
CSMC 412

Operating Systems

Prof. Ashok K Agrawala

Set 13

1

I/O Systems

• Overview

• I/O Hardware

• Application I/O Interface

• Kernel I/O Subsystem

• Transforming I/O Requests to Hardware Operations

• STREAMS

• Performance

2Copyright 2018 Silberschatz, Gavin & Gagne

Objectives

• Explore the structure of an operating system’s I/O subsystem

• Discuss the principles of I/O hardware and its complexity

• Provide details of the performance aspects of I/O hardware and
software

3Copyright 2018 Silberschatz, Gavin & Gagne

Overview

• I/O management is a major component of operating system design
and operation
• Important aspect of computer operation

• I/O devices vary greatly

• Various methods to control them

• Performance management

• New types of devices frequent

• Ports, busses, device controllers connect to various devices

• Device drivers encapsulate device details
• Present uniform device-access interface to I/O subsystem

4Copyright 2018 Silberschatz, Gavin & Gagne

I/O Hardware
• Incredible variety of I/O devices

• Storage

• Transmission

• Human-interface

• Common concepts – signals from I/O devices interface with computer
• Port – connection point for device

• Bus - daisy chain or shared direct access

• PCI bus common in PCs and servers, PCI Express (PCIe)

• expansion bus connects relatively slow devices

• Controller (host adapter) – electronics that operate port, bus, device

• Sometimes integrated

• Sometimes separate circuit board (host adapter)

• Contains processor, microcode, private memory, bus controller, etc

• Some talk to per-device controller with bus controller, microcode, memory, etc

5Copyright 2018 Silberschatz, Gavin & Gagne

A Typical PC Bus Structure

6Copyright 2018 Silberschatz, Gavin & Gagne

I/O Hardware (Cont.)

• I/O instructions control devices

• Devices usually have registers where device driver places commands,
addresses, and data to write, or read data from registers after
command execution
• Data-in register, data-out register, status register, control register
• Typically 1-4 bytes, or FIFO buffer

• Devices have addresses, used by
• Direct I/O instructions
• Memory-mapped I/O

• Device data and command registers mapped to processor address space
• Especially for large address spaces (graphics)

7Copyright 2018 Silberschatz, Gavin & Gagne

Device I/O Port Locations on PCs (partial)

8Copyright 2018 Silberschatz, Gavin & Gagne

Polling

For each byte of I/O
1. Read busy bit from status register until 0
2. Host sets read or write bit and if write copies data into data-out register
3. Host sets command-ready bit
4. Controller sets busy bit, executes transfer
5. Controller clears busy bit, error bit, command-ready bit when transfer done

Step 1 is busy-wait cycle to wait for I/O from device
Reasonable if device is fast
But inefficient if device slow
CPU switches to other tasks?
But if miss a cycle data overwritten / lost

9Copyright 2018 Silberschatz, Gavin & Gagne

Interrupts

• Polling can happen in 3 instruction cycles
• Read status, logical-and to extract status bit, branch if not zero
• How to be more efficient if non-zero infrequently?

• CPU Interrupt-request line triggered by I/O device
• Checked by processor after each instruction

• Interrupt handler receives interrupts
• Maskable to ignore or delay some interrupts

• Interrupt vector to dispatch interrupt to correct handler
• Context switch at start and end
• Based on priority
• Some nonmaskable
• Interrupt chaining if more than one device at same interrupt number

10Copyright 2018 Silberschatz, Gavin & Gagne

Interrupt-Driven I/O Cycle

11Copyright 2018 Silberschatz, Gavin & Gagne

Intel Pentium Processor Event-Vector Table

12Copyright 2018 Silberschatz, Gavin & Gagne

Interrupts (Cont.)

