
CMSC 412 GeekOS overview

1

GeekOS Overview

A. Udaya Shankar

shankar@cs.umd.edu

Jeffrey K. Hollingsworth

hollings@cs.umd.edu

1/23/2017

Abstract

This document gives an overview of the GeekOS distribution (for 412- Spring 2017) and related background on QEMU and

x86. It describes some operations in GeekOS in more detail, in particular, initialization, low-level interrupt handling and

context switching, thread creation, and user program spawning.

Contents

1. Introduction ... 2

2. Qemu ... 3

3. Intel x86 real mode .. 4

4. Intel x86 protected mode ... 5

5. Booting and kernel initialization.. 8

6. Context switching .. 11

6.1. Context state .. 11

6.2. Stopping and resuming threads ... 11

6.3. Handle_Interrupt ... 12

6.4. Switch_To_Thread(threadptr) ... 12

7. Starting threads and spawning user programs ... 13

7.1. Starting a kernel thread ... 13

7.2. Starting a user thread ... 13

7.3. Spawning a user program .. 13

8. Filesystem overview .. 14

9. Vfs ... 15

10. Pfat ... 17

11. Geekos/fileio.h ... 21

12. Bufcache .. 22

13. Blockdev .. 23

14. Ide .. 25

15. OS subsystems ... 26

15.1. Utilities .. 26

15.2. Memory system ... 26

15.3. Process management ... 26

15.4. Interrupt system ... 26

15.5. Syscall system ... 27

15.6. Device drivers ... 27

15.7. Console .. 27

15.8. File system .. 27

16. Memory organization after setup and after Main... 28

CMSC 412 GeekOS overview

2

1. Introduction
The GeekOS distribution considered here is the one for CMSC 412 Spring 2017 from:

 git clone https://gitlab.cs.umd.edu/cmsc412_sp2017/spring2017.git

It contains only source code (in C, x86 assembly (mostly NASM, some AT&T), Makefile, Perl). After

executing the makefiles, it will also contain object code and executables that can run on a PC-like

hardware platform (x86 processor, memory, IO devices, etc). In this class, the hardware platform is

simulated by QEMU.

The directories and files of the GeekOS are organized as follows:

• Directory build has makefiles for starting QEMU with GeekOS and user programs. Its

subdirectories, which are initially empty, will hold object and executable modules. In particular,

there will be two disk images: diskc, containing a PFAT filesystem with the GeekOS image and

user programs; and diskd, initially raw and empty.

• Directories src/geekos and include/geekos contains the kernel code. Executed by

QEMU’s processor in kernel mode. You will be adding and modifying significant parts of the files

here. You should understand very well what is already there in order to have any hope of

gracefully completing the projects.

• Directory src/user contains user programs that run on GeekOS. Executed by QEMU’s

processor in user mode.

• Directory src/libc contains C entry functions for system calls. User programs call these

functions to obtain OS services. Executed by QEMU’s processor in user mode (but switches to

kernel mode while executing system calls). Header files are in directory include/libc.

• Directory src/common has heap manager bget, output formatter fmtout, string manipulation

string, and memmove. Nothing specific to operating systems here. Header files are in directory

include/libc.

• Directory src/tools contains code for constructing the disk images that is supplied to QEMU.

In particular, buildFat.c constructs the PFAT file system on diskc.

• Directory scripts contains Perl scripts, some of which are used in the makefiles.

CMSC 412 GeekOS overview

3

2. Qemu
QEMU simulates a PC-like hardware. The QEMU configuration achieved by makefile includes the

following. Below addresses are referred to by their hex values or their source code names or both, for

example, “0xB800” or “VIDMEM_ADDR” or “0xB800 / VIDMEM_ADDR”.

• Processor: Intel 386.

• BIOS: When QEMU is started (corresponding to power up), BIOS loads diskc/sector 0 into

memory at offset 0 of memory segment 0x07C0 (mapping to memory address 0x07C00), and the

processor starts executing at that address. Thus that disk sector should contain the boot sector.

• Memory: 10 MBytes.

• PIC (programmable interrupt controller, 8259A): receives interrupts from IO devices (keyboard,

dma, ide, floppy drive) and funnels them to the processor.

Ports: 0x20, 0x21, 0xA0, 0xA1 (for loading interrupt vectors?)

• PIT (programmable interval timer): generates interrupts at programmable interval.

IRQ: 0 (to PIC)

Ports: 0x40–43

• Keyboard

IRQ: 1 (to PIC)

Ports: 0x64 / KB_CMD; 0x60 / KB_DATA.

• VGA (monitor)

Video memory: 0xB8000–0x100000; 0xB8000 / VIDMEM_ADDR; CRT_ADDR_REG; etc.

• IDE: accomodates up to 4 hard disks.

Drive 0 (diskc) has a PFAT file system with the GeekOS image and user programs.

Drive 1 (diskd) is a raw “empty” disk (appears only in later projects).

IRQ: ?

Ports: 0x1F6

IDE_DRIVE_HEAD_REGISTER;

IDE_DATA_REGISTER;

IDE_SECTOR_COUNT_REGISTER; etc.

• Floppy drive: Holds a 1.44MB floppy disk.

IRQ: ?

Ports: 0x3F0 (FDC_BASE); FDC_STATUS_REG; FDC_DATA_REG; etc.

• DMA:

Ports: 0x00

(DMA_BASE); DMA_COMMAND_REG; DMA_STATUS_REG; DMA_REQUEST_REG; etc.

CMSC 412 GeekOS overview

4

3. Intel x86 real mode
The x86 processor can be in one of several modes. Only two of them, “real” mode and “protected”

mode, are relevant for GeekOS. The processor starts in real mode upon power-up or reset. Here, it is a

16-bit machine (Intel 8086) with a linear address space of 1MB (=220), addressed using a combination of

a 16-bit segment and a 16-bit offset.

