CMSC 330: Organization of Programming Languages

Operational Semantics
Formal Semantics of a Prog. Lang.

- Mathematical description of the meaning of programs written in that language
 - What a program computes, and what it does

- Three main approaches to formal semantics
 - Denotational
 - Operational
 - Axiomatic
Styles of Semantics

- **Denotational semantics**: translate programs into math!
 - Usually: convert programs into functions mapping inputs to outputs
 - Analogous to compilation

- **Operational semantics**: define how programs execute
 - Often on an abstract machine (mathematical model of computer)
 - Analogous to interpretation

- **Axiomatic semantics**
 - Describe programs as predicate transformers, i.e. for converting initial assumptions into guaranteed properties after execution
 - Preconditions: assumed properties of initial states
 - Postcondition: guaranteed properties of final states
 - Logical rules describe how to systematically build up these transformers from programs
This Course: Operational Semantics

- We will show how an operational semantics may be defined for Micro-Ocaml
 - And develop an interpreter for it, along the way

- Approach: use rules to define a judgment

 \[e \Rightarrow v \]

 - Says “\(e \) evaluates to \(v \)”
 - \(e \): expression in Micro-OCaml
 - \(v \): value that results from evaluating \(e \)
Definitional Interpreter

- It turns out that the rules for judgment $e \Rightarrow v$ can be easily turned into idiomatic OCaml code
 - The language’s expressions e and values v have corresponding OCaml datatype representations exp and $value$
 - The semantics is represented as a function

\[
\text{eval: } exp \rightarrow value
\]

- This way of presenting the semantics is referred to as a definitional interpreter
 - The interpreter defines the language’s meaning
Micro-OCaml Expression Grammar

\[e ::= x | n | e + e | \text{let} \ x = e \ \text{in} \ e \]

- \(e, x, n \) are \textit{meta-variables} that stand for categories of syntax
 - \(x \) is any identifier (like \(z, y, \text{foo} \))
 - \(n \) is any numeral (like 1, 0, 10, -25)
 - \(e \) is any expression (here defined, recursively!)

\textit{Concrete syntax} of actual expressions in \textbf{black}
- Such as \texttt{let}, +, \(z, \text{foo}, \text{in}, \ldots \)

- ::= and | are \textit{meta-syntax} used to define the syntax of a language (part of “Backus-Naur form,” or BNF)
Micro-OCaml Expression Grammar

\[e ::= x | n | e + e | \text{let } x = e \text{ in } e \]

Examples

• 1 is a numeral \(n \) which is an expression \(e \)
• 1+z is an expression \(e \) because
 - 1 is an expression \(e \),
 - \(z \) is an identifier \(x \), which is an expression \(e \), and
 - \(e + e \) is an expression \(e \)
• \text{let } z = 1 \text{ in } 1+z is an expression \(e \) because
 - \(z \) is an identifier \(x \),
 - 1 is an expression \(e \),
 - 1+z is an expression \(e \), and
 - \text{let } x = e \text{ in } e \text{ is an expression } e
Abstract Syntax = Structure

Here, the grammar for e is describing its abstract syntax tree (AST), i.e., e’s structure

$$e ::= x | n | e + e | \text{let } x = e \text{ in } e$$

corresponds to (in definitional interpreter)

```plaintext
type id = string
type num = int
type exp =
  | Ident of id (* x *)
  | Num of num (* n *)
  | Plus of exp * exp (* e+e *)
  | Let of id * exp * exp
      (* let x=e in e *)
```
Aside: Real Interpreters

- Front End
 - Parser
 - Optional Static Analyzer (e.g., Type Checker)

- Abstract Syntax Tree (AST), a kind of intermediate representation (IR)

- Back End
 - Evaluator
 - the part we write in the definitional interpreter

Source → Front End → Abstract Syntax Tree (AST) → Evaluator → Output
Values

- An expression’s final result is a value. What can values be?

 \[v ::= n \]

- Just numerals for now

 - In terms of an interpreter’s representation:

 \[
 \text{type } \text{value} = \text{int}
 \]

 - In a full language, values \(v \) will also include booleans (true, false), strings, functions, …
Defining the Semantics

