
CMSC351 (Kruskal) Homework 5 Due: Friday, October 4, 2019

Problem 1. Consider an array of size nine with the numbers in the following order 40, 20, 80, 60, 30, 90, 10, 70, 50.

(a) Form the heap using the algorithm described in class. Show the heap as a tree. Show the
heap as an array. Exactly how many comparisons did heap creation use?

(b) Start with the heap created in Part (a). Show the array after each element sifts down
during the Finish phase. How many comparisons does each sift use? What is the total
number of comparisons after heap creation?

Problem 2. Assume that your machine has a built-in data structure for one priority queue, which
can be either a min-queue or a max-queue. It has the following operations:

• Insert an element, which is either simply a value, or a pair (value,name).

insert(Q,value)

insert(Q,(value,name))

• Delete the smallest (largest) value in a min-queue (max-queue), and optionally assign it
to a variable.

delete(Q)

value ← delete(Q)

(value,name) ← delete(Q)

• Peek at the smallest (largest) value in a min-queue (max-queue),

peek(Q)

• Determine how many elements are in the queue.

size(Q)

The insert and delete operations count as exactly one “comparison” (as do standard compar-
isons). The peek and size operations do not count as comparisons (unless the peek value is
actually used in a comparison).

This machine can sort a list of size n with exactly 2n comparisons: Insert all of the elements into
a max-queue and then remove them (one at a time). What if your priority queue is restricted
to having size s < n?1 If an item is inserted into a full min-queue (max-queue), the queue ends
up with the s smallest (largest) values. Now how fast can you sort? Think about this before
starting the problems below.

For the following problems, you may describe your algorithm in high level English or in pseudo
code, but the description must be clear. Your analyses should be a function of the list size, n,
and the queue size, s. Just get the exact high order term. Show your work.

(a) i. Design an “efficient” sorting algorithm based on a quadratic sorting algorithm (bub-
blesort, insertion sort, or selection sort).

ii. Analyze the number of comparisons. You may assume that n is “nice”.

(b) i. Design an efficient sorting algorithm based on mergesort. Minimize the number of
comparisons.

ii. Analyze the number of comparisons. You may assume that n is “nice”.

1If s is small enough such a machine is actually quite buildable.



CMSC351 (Kruskal) Homework 5 Due: Friday, October 4, 2019

Problem 3. Consider the recurrence, from Problem 4b of Homework 4, for the number of compar-
isons in our recursive version of Modified Selection Sort. [You may want to wait until after
Monday night to get the exact recurrence.]

(a) Use the tree method to solve the recurrence exactly assuming n is even.

(b) Use the tree method to solve the recurrence exactly assuming n is odd.

Page 2 of 2