Registers

 The processor has the following 16-bit registers (assembly names used below):

• Main registers: in each, the 8-bit halves are independently addressable.

AX: primary accumulator; halves AH (higher) and AL (lower).

BX: base, accumulator; halves BH and BL

CX: counter, accumulator; halves CH and CL

DX: accumulator, other functions; halves DH and DL

• Index registers:

SI: source index

DI: destination index

BP: base pointer

SP: stack pointer

• Status register:

Flags: carry, parity, auxiliary, zero, sign, trap, interrupt, direction, overflow

• Segment registers:

CS: code segment

DS: data segment

ES: extra segment

SS: stack segment

• IP: instruction pointer

Addressing

 The processor can address 1MB (220 bytes) of memory. A 20-bit memory address is constructed by

combining a 16-bit segment (from a segment register) and a 16-bit offset as follows:

• 16×segment + offset // equivalently: (segment « 4) + offset XXX

The address is usually denoted by segment:offset.

Stack, IO, interrupts

 The hardware stack grows towards lower memory addresses. Push and pop is in terms of 2-byte words.

Stack top is pointed to by SS:SP. Stack bottom is pointed to by SS:FFFF.

16-bit IO (port) address space, each referencing an 8-bit IO register. There are 256 interrupts (hardware

and software).

CMSC 412 GeekOS overview

5

4. Intel x86 protected mode
The x86 processor switches from real mode to protected mode upon executing a certain instruction. In

protected mode, the processor is a 32-bit machine with many more features, some of which are described

next.

The processor can switch between 4 privilege levels: 0–3, in decreasing order of privilege; 0 is kernel

mode and 3 is user mode. A task has a separate stack for each level.

The linear address space is 4GB (=232).

16-bit IO (port) address space, each referencing an 8-bit IO register. There are 256 interrupts (hardware

and software).

Segmented memory

The linear address space can be segmented, with an address being formed by combining a 16-bit

“segment selector” and a 32-bit “offset”. Briefly, the segment selector indexes into a “segment descriptor

table” in memory, which yields a 64-bit “segment descriptor” that points to a segment (in memory).

There is a “global descriptor table” (GDT) and zero or more “local descriptor tables” (LDTs).

A segment selector contains the following:

• 1 bit: indicates GDT or LDT.

• 13 bits: index into GDT or LDT.

• 2 bits: protection level of segment.

A segment descriptor contains the following:

• linear base address of a segment: 32 bits

• limit (size) of the segment: 20 bits

• descriptor privilege level (dpl): 2 bits

• type of segment (data, code, system, tss, gate): 4 bits

• present (i.e., in memory): 1 bit

• Various 1-bit attributes

The GDT (global descriptor table) entries point to kernel segments and optionally user segments. GDT

entry 0 cannot be used to access memory but it does serve as a “null segment selector”. There is a GDTR

register in the processor that points to the GDT.

An LDT (local descriptor table) is like the GDT except that it is local to task (its entries point to

segments of that task) and entry 0 can be used to access memory. There can be zero or more LDTs in

memory. (In GeekOS, each user process gets an LDT.) There is a LDTR register in the processor that

points (via the GDT) to the LDT currently being used (if any).

Paging

Linear or segmented memory modes can be direct (no paging) or paged. If paged, the linear addrress is

[dir, table, offset]:

• dir: indexes into page directory, yields base addr of page table

• table: indexes into page table, yields base addr of page

• physical addr = [page base addr, offset]

CMSC 412 GeekOS overview

6

Interrupts and task switching

An interrupt indexes into an “interrupt descriptor table” (IDT) in memory, which yields a 64-bit “gate”

that points to the interrupt handler and indicates its privilege level. There is a IDTR register in the

processor that points to the IDT.

If the interrupt handler’s privilege level is numerically lower than that of the interrupted task, the

processor also switches to another stack. The location of this new stack is available in a “task state

segment” (TSS) in memory, which is pointed to by a task register (TR) in the processor.

(The TSS can also be used to automatically store and retrieve the rest of the processor’s state upon a task

switch. But GeekOS does not exploit this feature: it maintains only one TSS and uses it only for the stack

pointer; it saves and loads the rest of the processor state in software.)

An interrupt gate contains the following:

• segment selector (for the segment containing the handler code): 16 bits

• offset within segment (pointing to the handler code): 16 bits

• descriptor privilege level (dpl): 2 bits

• type of segment (data, code, system, tss, gate): 4 bits

• present (in memory): 1-bit

When a task is interrupted and the interrupt handler is at the same privilege level as the interrupted task:

the processor pushes on the current stack the EFLAGS, CS, and EIP registers (i.e., pertaining to the

interrupted task) and (for certain interrupts) an error code.

When a task is interrupted and the interrupt handler is at a numerically lower privilege level, a stack

switch occurs. The SS and ESP for the stack to be used by the handler are obtained from the current TSS.

On this new stack, the processor pushes the SS and ESP of the interrupted task and then (as before) the

EFLAGS, CS, and EIP registers and error code (if present).

A “return from interrupt” IRET instruction undoes the above (including popping the interrupted task’s

SS and ESP if they are saved on stack).

Processor registers

The processor has the following registers.

• 8 general purpose registers (each 32-bit):

EAX: accumulator

EBX, ECX, ESI, EDI: pointers to data segment; counters

EDX: IO pointer

ESP: stack pointer (in SS segment)

EBP: pointer to data on stack (in SS segment)

• 6 segment registers (each has a 16-bit part + “invisible” 64-bit part):

CS: code segment register

SS: stack segment register

DS, ES, FS, GS: data segment registers

The 16-bit part is a segment selector. The 64-bit invisible part caches the segment descriptor (from

GDT or LDT) pointed to by the segment selector.

• GDTR: 48-bit, points to GDT: 32 bits for GDT base addr, 16 bits for GDT size (in bytes).