- Use rules to define judgment $e \Rightarrow v$

- Judgments are just statements. We use rules to prove that the statement is true.
 - $1+3 \Rightarrow 4$
 - $1+3$ is an expression e, and 4 is a value v
 - This judgment claims that $1+3$ evaluates to 4
 - We use rules to prove it to be true
 - $\text{let foo}=1+2 \text{ in } \text{foo+5} \Rightarrow 8$
 - $\text{let } f=1+2 \text{ in } \text{let } z=1 \text{ in } f+z \Rightarrow 4$
Rules as English Text

- Suppose e is a numeral n
 - Then e evaluates to itself, i.e., $n \Rightarrow n$

- Suppose e is an addition expression $e_1 + e_2$
 - If e_1 evaluates to n_1, i.e., $e_1 \Rightarrow n_1$
 - If e_2 evaluates to n_2, i.e., $e_2 \Rightarrow n_2$
 - Then e evaluates to n_3, where n_3 is the sum of n_1 and n_2
 - I.e., $e_1 + e_2 \Rightarrow n_3$

- Suppose e is a let expression let $x = e_1$ in e_2
 - If e_1 evaluates to v, i.e., $e_1 \Rightarrow v_1$
 - If $e_2\{v_1/x\}$ evaluates to v_2, i.e., $e_2\{v_1/x\} \Rightarrow v_2$
 - Here, $e_2\{v_1/x\}$ means “the expression after substituting occurrences of x in e_2 with v_1”
 - Then e evaluates to v_2, i.e., let $x = e_1$ in $e_2 \Rightarrow v_2$
Rules of Inference

We can use a more compact notation for the rules we just presented: **rules of inference**

- Has the following format

\[
\begin{array}{c}
H_1 \quad \cdots \quad H_n \\
\hline
C
\end{array}
\]

- Says: if the conditions \(H_1 \ldots H_n\) (“hypotheses”) are true, then the condition \(C\) (“conclusion”) is true

- If \(n=0\) (no hypotheses) then the conclusion automatically holds; this is called an axiom

We are using inference rules where \(C\) is our judgment about evaluation, i.e., that \(e \Rightarrow v\)
Lego Blocks and Lego Cars

P = 8.0 mm
= 5/6 × H
= 2.5 × h

h = 3.2 mm
= 1/3 × H
= 0.4 × P

H = 9.6 mm
= 3 × h
= 1.2 × P

2 × P − 0.2 mm
= 15.8 mm
Rules of Inference: Num and Sum

- Suppose e is a numeral n
 - Then e evaluates to itself, i.e., $n \Rightarrow n$

- Suppose e is an addition expression $e_1 + e_2$
 - If e_1 evaluates to n_1, i.e., $e_1 \Rightarrow n_1$
 - If e_2 evaluates to n_2, i.e., $e_2 \Rightarrow n_2$
 - Then e evaluates to n_3, where n_3 is the sum of n_1 and n_2
 - i.e., $e_1 + e_2 \Rightarrow n_3$

\[e_1 \Rightarrow n_1 \quad e_2 \Rightarrow n_2 \quad n_3 \text{ is } n_1 + n_2 \]
\[e_1 + e_2 \Rightarrow n_3 \]
Rules of Inference: Let

- Suppose e is a let expression `let x = e1 in e2`
 - If $e1$ evaluates to v, i.e., $e1 \Rightarrow v1$
 - If $e2\{v1/x\}$ evaluates to $v2$, i.e., $e2\{v1/x\} \Rightarrow v2$
 - Then e evaluates to $v2$, i.e., `let x = e1 in e2 \Rightarrow v2`

\[
\begin{array}{c}
 e1 \Rightarrow v1 & e2\{v1/x\} \Rightarrow v2 \\
 \hline
 \text{let } x = e1 \text{ in } e2 \Rightarrow v2
\end{array}
\]
Derivations

- When we apply rules to an expression in succession, we produce a derivation
 - It’s a kind of tree, rooted at the conclusion

- Produce a derivation by goal-directed search
 - Pick a rule that could prove the goal
 - Then repeatedly apply rules on the corresponding hypotheses

 Goal: Show that \(\text{let } x = 4 \text{ in } x + 3 \Rightarrow 7 \)
Derivations

<table>
<thead>
<tr>
<th>n ⇒ n</th>
<th>e1 ⇒ n1</th>
<th>e2 ⇒ n2</th>
<th>n3 is n1+n2</th>
<th>e1 + e2 ⇒ n3</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>e1 ⇒ v1</th>
<th>e2{v1/x} ⇒ v2</th>
</tr>
</thead>
<tbody>
<tr>
<td>let x = e1 in e2 ⇒ v2</td>
<td></td>
</tr>
</tbody>
</table>

