
CMSC351 (Kruskal) Homework 9 Due: Friday, December 6, 2019

1. (a) Assuming that G is represented by an adjacency matrix A[1..n, 1..n], give a Θ(n2)-time
algorithm to compute the adjacency list representation of G. (Represent the addition of
an element v to a list l using pseudocode by l← l ∪ {v}.)

(b) Assuming that G is represented by an adjacency list Adj[1..n], give a Θ(n2)-time algorithm
to compute the adjacency matrix of G.

2. In Dijkstra’s algorithm, at each iteration the nodes y in Q that are adjacent to the node x
being processed, may get new, potential shortest path distances. In other words, the array D
is possibly updated for those vertices.

Draw a directed, weighted graph G = (V,E) on four vertices such that at each iteration all
of the nodes in Q get new, potential shortest path distances. In other words, the array D is
updated for every vertex in Q. To keep it simple, G should have no cycles.

3. Let G = (V,E) be a directed, weighted graph with weight function w : E → {0, 1, 2, . . . , s} for
some nonnegative integer s.

(a) Modify Dijkstra’s algorithm to compute the shortest paths from a given source vertex s
in time O(m + sn).

(b) Modify your algorithm from Part (a) to run in time O((m + n) log s). Hint: How many
distinct shortest-path potential distances can there be in Q at any given point in time?

4. The optimization version of the Longest Path Problem is: find the longest, simple path and its
weight in a directed, weighted graph G = (V,E). (It might not traverse every vertex.) The
decision version is: Given a weighted, directed graph G = (V,E) and a bound B, does G have
a simple path of weight B or more?

(a) Show that the decision version is in NP. Make sure to state what the certificate is, and
to show that the verification is in polynomial time.

(b) Show that if you can solve the optimization problem in polynomial time, then you can
solve the decision version in polynomial time.

(c) Show that if you can solve the decision version in polynomial time, then you can solve the
optimization problem in polynomial time.

5. (Challenge problem – will not be graded.) Generalize Problem (2) to an arbitrary
number of vertices n.