• IDTR: 48-bit, points to IDT: 32 bits for IDT base addr, 16 bits for IDT size (in bytes).

• LDTR: 16-bit segment selector (+ invisible 64-bit); points (via GDT) to an LDT.

• TR: 16-bit segment selector (+ invisible 64-bit): points (via GDT) to a TSS.

• EIP: 32-bit instruction pointer (used with CS).

• EFLAGS: 32-bit status and control register: carry, overflow, sign, interrupt enable, new task, etc.

CMSC 412 GeekOS overview

7

• CR0–CR4: 32-bit control registers: paging enable, cache enable, cache write-mode, protected/real

mode, page fault, etc.

• Other registers: debug, memory type range, machine check, etc.

CMSC 412 GeekOS overview

8

5. Booting and kernel initialization
Upon powering up the PC platform, BIOS loads diskc/sector 0 (of 512 bytes) at offset 0 of memory

segment 0x07C0 (BOOTSEG) and the processor starts executing in real-mode from that address

(0x07C00).

The makefiles have put src/bootsect.asm (in machine language) in that sector. Thus when the

processor powers up, src/bootsect.asm is in memory starting at location BOOTSEG:0 and the

processor starts executing the machine instruction at that location. From this point until the kernel is

completely initialized, the processor is the only active “thread” in the system. It does the following:

• bootsect.asm: from BeginText to after_move:

Moves the 512 bytes at BOOTSEG:0 to INITSEG:0 and jumps to INITSEG:0.

• bootsect.asm: from after_move to load_kernel:

Loads the diskc sector containing setup.asm to memory SETUPSEG:0.

• bootsect.asm: from load_kernel to ReadSector):

Loads the diskc sectors containing the OS kernel image into memory starting at KERNSEG:0.

Then jumps to location SETUPSEG:0 and starts executing setup.asm.

• setup.asm: from BeginSetup to setup_32):

Determines the size of extended memory available, kills the floppy motor (which is not used

henceforth), points GDTR and IDTR to temporary GDT and IDT tables (in setup.asm),

initializes A20 address line, initializes the PIC (to bypass BIOS), enters protected mode, and

jumps to setup_32 (setting the processor’s CS register to KERNEL_CS).

• setup.asm: from setup_32 to just before .returnAddr:

Sets data and stack segment registers (DS, ES, FS, GS, SS) to KERNEL_DS, pushes on the stack a

Boot_Info struct and a pointer to the struct, then jumps to KERNEL_CS:ENTRY_POINT

(which points to function Main in geekos/main.c).

The memory now looks as shown in Section 16 (under the column titled “At end of setup”).

The processor now starts executing Main, (in the file main.c) which initializes the OS. There is still

only one “thread” executing. We refer to it as the “initial kernel thread”. In executing Main, this thread

initializes the OS kernel and enters itself in the OS data structures, thus becoming a true thread.

• Init_BSS (defined in geekos/mem.c:

Zeros the BSS (global variables area) of the kernel image.

• Init_Screen (defined in geekos/screen.c:

Blanks the VGA screen and initializes its hardware cursor.

• Init_Mem (defined in geekos/mem.c):

Calls Init_GDT (defined in geekos/gdt.c):

• Creates the (permanent) GDT (static variable s_GDT).

• Entry 1 points to the kernel code segment and entry 2 to the kernel data segment.

• Loads the GDT base address and limit into GDTR.

Treats memory as a sequence of 4KB pages. Creates (in kernel memory) a list of Page structs

corresponding to the memory pages, each storing the attributes of its page (kernel, available for

users, allocated, etc). Global variable g_pageList points to the list. Also creates a list of the

available pages (s_freeList).

Calls Init_Heap (defined in geekos/malloc.c) to initialize the kernel heap. (Malloc itself is

implemented by bget.)

• Init_CRC32 (skipped).

CMSC 412 GeekOS overview

9

• Init_TSS (defined in geekos/tss.c):

GeekOS uses a single TSS (static variable s_theTSS). Zeros the TSS struct, adds the TSS

descriptor to GDT, updates LDTR.

• Init_Interrupts (defined in geekos/int.c):

Calls Init_IDT (defined in geekos/idt.c):

• Creates the (permanent) IDT (static variable s_IDT) with 256 interrupt gate entries (one for

every exception and interrupt). The first 32 entries are for exceptions and traps. The

remaining entries are for external interrupts, i.e., external interrupt j is mapped to entry 32+j.

• Each IDT entry points to an entry point in geekos/lowlevel.asm. [The latter gets a

pointer to the appropriate interrupt handler function (from g_interruptTable in

idt.c) and calls handler with the appropriate Interrupt_State argument.]

• Each IDT entry is at kernel privilege level, except for the syscall trap, which is at user

privilege level.

Installs a pointer to a dummy interrupt handler function in every g_interruptTable entry (in

idt.c).

Loads the IDT base address and limit into IDTR.

• Init_SMP (defined in geekos/smp.c)

Performs the steps to identify how many cores there are and get those cores running. Via a inter-

procesor interrupt (IPI), it starts the function setup_2nd_32 (geekos/setup.asm) which

get the new core into 32-bit mode and then calls Secondary_Start (geekos/smp.c).

Secondary_Start then calls:

o Init_GDT()

o Init_TSS()

o Init_Interrupts(CPUid)

o Init_Secondary_VM()

o Init_Scheduler()

o Init_Traps();

o Init_Local_APIC()

o Init_Timer_Interrupt()

The secondary cores are then left spinning until the function Release_SMP is called later in

Main.

• Init_VM (define in geekos/paging.c)

• Init_Scheduler (defined in geekos/kthread.c:

Creates a Kernel_Thread object for the initial kernel thread and indicates that as the currently

executing thread (g_currentThread). (At this point, the initial kernel thread becomes a true

OS thread.)