Goal: show that

\[
\text{let } x = 4 \text{ in } x+3 \Rightarrow 7
\]

\[
4 \Rightarrow 4 \quad 3 \Rightarrow 3 \quad 7 \text{ is } 4+3
\]

\[
4 \Rightarrow 4 \quad 4+3 \Rightarrow 7
\]

let x = 4 in x+3 ⇒ 7
What is derivation of the following judgment?

\[2 + (3 + 8) \Rightarrow 13 \]

(a)
\[
\begin{align*}
2 & \Rightarrow 2 \\
3 + 8 & \Rightarrow 11
\end{align*}
\]

\[2 + (3 + 8) \Rightarrow 13 \]

(b)
\[
\begin{align*}
3 & \Rightarrow 3 \\
8 & \Rightarrow 8
\end{align*}
\]

\[3 + 8 \Rightarrow 11 \]
\[
\begin{align*}
2 & \Rightarrow 2
\end{align*}
\]

\[2 + (3 + 8) \Rightarrow 13 \]

(c)
\[
\begin{align*}
8 & \Rightarrow 8 \\
3 & \Rightarrow 3
\end{align*}
\]

\[11 \text{ is } 3+8 \]
\[
\begin{align*}
2 & \Rightarrow 2 \\
3 + 8 & \Rightarrow 11
\end{align*}
\]

\[13 \text{ is } 2+11 \]
\[
\begin{align*}
2 & \Rightarrow 2 \\
2 + (3 + 8) & \Rightarrow 13
\end{align*}
\]
Quiz 1

What is derivation of the following judgment?

\[2 + (3 + 8) \Rightarrow 13 \]

(a)
\[
\begin{align*}
2 & \Rightarrow 2 \\
3 + 8 & \Rightarrow 11 \\
\hline \\
2 + (3 + 8) & \Rightarrow 13
\end{align*}
\]

(b)
\[
\begin{align*}
3 & \Rightarrow 3 \\
8 & \Rightarrow 8 \\
\hline \\
3 + 8 & \Rightarrow 11 \\
\hline \\
2 & \Rightarrow 2 \\
\hline \\
2 + (3 + 8) & \Rightarrow 13
\end{align*}
\]

(c)
\[
\begin{align*}
8 & \Rightarrow 8 \\
3 & \Rightarrow 3 \\
11 & \text{is } 3+8 \\
\hline \\
2 & \Rightarrow 2 \\
3 + 8 & \Rightarrow 11 \\
\hline \\
13 & \text{is } 2+11 \\
\hline \\
2 + (3 + 8) & \Rightarrow 13
\end{align*}
\]
Definitional Interpreter

- The style of rules lends itself directly to the implementation of an interpreter as a recursive function

```
let rec eval (e:exp):value =
match e with
| Ident x -> (* no rule *)
  failwith "no value"
| Num n -> n
| Plus (e1,e2) ->
  let n1 = eval e1 in
  let n2 = eval e2 in
  let n3 = n1+n2 in
  n3
| Let (x,e1,e2) ->
  let v1 = eval e1 in
  let e2' = subst v1 x e2 in
  let v2 = eval e2' in v2
```

Trace of evaluation of `eval` function corresponds to a derivation by the rules:

- `n ⇒ n`
- `e1 ⇒ n1` `e2 ⇒ n2` `n3 is n1+n2`
- `e1 + e2 ⇒ n3`
- `e1 ⇒ v1` `e2{v1/x} ⇒ v2`
- `let x = e1 in e2 ⇒ v2`
Derivations = Interpreter Call Trees

Has the same shape as the recursive call tree of the interpreter:

\[
\text{let } x = 4 \text{ in } x+3 \Rightarrow 7
\]
Semantics Defines Program Meaning

- $e \Rightarrow v$ holds if and only if a proof can be built
 - Proofs are derivations: axioms at the top, then rules whose hypotheses have been proved to the bottom
 - No proof means $e \not\Rightarrow v$
- Proofs can be constructed bottom-up
 - In a goal-directed fashion
- Thus, function $\text{eval } e = \{ v \mid e \Rightarrow v \}$
 - Determinism of semantics implies at most one element for any e
- So: Expression e means v
Environment-style Semantics

