(δ,{p3}) = {p3}
Ø R = R È {{p3}} = { {p1,p3}, {p2}, {p3} }
Ø d’ = d’ È {{p2}, b, {p3}}

b
p1 p2 p3

a

ε

a b
{3}{2}{1,3}

NFA

DFA

CMSC 330 Fall 2019

50

NFA ® DFA Example 1 (cont.)
• R = { {p1,p3}, {p2}, {p3} }
• r Î R = {p3}
• Move({p3},a) = Ø
• Move({p3},b) = Ø
• Mark {p3}, exit loop
• Fd = {{p1,p3}, {p3}}

Ø Since p3 Î Fn

• Done!

b
p1 p2 p3

a

ε

a b
{3}{2}{1,3}

NFA

DFA

CMSC 330 Fall 2019

51

R = { {A}, }{C,D}{B,D},

NFA ® DFA Example 2

NFA

{A}

{B,D}a

b
{C,D}

DFA

CMSC 330 Fall 2019

Quiz 4: Which DFA is equiv to this NFA?

b
p0 p1 p2

a

a
ε

b
p0 p1

p2,
p0

a

a

b

b
p0 p1

p1,
p2

a

a

b

p0 p1
p2,
p0

a a

NFA:

A.

B. C.

D. None of the above
CMSC 330 Fall 2019

Quiz 4: Which DFA is equiv to this NFA?

b
p0 p1 p2

a

a
ε

b
p0 p1

p2,
p0

a

a

b

b
p0 p1

p1,
p2

a

a

b

p0 p1
p2,
p0

a a

NFA:

A.

B. C.

D. None of the above
CMSC 330 Fall 2019

Actual Answer

b
p0 p1 p2

a

a
ε

b
p0 p1

p2,
p0

a
a

b

NFA:

p1,
p0

a

CMSC 330 Fall 2019

55

{E}{C,D},{B,D,E},R = { {A,E}, }

NFA ® DFA Example 3

NFA DFA

{A,E}

{B,D,E}a

{C,D}
b

b {E}

a

b

a

CMSC 330 Fall 2019

NFA ® DFA Practice

CMSC 330 Fall 2019

NFA ® DFA Practice

CMSC 330 Fall 2019

63

Analyzing the Reduction

Can reduce any NFA to a DFA using subset alg.
How many states in the DFA?
• Each DFA state is a subset of the set of NFA states
• Given NFA with n states, DFA may have 2n states

Ø Since a set with n items may have 2n subsets

• Corollary
Ø Reducing a NFA with n states may be O(2n)

NFA DFA
CMSC 330 Fall 2019

Recap: Matching a Regexp R

Given R, construct NFA. Takes time O(R)
Convert NFA to DFA. Takes time O(2|R|)
• But usually not the worst case in practice

Use DFA to accept/reject string s
• Assume we can compute d(q,σ) in constant time
• Then time to process s is O(|s|)

Ø Can’t get much faster!

Constructing the DFA is a one-time cost
• But then processing strings is fast

CMSC 330 Fall 2019

Closing the Loop: Reducing DFA to RE

DFA NFA

RE

can transform

can
reduce

can transform

CMSC 330 Fall 2019

67

Reducing DFAs to REs

General idea
• Remove states one by one, labeling transitions with

regular expressions
• When two states are left (start and final), the

transition label is the regular expression for the DFA

CMSC 330 Fall 2019

70

Minimizing DFAs

Every regular language is recognizable by a
unique minimum-state DFA
• Ignoring the particular names of states

In other words
• For every DFA, there is a unique DFA with minimum

number of states that accepts the same language

b
p1 p2 p3

a

b

p1 p2

p3

c

c
a

CMSC 330 Fall 2019

71

Minimizing DFA: Hopcroft Reduction

Intuition
• Look to distinguish states from each other

Ø End up in different accept / non-accept state with identical input

Algorithm
• Construct initial partition

Ø Accepting & non-accepting states

• Iteratively split partitions (until partitions remain fixed)
Ø Split a partition if members in partition have transitions to

different partitions for same input
• Two states x, y belong in same partition if and only if for all

symbols in Σ they transition to the same partition

• Update transitions & remove dead states

J. Hopcroft, “An n log n algorithm for minimizing states in a finite automaton,” 1971

CMSC 330 Fall 2019

72

Splitting Partitions

No need to split partition {S,T,U,V}
• All transitions on a lead to identical partition P2
• Even though transitions on a lead to different states

S
a

P2

U

T

X

Z

Y

P1

a

a

V
a

CMSC 330 Fall 2019

73

Splitting Partitions (cont.)

Need to split partition {S,T,U} into {S,T}, {U}
• Transitions on a from S,T lead to partition P2
• Transition on a from U lead to partition P3

S
a

P2

U

T

X

Z

Y

P1

a

a P3

P4
b

CMSC 330 Fall 2019

74

Resplitting Partitions

Need to reexamine partitions after splits
• Initially no need to split partition {S,T,U}
• After splitting partition {X,Y} into {X}, {Y} we need to split

partition {S,T,U} into {S,T}, {U}

S
a

P2

U

T

X

Y

P1 a

a
P4

P3

b

b

CMSC 330 Fall 2019

75

Minimizing DFA: Example 1

DFA

Initial partitions

Split partition

b
S T R

a

b

a

CMSC 330 Fall 2019

76

Minimizing DFA: Example 1

DFA

Initial partitions
• Accept
• Reject

Split partition?
• move(S,a) – move(S,b)
• move(T,a) – move (T,b)

b
S T R

a

b

a

{ R } = P1
{ S, T } = P2

= T ∈ P2
→ Not required, minimization done

= T ∈ P2
= R ∈ P1
= R ∈ P1

P1P2

a
b

CMSC 330 Fall 2019

77

Minimizing DFA: Example 2

b
S T R

a

b

a

CMSC 330 Fall 2019

78

Minimizing DFA: Example 2

DFA

Initial partitions
• Accept
• Reject

Split partition?
• move(S,a) – move(S,b)
• move(T,a) – move (T,b)

b
S T R

a

b

a

{ R } = P1
{ S, T } = P2

= T ∈ P2

P1P2

→ Yes, different partitions for B

= T ∈ P2
= T ∈ P2
= R ∈ P1

P3 DFA
already
minimal

CMSC 330 Fall 2019

81

Complement of DFA

Given a DFA accepting language L
• How can we create a DFA accepting its complement?
• Example DFA

Ø Σ = {a,b}

CMSC 330 Fall 2019

82

Complement of DFA

Algorithm
• Add explicit transitions to a dead state
• Change every accepting state to a non-accepting state

& every non-accepting state to an accepting state
Note this only works with DFAs
• Why not with NFAs?

CMSC 330 Fall 2019

83

Summary of Regular Expression Theory

Finite automata
• DFA, NFA

Equivalence of RE, NFA, DFA
• RE → NFA

Ø Concatenation, union, closure

• NFA → DFA
Ø e-closure & subset algorithm

DFA
• Minimization, complementation

CMSC 330 Fall 2019