Creates an idle thread (runs when there is no other thread to run) and makes it runnable.

Creates a reaper thread (responsible for cleaning up terminated threads) and makes it runnable.

Initializes some queues of pointers to Kernel_Thread objects: s_allThreadList is a list

with an entry for every thread; s_runQueue is a queue with an entry for every runnable thread;

and g_currentThreads[] indicates the currently executing thread (one element per core).

• Init_Traps (defined in geekos/trap.c):

Installs interrupt handlers for interrupts 12, 13 and 0x90 (syscall) (in g_interruptTable). The

handler for interrupt 12 (stack exception) terminates the current thread. The handler for interrupt

13 (general protection failure) terminates the current thread. The handler for interrupt 0x90 calls

the syscall handler function.

• Init_Local_APIC defined in (geekos/smp.c) initializes the local interrupt controller.

CMSC 412 GeekOS overview

10

• Init_Timer (defined in geekos/timer.c): Initializes the timer. Installs interrupt handler for

timer interrupt (IRQ 0, corresponding to IDT entry 32). Enables timer interrupt.

• Init_Keyboard (defined in geekos/keyboard.c):

Initializes the keyboard state. Installs interrupt handler for keyboard interrupt (IRQ 1,

corresponding to IDT entry 33). Enables keyboard interrupt.

• Init_DMA (defined in geekos/dma.c):

Resets the DMA controller.

• Init_Floppy (defined in geekos/floppy.c): (skipped)

• Init_IDE (defined in geekos/ide.c):

Reset the IDE controller and drives. Start “IDE request” thread, to wait for requests to IDE. (Why

no interrupt handler?)

• Init_PFAT (defined in geekos/pfat.c): Registers the PFAT file system interface to the

virtual file system.

• Init_GFS2, Init_GOSFS, Init_CFS start all of the different filesystem types.

• Init_Alarm sets up the alarm system so kernel threads can request alarms to happen.

• Init_Network, …Init_RIP: (skipped) start the threads associated with the networking

stack.

• Release_SMP allows all of the secondary cores to start running (and they quickly finish their

initial threads and start running the Idle thread for that core).

• Mount_Root_Filesystem: mounts the root drive (diskc) as a PFAT file system to the virtual

file system (in vfs.c) at root prefix “/”.

• Spawn_Init_Process: starts the user shell program.

CMSC 412 GeekOS overview

11

6. Context switching

6.1. Context state

The context state of a thread is stored in three structures, all reachable from the first:

• A Kernel_Thread struct (defined in geekos/kthread.h). This contains the kernel stack

pointer, various kernel-related state (refcount, pid, etc.), and pointers to stack and user context (see

below).

• A stack page. This is the kernel stack of the thread. When the thread is not executing, the

processor state of the thread is stored here as follows:

XX userSS, userESP [present only if thread was stopped in user mode] // stack interior

XX eflags,

XX eip (= return address),

XX cs (= code segment selector),

XX error code, interrupt number,

XX gp and seg registers // stack top

Thus the thread can be resumed simply by popping the gp and seg processor registers, clearing the

error code and interrupt number, and executing “return from interrupt” (IRET).

• A User_Context struct (defined in geekos/user.h). This is present only if the thread is a

user thread, i.e., started by spawing a user program. It contains user-level OS state (LDT,

code/data/stack selectors, entry address, etc.).

6.2. Stopping and resuming threads

The context switching code appears in the following two functions (both in file lowlevel.asm):

• Handle_Interrupt:

Assumes that the current thread got here via an interrupt (external, trap, or exception).

Constructs the interrupt state of the current thread, calls the C interrupt handler, and finally either

resumes the current thread or switches it out and switches in a thread from the run queue.

• Switch_To_Thread:

Assumes the following (verify each and check if it matters):

• the current thread got here via a call (not an interrupt) with a thread pointer arg on stack;

• the current thread has already been moved to the run/wait queue;

• if the current thread has a user context then it is exiting (Is this important?).

Constructs the context of the current thread and switches in the thread pointer’s threaad.

In both functions, the context switching code makes use of the kernel stack of the current thread (i.e., the

one to be switched out). Think about what can go wrong if this is not done properly.

CMSC 412 GeekOS overview

12

6.3. Handle_Interrupt

• // here on (external or trap) interrupt; stack as follows:

// [userSS, userESP] (if user mode was interrupted), [stack interior

// eflags, cs, eip, error code, intrpt num [stack top]

• // save interrupt state of current thread on stack and call C handler

push gp and seg registers // completes interrupt state on stack

push esp // pointer to interrupt state

call C interrupt handler // get address from g_interruptTable in int.c

• if current thread is to be switched out // according to g_preemptionDisable,
g_needReschedule
XX // NOTE: using previous thread’s kernel stack

XX move current thread to run queue;

XX get a thread from run queue and make current;

XX set esp to its kernel stack (avail in thread’s context).

• process signal if present // not present in distribution

• activate user context if thread has one // update LDTR, s_TSS.esp0, s_TSS.ss0, etc.

• pop gp and segment registers

• IRET

6.4. Switch_To_Thread(threadptr)

• // switch out current thread (it has already been moved to run/wait queue?)

// switch in the thread pointed to by threadptr (latter on stack)

// here on a call from Schedule (and not from an interrupt).

// current thread has no user context or is exiting. (Correct?)

// Stack: threadptr (= arg to Switch_To_Thread) [stack interior]

// Stack: return addr in Schedule (= eip) [stack top]

• change current thread’s stack to following (so it can be switched in later):

XX threadptr, // stack interior

XX eflags,

XX return addr in Schedule (= eip),

XX fake error code, fake intrpt num,

XX gp and seg registers // stack top

save esp and clear numTicks on current thread struct

// current thread’s context is now saved accurately

• // switch in threadptr’s thread

// NOTE: using previous thread’s kernel stack

restore esp to point to threadptr // pass over previous thread’s interrupt state

make threadptr’s thread current

• process signal if present // not present in distribution

• activate user context if thread has one // update LDTR, s_TSS.esp0, s_TSS.ss0, etc.