- The previous semantics uses substitution to handle variables
 - As we evaluate, we replace all occurrences of a variable x with values it is bound to

- An alternative semantics, closer to a real implementation, is to use an environment
 - As we evaluate, we maintain an explicit map from variables to values, and look up variables as we see them
Environments

Mathematically, an environment is a partial function from identifiers to values

- If A is an environment, and x is an identifier, then $A(x)$ can either be ...
 - ... a value (intuition: the variable has been declared)
 - ... or undefined (intuition: variable has not been declared)

An environment can also be thought of as a table

<table>
<thead>
<tr>
<th>Id</th>
<th>Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0</td>
</tr>
<tr>
<td>y</td>
<td>2</td>
</tr>
</tbody>
</table>

- then $A(x)$ is 0, $A(y)$ is 2, and $A(z)$ is undefined
Notation, Operations on Environments

• is the empty environment (undefined for all ids)

If A is an environment then A, x:v is one that extends A with a mapping from x to v

• Sometimes just write x:v instead of •,x:v for brevity

• NB. if A maps x to some v', then that mapping is \textit{shadowed} by the mapping x:v

Lookup A(x) is defined as follows

• (x) = undefined

(A, y:v)(x) =

\begin{align*}
&v & \text{if } x = y \\
&A(x) & \text{if } x \neq y \text{ and } A(x) \text{ defined} \\
&\text{undefined} & \text{otherwise}
\end{align*}
An environment is just a list of mappings, which are just pairs of variable to value - called an association list.
Semantics with Environments

The environment semantics changes the judgment

\[e \Rightarrow v \]

to be

\[A; e \Rightarrow v \]

where \(A \) is an environment

- Idea: \(A \) is used to give values to the identifiers in \(e \)
- \(A \) can be thought of as containing declarations made up to \(e \)

Previous rules can be modified by

- Inserting \(A \) everywhere in the judgments
- Adding a rule to look up variables \(x \) in \(A \)
- Modifying the rule for \texttt{let} to add \(x \) to \(A \)
Environment-style Rules

\[
\begin{align*}
A(x) &= v \\
\text{Look up variable } x \text{ in environment } A \\
A; x \mapsto v \\
A; n \mapsto n
\end{align*}
\]

\[
\begin{align*}
A; e_1 \Rightarrow v_1 & \quad A, x : v_1; e_2 \Rightarrow v_2 \\
\text{Extend environment } A \text{ with mapping from } x \text{ to } v_1 \\
A; \text{let } x = e_1 \text{ in } e_2 \Rightarrow v_2
\end{align*}
\]

\[
\begin{align*}
A; e_1 \Rightarrow n_1 & \quad A; e_2 \Rightarrow n_2 \quad n_3 \text{ is } n_1 + n_2 \\
A; e_1 + e_2 \Rightarrow n_3
\end{align*}
\]
let rec eval env e =
 match e with
 Ident x -> lookup env x
 | Num n -> n
 | Plus (e1,e2) ->
 let n1 = eval env e1 in
 let n2 = eval env e2 in
 let n3 = n1+n2 in
 n3
 | Let (x,e1,e2) ->
 let v1 = eval env e1 in
 let env' = extend env x v1 in
 let v2 = eval env' e2 in v2
What is a derivation of the following judgment?

\[
\text{•; let } x=3 \text{ in } x+2 \Rightarrow 5
\]

(a) \[
\begin{align*}
x & \Rightarrow 3 \\
2 & \Rightarrow 2 \\
5 \text{ is } 3+2
\end{align*}
\]
3 \Rightarrow 3 \\
\text{x+2 } \Rightarrow 5
\]

(b) \[
\begin{align*}
x:3; & \ x \Rightarrow 3 \\
x:3; & \ 2 \Rightarrow 2 \\
5 \text{ is } 3+2
\end{align*}
\]
\[
\begin{align*}
\text{•;3 } \Rightarrow 3 \\
\text{x:3; } \ x+2 \Rightarrow 5
\end{align*}
\]

(c) \[
\begin{align*}
x:2; & \ x \Rightarrow 3 \\
x:2; & \ 2 \Rightarrow 2 \\
5 \text{ is } 3+2
\end{align*}
\]
\[
\begin{align*}
\text{•; let } x=3 \text{ in } x+2 \Rightarrow 5
\end{align*}
\]
Quiz 2

What is a derivation of the following judgment?

•; let x=3 in x+2 ⇒ 5

(a)
\[
\begin{align*}
\text{x } & \Rightarrow 3 \\
\text{2 } & \Rightarrow 2 \\
\text{5 is 3+2}
\end{align*}
\]

\[
\begin{align*}
\text{3 } & \Rightarrow 3 \\
\text{x+2 } & \Rightarrow 5
\end{align*}
\]

let x=3 in x+2 ⇒ 5

(c)
\[
\begin{align*}
\text{x:2 ; x} & \Rightarrow 3 \\
\text{x:2 ; 2 } & \Rightarrow 2 \\
\text{5 is 3+2}
\end{align*}
\]

\[
\begin{align*}
\text{•; let x=3 in x+2 } & \Rightarrow 5
\end{align*}
\]

(b)
\[
\begin{align*}
\text{x:3 ; x } & \Rightarrow 3 \\
\text{x:3 ; 2 } & \Rightarrow 2 \\
\text{5 is 3+2}
\end{align*}
\]

\[
\begin{align*}
\text{•;3 } & \Rightarrow 3 \\
\text{x:3 ; x+2 } & \Rightarrow 5
\end{align*}
\]

\[
\begin{align*}
\text{•; let x=3 in x+2 } & \Rightarrow 5
\end{align*}
\]
Adding Conditionals to Micro-OCaml

\[e ::= x | v | e + e | \text{let } x = e \text{ in } e \]
\[| \text{eq0 } e \ | \text{if } e \text{ then } e \text{ else } e \]

\[v ::= n | \text{true} | \text{false} \]

- In terms of interpreter definitions:

\[
\text{type exp = } \begin{cases} \text{Val of value} \\ \cdots \text{ (* as before *)} \\ \text{Eq0 of exp} \\ \text{If of exp * exp * exp} \end{cases} \\
\text{type value = } \begin{cases} \text{Int of int} \\ \text{Bool of bool} \end{cases}
\]
Rules for Eq0 and Booleans

- **Booleans evaluate to themselves**
 - $A; \text{false} \Rightarrow \text{false}$

- **eq0 tests for 0**
 - $A; \text{eq0 } 0 \Rightarrow \text{true}$
 - $A; \text{eq0 } 3+4 \Rightarrow \text{false}$
Rules for Conditionals

- Notice that only one branch is evaluated
- $A; \text{if } \text{eq0 } 0 \text{ then } 3 \text{ else } 4 \Rightarrow 3$
- $A; \text{if } \text{eq0 } 1 \text{ then } 3 \text{ else } 4 \Rightarrow 4$
Quiz 3

What is the derivation of the following judgment?

\[\text{•; if eq}0\ 3-2\ \text{then 5 else 10} \Rightarrow 10 \]

(a)
\[\text{•; 3} \Rightarrow 3 \quad \text{•; 2} \Rightarrow 2 \quad 3-2 \text{ is 1} \]
\[\text{•; eq}0\ 3-2 \Rightarrow \text{false} \quad \text{•; 10} \Rightarrow 10 \]
\[\text{•; if eq}0\ 3-2\ \text{then 5 else 10} \Rightarrow 10 \]

(b)
\[3 \Rightarrow 3 \quad 2 \Rightarrow 2 \]
\[3-2 \text{ is 1} \]
\[\text{---------------} \]
\[\text{eq}0\ 3-2 \Rightarrow \text{false} \quad 10 \Rightarrow 10 \]
\[\text{-----------------} \]
\[\text{if eq}0\ 3-2\ \text{then 5 else 10} \Rightarrow 10 \]

(c)
\[\text{•; 3} \Rightarrow 3 \]
\[\text{•; 2} \Rightarrow 2 \]
\[3-2 \text{ is 1} \]
\[\text{---------------} \]
\[\text{•; 3-2} \Rightarrow 1 \quad 1 \neq 0 \]
\[\text{---------------} \]
\[\text{•; eq}0\ 3-2 \Rightarrow \text{false} \quad \text{•; 10} \Rightarrow 10 \]
\[\text{-----------------} \]
\[\text{•; if eq}0\ 3-2\ \text{then 5 else 10} \Rightarrow 10 \]
Quiz 3

What is the derivation of the following judgment?

\[\text{•; if eq0 3-2 then 5 else 10} \Rightarrow 10 \]