• pop gp and segment registers

• IRET

CMSC 412 GeekOS overview

13

7. Starting threads and spawning user programs

7.1. Starting a kernel thread

Start_Kernel_Thread(startFunc, arg, priority)

• Create_Thread:

• get memory for kthread struct and for stack;

• initialize kthread fields: stackPage, esp, numTicks, pid, etc.

• Setup_Kernel_Thread:

• configure kthread’s stack so that when this kthread is switched in (in lowlevel.asm),

it executes Launch_Thread, then startFunc(arg), then Shutdown_Thread.

Stack bottom:

 startFunc arg, Shutdown_Thread addr, startFunc addr,

eflags (with intrpts off), KERNEL_CS (CS), Launch_Thread addr (EIP),

fake error code, fake intrpt number

fake gp registers, fake seg registers

Stack top

• Add to runQ

7.2. Starting a user thread

Start_User_Thread(userContext)

• Create_Thread:

• get memory for kthreadd object and stack; initialize (as with kernel thread)

• Setup_User_Thread:

• point kthrd.userContext to userContext

• fix up (kernel) stack as above except:

X first push userSS and userESP (avail from usercontext)

X have interrupts on in eflags

• Add to runQ

7.3. Spawning a user program

Spawn(programPathname, command, userContext)

• Load user prog:

• get file from file system (vfs.c, pfat.c),

unpack into elf header and content, extract exeFormat (elf.c).

• get max virtual address of program and argBlockSize (from exeFormat),

acquire memory 1 for program segment, arg block and user stack,

load program segment into memory 1,

format argblock in memory 1,

acquire memory 2 for usercontext and initialize fields (size, ldt, entry point).

• Start_User_Thread(userContext)

CMSC 412 GeekOS overview

14

8. Filesystem overview
GeekOS has a virtual filesystem (VFS) onto which “concrete” filesystems, such as PFAT, GOSFS,

GSFS2, and others are “mounted”. VFS acts as a wrapper to these mounted filesystems, allowing them

to be accessed by users in a uniform manner. Initially VFS consists of just an empty root directory (“/”).

At the end of OS initializing, the PFAT filesystem in IDE 0 is mounted onto VFS at position “/c”, after

which user programs can access the PFAT filesystem as the VFS subdirectory “/c”. Similarly, your

GOSFS filesystem (in project 5) can be mounted at another point (say “/d”) and accessed.

GeekOS also has a virtual block device into which any block-structured storage device (e.g., IDE,

floppy) can be registered. The block device acts as a wrapper to these registered storage devices,

allowing them to be accessed in a uniform manner. The users in this case are other parts of the kernel

(filesystems, paging, etc.).

The figure below illustrates the context. User programs invoke system calls, which invoke functions in

vfs.c, which invoke functions in pfat.c or gosfs.c, which invoke functions in blockdev.c,

which in turn invoke functions in ide.c. (In project 5, you implement the functions in gosfs.c.)

Figure 1: GeekOS Filesystem Architecture.

The pfat functions that are called by vfs have names of the form PFAT_<function> (see pfat.c).

Similarly, the gosfs functions that are called by vfs have names of the form GOSFS_<function> (see

gosfs.c). Note that vfs does not call these functions by name. Rather vfs gets pointers to these

functions at run time (when a filesystem type is registered, when a filesystem is mounted, etc.).

CMSC 412 GeekOS overview

15

9. Vfs

Vfs functions called by “users”

 (syscalls, main, other systems in the kernel)

[Sorry. Ignored \begin{astyped} ... \end{astyped}]

[Sorry. Ignored \begin{astyped} ... \end{astyped}]

 Vfs functions called by filesystem implementations

 (pfat, gosfs)

[Sorry. Ignored \begin{astyped} ... \end{astyped}]

Vfs static variables

• s_vfsLock: lock for ensuring atomicity of vfs operations.

• s_mountPointList: list of mountPoints, one for each mounted file system (e.g., pfat on dev1

at /c).

• s_filesystemList: list of fstypes (filesystem types), one for each registered filesystem (e.g.,

pfat).

• s_pagingDevice: registered paging device.

Struct with following: fileName, blockDev, start sector, number of sectors

Each mountPoint is a struct containing the following:

• ops: pointers to functions Open, Create_Directory, Open_Directory, Stat, Sync,

Delete in filesystem implementation (eg, pfat.c). (Note: SetSetUid, SetAcl omitted

here.)

Each function’s args: mountpoint, path in filesystem, mode, pfile.

Pointers supplied by filesystem when mounted.

• prefix: where filesystem is mounted wrt root (eg, “/c”).

• blockDev: pointer to block device containing filesystem.

• fsData: filesystem info. Supplied by filesystem when mounted.

Each fstype is a struct containing the following:

• ops: pointers to functions Format(blockDev), Mount(mountPoint) in filesystem

implementation (eg, in pfat.c). pointers supplied by filesystem when registered.

• fsName: name of filesystemType (eg, “pfat”).

File struct for each opened file or directory containing:

• ops: pointers to functions FStat, Read, Write, Seek, Close, Read_Entry in filesystem

implementation (eg, in pfat.c).

Set by filesystem when mounted. Function args include *file.

• filePos: current position in file.

• endPos: end position in file (i.e., length of file).

• fsData: for use by filesystem implementation.

• mode: mode of open file (read vs write). Set by Open(), Create_Directory(), Open_Directory().

CMSC 412 GeekOS overview

16

• mountPoint: mountPoint of filesystem that file is part of. Set by Open(), Create_Directory(),

Open_Directory().

Functions in vfs

 Register_Filesystem(fstype, fsOps):

 add fstype to list of fstypes.

Format(*devname, *fstype):

 if [fstype is registered and has Format] and [device is registered (in blockdev) and opens]

call fstype.ops.Format(device)

Mount(*devname, pathPfx, *fstype):

 if [fstype is registered and has Format] and [device is registered (in blockdev) and opens]

create mountPoint(device, pathPfx), call fstype.ops.Mount(mountpoint), add mountPoint to

mountPointList.

Open(path, mode, pFile): // wrapper for mounted filesystem Open

 split path into pfx and sfx

get mountPoint at pfx

call mountPoint.ops.Open(mountpoint, sfx, mode, pFile).

Close, Stat, FStat, Read, Write, Seek, Create_Directory, Open_Directory, Delete:

 each is a wrapper for the corresponding mounted filesystem operation

Sync(): // wrapper for Sync of all mounted filesystems

ReadFully(path, buffer, pLen):

 Stat(path)

Open(path)

Read repeatedly until all of stat.size is read

CMSC 412 GeekOS overview

17

10. Pfat

Pfat static variables

 s_pfatFileOps: XX // instance of File_Ops (defined in vfs.h)

• &PFAT_FStat

• &PFAT_Read

• &PFAT_Write

• &PFAT_Seek

• &PFAT_Close

• 0: // (Read_Entry

s_pfatDirOps: XX // instance of File_Ops (defined in vfs.h)

• &PFAT_FStat_Dir

• 0, 0, 0, XXX// Read, Write, Seek

• &PFAT_Close_Dir

• &PFAT_Read_Entry

s_pfatMountPointOps: XX // instance of Filesystem_Ops (defined in vfs.h)

• PFAT_Open

• 0, // Create_Directory()

• PFAT_Open_Directory,

• PFAT_Stat

• PFAT_Sync

• 0 //Delete

s_pfatFilesystemOps: XX // instance of Filesystem_Ops (defined in vfs.h)

• 0 // Format

• &PFAT_FStat_Dir

Pfat structs

 bootSector:

• magic: filesystem id

• fatOffset: start of FAT

• fatLength: length of FAT (in sectors?)

• rootDirectoryOffset: start of root directory

• rootDirectoryCount: number of items in root directory

• setupStart

• setupSize

• kernelStart

• kernelSize

directoryEntry:

CMSC 412 GeekOS overview

18

• filename: 8 + 4 chars (including null terminator). 12 bytes

• readOnly, hidden, systeFile, volumeLabel, directory: each 1 bit

• time: 2 bytes

• date: 2 bytes

• firstBlock: 4 bytes

• fileSize: 4 bytes

PFAT_Instance: XX // in-memory info of mounted PFAT fs; kept in mountpoint.fsInfo.

• fsinfo: bootsector instance

• *fat: pointer to fat table

• *rootDir: pointer to rootDirEntry

• rootDirEntry:

• lock:

• fileList: PFAT file list

PFAT_File: XX // in-memory info of open PFAT file; kept in file.fsInfo.

• fsinfo: bootsector instance

• entry: directory entry of this file.

• numBlocks: number of blocks of file

• *fileDataCache:

• *validBlockSet: which data blocks of cache are valid

Pfat public functions

All exported when pfat filesystem is mounted.

PFAT_FStat(*file, *stat):

 copy file.fsData info into stat

PFAT_Read(*file, *buf, numBytes):

 // this function accesses file.fsData and file.mountPoint.fsData

set numBytes to min(endPos, filePos + numBytes)

traverse FAT (in file.mountpoint.fsData) for blocks of the file

XX for each block that is not in cache or not clean, read it into cache

copy relevant cache buffers into buf

update filePos

copy file.fsData info into stat

PFAT_Write(*file, *buf, numBytes):

 return EACCESS XX // writes not allowed

PFAT_Seek(*file, pos):

 set file.filePos to pos if in range

PFAT_Close(*file, pos):

 return 0 XX // no-op

PFAT_FStat_Dir(*dir, *stat):

 copy file.mountPoint.fsData.rootDirEntry into stat XX // only one directory

PFAT_Close_Dir(*dir):

 return 0 XX // no-op

CMSC 412 GeekOS overview

19

PFAT_Read_Entry(*dir, *entry):

 if dir.filePos ≥ dir.endPos

XX return VFS_NO_MORE_ENTRIES

pfatDirEntry ← dir.mountPoint.fsData.rootDir[dir.filePos++]

copy pfatDirEntry to entry.name.states

PFAT_Open(*mountPoint, *path, mode, **pFile):

 if (mode is not O_READ) or (path is not a file entry in mountPoint.fsData)

XX return errorcode

get a pfatFile object for path XX // already cached? , else cache, etc.

create vfs file object (with pfatFileOps, pfatFile, etc) and return in **pFile

 PFAT_Open_Directory(*mountPoint, *path, mode, **pDir):

 if (path is not “/”)

XX return errorcode

create vfs File object and set object’s

XX ops to s_pfatDirOps

XX filePos to 0

XX endPos to mountPoint.fsData.fsinfo.rootDirectoryCount

XX fsData to 0

return pointer to File object via **pDir

 PFAT_Stat(*mountPoint, *path, *stat):

 get pfatfile object for path from mountPoint.fsData

copy info from pfatfile object into stat

 PFAT_Sync(*mountPoint):

 return 0 XX // no-op; read-only fs

 PFAT_Register_Paging_File(*mountPoint, *pfatInstance):

 return if paging device already registered (Get_Paging_Device())

get dirEntry for file with PAGEFILE_FILENAME (“pagefile.bin”?)

create pagedev and set its

XX fileName to mountPoint.pathPfx + PAGEFILE_FILENAME

XX dev to mountPoint.dev

XX startSector to dirEntry.firstBlock

XX numSectors to dirEntry.fileSize / SECTOR_SIZE

Register_Paging_Device(pagedev)