(a)
\[
\begin{align*}
\text{•; 3} & \Rightarrow 3 \\
\text{•; 2} & \Rightarrow 2 \\
3-2 & \text{ is 1} \\
\hline
\text{•; eq0 3-2} & \Rightarrow \text{false} \\
\text{•; 10} & \Rightarrow 10 \\
\hline
\text{•; if eq0 3-2 then 5 else 10} & \Rightarrow 10
\end{align*}
\]

(b)
\[
\begin{align*}
3 & \Rightarrow 3 \\
2 & \Rightarrow 2 \\
3-2 & \text{ is 1} \\
\hline
\text{eq0 3-2} & \Rightarrow \text{false} \\
10 & \Rightarrow 10 \\
\hline
\text{if eq0 3-2 then 5 else 10} & \Rightarrow 10
\end{align*}
\]

(c)
\[
\begin{align*}
\text{•; 3} & \Rightarrow 3 \\
\text{•; 2} & \Rightarrow 2 \\
3-2 & \text{ is 1} \\
\hline
\text{•; 3-2} & \Rightarrow 1 \\
1 & \neq 0 \\
\hline
\text{•; eq0 3-2} & \Rightarrow \text{false} \\
\text{•; 10} & \Rightarrow 10 \\
\hline
\text{•; if eq0 3-2 then 5 else 10} & \Rightarrow 10
\end{align*}
\]
let rec eval env e =
 match e with
 | Ident x -> lookup env x
 | Val v -> v
 | Plus (e1,e2) ->
 let Int n1 = eval env e1 in
 let Int n2 = eval env e2 in
 let n3 = n1+n2 in
 Int n3
 | Let (x,e1,e2) ->
 let v1 = eval env e1 in
 let env' = extend env x v1 in
 let v2 = eval env' e2 in v2
 | Eq0 e1 ->
 let Int n = eval env e1 in
 if n=0 then Bool true else Bool false
 | If (e1,e2,e3) ->
 let Bool b = eval env e1 in
 if b then eval env e2
 else eval env e3

Basically both rules for \texttt{eq0} in this one snippet

Both \texttt{if} rules here
Quick Look: Type Checking

- Inference rules can also be used to specify a program’s **static semantics**
 - i.e., the rules for type checking
- We won’t cover this in depth in this course, but here is a flavor.

- **Types** $t ::= \text{bool} \mid \text{int}$
- **Judgment** $\vdash e : t$ says e has type t
 - We define inference rules for this judgment, just as with the operational semantics
Some Type Checking Rules

- **Boolean constants have type** `bool`

 \[
 \vdash \text{true} : \text{bool} \quad \vdash \text{false} : \text{bool}
 \]

- **Equality checking has type** `bool` too

 - Assuming its target expression has type `int`

 \[
 \vdash e : \text{int} \quad \vdash \text{eq0 } e : \text{bool}
 \]

- **Conditionals**

 \[
 \vdash e_1 : \text{bool} \quad \vdash e_2 : t \quad \vdash e_3 : t
 \quad \quad \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : t
 \]
Handling Binding

- What about the types of variables?
 - Taking inspiration from the environment-style operational semantics, what could you do?

- Change judgment to be $G ⊢ e : t$ which says e has type t under type environment G
 - G is a map from variables x to types t
 - Analogous to map A, but maps vars to types, not values

- What would be the rules for \texttt{let}, and variables?
Type Checking with Binding

- **Variable lookup**
 \[
 G(x) = t \\
 \overline{G \vdash x : t}
 \]

- **Let binding**
 \[
 G \vdash e_1 : t_1 \\
 G, x : t_1 \vdash e_2 : t_2 \\
 G \vdash \text{let } x = e_1 \text{ in } e_2 : t_2
 \]

 analogous to

 \[
 A(x) = v \\
 \overline{A; x \Rightarrow v}
 \]

 \[
 A; e_1 \Rightarrow v_1 \\
 A, x : v_1; e_2 \Rightarrow v_2 \\
 \overline{A; \text{let } x = e_1 \text{ in } e_2 \Rightarrow v_2}
 \]
Scaling up

- Operational semantics (and similarly styled typing rules) can handle full languages
 - With records, recursive variant types, objects, first-class functions, and more

- Provides a concise notation for explaining what a language does. Clearly shows:
 - Evaluation order
 - Call-by-value vs. call-by-name
 - Static scoping vs. dynamic scoping
 - ... We may look at more of these later
Scaling Up: Lego City