 PFAT_Mount(*mountPoint):

 allocate pfatInstance and bootsect

read mountpoint.dev’s sector 0 into bootsect XX // using Block_Read

copy bootsect’s bootsector into pfatInstance.fsinfo

return if fsinfo’s magic number, FAT offset/size, root dir offset/size not ok

allocate pfatInstance.fat XX // in-memory FAT; fsinfo.fatLength gives size in sectors

read FAT from dev into pfatInstance.fat XX // using Block_Read

allocate pfatInstance.rootDir XX // in-memory rootDir; fsinfo.rootDirCount gives size in entries

read root directory from dev into pfatInstance.rootDir XX // using Block_Read

CMSC 412 GeekOS overview

20

set psfatInstance.rootDirEntry’s fields (read-only/directory/fileSize) X // fake root directory entry

initialize pfatInstance.lock

clear pfatInstance.fileList

PFAT_Register_Paging_File(mountPoint, pfatInstance) X // if present and unregistered

set mountPoint.ops to s_pfatMountPointOps

set mountPoint.fsData to pfatInstance XX

 Init_PFAT(void):

 call vfs’s Register_Filesystem("pfat", &s_pfatFilesystemOps)

CMSC 412 GeekOS overview

21

11. Geekos/fileio.h

To be completed

CMSC 412 GeekOS overview

22

12. Bufcache
Comes between vfs/pfat/gosfs and blockdev.

No static variable. No local thread.

Bufcache structs

 FS_Buffer: // holds one fsblock

• fsBlockNum: filesystem block number

• *data: in-memory data of block. May be out of sync with disk.

• flags: state of buffer (dirty, pending, ...)

FS_Buffer_Cache:

• *blockdev: associated device

• fsBlockSize: size of filesystem blocks

• numCached: current number of buffers (cached blocks)

• fsBufferList: list of buffers

• lock: lock for synchronization

• cond: condition variable for waiting for a buffer

Bufcache public functions

All called by vfs/pfat/gosfs.

*Create_FS_Buffer_Cache(*blockdev, fsBlockSize):

 malloc cache struct and set fields

Sync_FS_Buffer_Cache(*cache):

 lock cache, write out all dirty buffers, release lock

Destroy_FS_Buffer_Cache(*cache):

 synch and release all buffers and cache struct

Get_FS_Buffer(*cache, fsBlockNum, **pBuf):

 sets **pBuf to buffer fsBlockNum

CMSC 412 GeekOS overview

23

13. Blockdev

Blockdev static variables

• s_blockdevLock: lock for ensuring atomicity of blockdev operations.

• s_deviceList: list of blockDevices, one for each registered block device (e.g., ide, floppy).

Each blockDevice is a struct of the following:

• name: name of block device.

• *ops: struct of pointers to functions Open, Close, Get_Num_Blocks in device driver (e.g.,

ide.c).

Set when device is registered.

Each function’s arg: *dev.

• unit: device drive number

• inUse: opened?

• *driverData:

• *waitQueue: pointer to wait queue in device driver (e.g., ide). Set when device is registered. A

server thread in device waits here.

• *requestQueue: pointer to request queue in device driver (e.g., ide). Set when device is registered.

BlockRequests are queued here.

Each blockRequest is a struct of the following:

• *dev: block device.

• type: request type

• blockNum: number of block (to read, write, seek, ...)

• *buf: buffer for request

• requestState: pending, completed, error. (Volatile)

• errorCode: (Volatile)

• waitQueue: requesting thread waits here (until awakened by a server thread in device driver)

Blockdev functions

 Register_Block_Device(devname, devOps, unit, driverData, waitQueue,

requestQueue):

 // called by device driver (e.g., ide.c)

malloc blockDevice struct, assign its fields, add to deviceList.

Notify_Request_Completion(req,state,errorCode): XXXXX // called by device driver

(e.g., ide.c)

 wakeup(req.waitQueue),

*Dequeue_Request(reqQueue,waitQueue): XXXXX // called by device driver (e.g., ide.c)

 wait for non-empty requestQueue;

remove request from requestQueue and return it

Block_Read(dev,blockNum,buf): XXXXX // called by user (e.g., vfs/pfat, vfs/gosfs)

 create blockRequest, add to req.dev.requestQueue

CMSC 412 GeekOS overview

24

wakeup(req.dev.waitQueue)

wait at req.waitQueue until req no longer pending

Block_Write(dev,blockNum,buf): // just like Block_Read(.)

Open_Block_Device(devname, **pDev) XX // // wrapper for dev.Open(); called by user (e.g.,

vfs/pfat)

 lookup devname in blockDeviceList, and call device’s Open(), set pDev to device

Close_Block_Device(dev) XX // wrapper for dev.Close(); called by user (e.g., vfs/pfat)

 call dev.Close()

Get_Num_Blocks(dev) XX // wrapper for dev.get_Num_Blocks(); called by user (e.g., vfs/pfat)

CMSC 412 GeekOS overview

25

14. Ide

Ide static variables

• numDrives: number of drives (4)

• drives[i]: holds drive i’s configuration (heads, cylinders, sectors/track, bytes/sector).

• s_ideWaitQueue: ide wait queue. Exported when drive is registered.

• s_ideRequestQueue: ide request queue. Exported when drive is registered.

• s_ideDeviceOps: pointers to functions IDE_Open, IDE_Close,

IDE_Get_Num_Blocks;

all have arg blockDev.

Ide functions

IDE_Open(*blockDev): XXX // exported when drive is registered

 null-op if blockDev.inUse false, else crashes.

IDE_Close(*blockDev): XXX // exported when drive is registered

 null-op if blockDev.inUse true, else crashes.

IDE_Get_Num_Blocks(*blockDev): XXX // exported when drive is registered

 returns number of (disk) blocks in disk.

IDE_Read(driveNum, blockNum, *buffer):

 reads disk block, doing busy waiting

IDE_Write(driveNum, blockNum, *buffer):

 writes disk block; busy waiting.

IDE_Request_Thread(unused arg):

 waits at ide wait queue (via blockdev.waitqueue) until awakened

ide request queue

dequeues request from ide request queue (via blockdev.requestqueue)

calls IDE_Read or IDE_Write

calls blockdev.Notify_Request_Completion.

Init_IDE():

 reset IDE controller and turn off interrupts

for each drive:

XX read drive configuration and whether ATA or ATAPI

XX register drive with blockdev

start kernel thread on IDE_Request_Thread(unused arg)

CMSC 412 GeekOS overview

26

15. OS subsystems
Each subsection below identifies a “subsystem” of the OS and lists the associated files.

15.1. Utilities

The following files provide non-OS-specific functionality, such as debug macros, output formatting,

strings, generic lists, linking maps, etc.

• libc/bget.h, common/bget.c, geekos/bget.h: heap structure.

• malloc: memory manager; wrapper for bget.

• geekos/bitset.h—c: bitset structure.

• libc/fmtout.h, common/fmtout.c, geekos/fmtout.h: output formatting.

• geekos/ktypes.h: aliases to integer and char types, min/max functions, etc.

• geekos/kassert.h: debugging macros (KASSERT, TODO, PAUSE, etc).

• common/libuser.h: includes user libray (conio.h, sema.h, sched.h, fileio.h).

• geekos/list.h: generic list structure.

• common/memmove.h: standard “memory move” function.

• geekos/range.h: checking memory range containership.

• libc/string.h, common/string.c, geekos/string.h: string manipulation.

• geekos/symbol.h—asm: symbol mangling macros (for linking C and asm).

15.2. Memory system

Physical memory managment: divides physical memory into 4KB pages, keeps track of the pages

(kernel, user, free, kernel heap, etc.), gives out memory when needed (e.g., for process creation, data

structures, etc.), gets back memory when released.

Files: geekos/malloc.*, geekos/mem.*.

Segmented memory management: implements segmentation over physical memory; creates segment

selectors and descriptors, maintains GDT.

Files: geekos/segment.*, geekos/gdt.*.

15.3. Process management

Kernel process managment: kernel thread state; thread queues; creation, deletion and switching of kernel

threads; thread signalling and synchronization.

Files: geekos/kthread.*, geekos/tss.*, geekos/lowlevel.asm (function

Switch_To_Thread).

User process management: augmenting kernel threads with user context and user process creation,

deletion, switching. libc/process.*, geekos/user.*, geekos/userseg.c,

geekos/tss.*, geekos/lowlevel.asm (function Switch_To_Thread).

User program loading: loading a user executable (obtained from diskc) into memory.

Files: geekos/elf.*, geekos/argblock.*,

15.4. Interrupt system

This comprises the mapping from interrupt entry points (in IDT) to interrupt handlers and the mapping

from interrupt handlers back to resuming the interrupted processes. Covers both external (hardware)

interrupts and internal interrupts (exceptions, traps).

CMSC 412 GeekOS overview

27

Files in geekos: idt, int, irq, trap, lowlevel.asm (function Handle_Interrupt, table

g_entryPointTable).

15.5. Syscall system

Syscalls are all instances of a trap 0x90; i.e., trap.c forwards it to the appropriate syscall handler.

Files in geekos: trap (function Syscall_Handler), syscall.

15.6. Device drivers

This comprises the functions for I/O on hardware devices and the interrupt handlers for handling

interrupts issued by these devices.

Files in geekos: timer, screen, keyboard, floppy, ide, dma, io.

15.7. Console

The console is the user-level “device” consisting of keyboard and screen.

Files: include/libc/conio.h, src/libc/conio.c, geekos/syscall (handlers for

syscalls in conio).

15.8. File system

This comprises the virtual file system, the user interface to the virtual file system, the concrete file

systems (pfat, gsfs2, gosfs) that can be mounted on the virtual file system, and the block device interface

to the hardware disk devices.

OS side (all in geekos): vfs, pfat, gosfs, gsfs2, blockdev, bufcache, syscall (fileio

syscall handlers).

User side: libc/fileio.*.

CMSC 412 GeekOS overview

28

16. Memory organization after setup and after Main

Address Name(s) in source code At end of setup At end of Main

 000000 start BIOS code/data

 (and PIC interrupt vectors)

001000PAGE_SIZE end BIOS code/data start available pages

007C00BOOTSEG:0 bootsect loaded here by BIOS

010000KERNSEG:0
KERNEL_START_ADDR
KERNEL_THREAD_OBJ

start kernel image end available pages

start kernel image

BSS_START X kernel global

 X structures initialized

BSS_END

kernEnd end kernel image end kernel image

start available pages

090000INITSEG:0 bootsect reloaded here

090200SETUPSEG:0 setup loaded here

090400MEMMAPSEG:0 setup stack (grows towards 0)

0A0000ISA_HOLE_START start ISA hole (hardware use) end available pages

0B8000VIDSEG:0 start video memory

100000ISA_HOLE_END
KERN_THREAD_OBJ

end ISA hole

start initial kernel thread object

start initial kernel thread

object

101000HIGHMEM_START
KERN_STACK

initial kernel thread stack

start of kernel heap

initial kernel thread stack

start of kernel heap

111000pageListEnd
= HIGHMEM_START +
X KERNEL_HEAP_SIZE

end of kernel heap end of kernel heap

start available pages

FEE00000

FEC00000

endOfMem

APIC_Addr

IO_APIC_Addr

end available pages

Start of local APIC region

Start of IO APIC region

Figure 2: GeekOS Memory Layout