• Interrupt mechanism also used for exceptions
• Terminate process, crash system due to hardware error

• Page fault executes when memory access error

• System call executes via trap to trigger kernel to execute request

• Multi-CPU systems can process interrupts concurrently
• If operating system designed to handle it

• Used for time-sensitive processing, frequent, must be fast

13Copyright 2018 Silberschatz, Gavin & Gagne

Direct Memory Access

• Used to avoid programmed I/O (one byte at a time) for large data
movement

• Requires DMA controller
• Bypasses CPU to transfer data directly between I/O device and memory
• OS writes DMA command block into memory

• Source and destination addresses
• Read or write mode
• Count of bytes
• Writes location of command block to DMA controller
• Bus mastering of DMA controller – grabs bus from CPU

• Cycle stealing from CPU but still much more efficient
• When done, interrupts to signal completion

• Version that is aware of virtual addresses can be even more efficient -
DVMA

14Copyright 2018 Silberschatz, Gavin & Gagne

Six Step Process to Perform DMA Transfer

15Copyright 2018 Silberschatz, Gavin & Gagne

Application I/O Interface

• I/O system calls encapsulate device behaviors in generic classes
• Device-driver layer hides differences among I/O controllers from kernel
• New devices talking already-implemented protocols need no extra work
• Each OS has its own I/O subsystem structures and device driver

frameworks
• Devices vary in many dimensions

• Character-stream or block
• Sequential or random-access
• Synchronous or asynchronous (or both)
• Sharable or dedicated
• Speed of operation
• read-write, read only, or write only

16Copyright 2018 Silberschatz, Gavin & Gagne

A Kernel I/O Structure

17Copyright 2018 Silberschatz, Gavin & Gagne

Characteristics of I/O Devices

18Copyright 2018 Silberschatz, Gavin & Gagne

Characteristics of I/O Devices (Cont.)

• Subtleties of devices handled by device drivers

• Broadly I/O devices can be grouped by the OS into
• Block I/O

• Character I/O (Stream)

• Memory-mapped file access

• Network sockets

• For direct manipulation of I/O device specific characteristics, usually
an escape / back door
• Unix ioctl() call to send arbitrary bits to a device control register and data

to device data register

19Copyright 2018 Silberschatz, Gavin & Gagne

Block and Character Devices

• Block devices include disk drives
• Commands include read, write, seek

• Raw I/O, direct I/O, or file-system access

• Memory-mapped file access possible
• File mapped to virtual memory and clusters brought via demand paging

• DMA

• Character devices include keyboards, mice, serial ports
• Commands include get(), put()

• Libraries layered on top allow line editing

20Copyright 2018 Silberschatz, Gavin & Gagne

Network Devices

• Varying enough from block and character to have own interface

• Linux, Unix, Windows and many others include socket interface
• Separates network protocol from network operation

• Includes select() functionality

• Approaches vary widely (pipes, FIFOs, streams, queues, mailboxes)

21Copyright 2018 Silberschatz, Gavin & Gagne

Clocks and Timers

• Provide current time, elapsed time, timer

• Normal resolution about 1/60 second

• Some systems provide higher-resolution timers

• Programmable interval timer used for timings, periodic interrupts

• ioctl() (on UNIX) covers odd aspects of I/O such as clocks and
timers

22Copyright 2018 Silberschatz, Gavin & Gagne

Nonblocking and Asynchronous I/O

• Blocking - process suspended until I/O completed
• Easy to use and understand
• Insufficient for some needs

• Nonblocking - I/O call returns as much as available
• User interface, data copy (buffered I/O)
• Implemented via multi-threading
• Returns quickly with count of bytes read or written
• select() to find if data ready then read() or write() to transfer

• Asynchronous - process runs while I/O executes
• Difficult to use
• I/O subsystem signals process when I/O completed

23Copyright 2018 Silberschatz, Gavin & Gagne

Two I/O Methods

Synchronous Asynchronous

24Copyright 2018 Silberschatz, Gavin & Gagne

Vectored I/O

• Vectored I/O allows one system call to perform multiple I/O
operations

• For example, Unix readve() accepts a vector of multiple buffers to
read into or write from

• This scatter-gather method better than multiple individual I/O calls
• Decreases context switching and system call overhead

• Some versions provide atomicity
• Avoid for example worry about multiple threads changing data as reads / writes

occurring

25Copyright 2018 Silberschatz, Gavin & Gagne

Kernel I/O Subsystem

• Scheduling
• Some I/O request ordering via per-device queue
• Some OSs try fairness
• Some implement Quality Of Service (i.e. IPQOS)

• Buffering - store data in memory while transferring between devices
• To cope with device speed mismatch
• To cope with device transfer size mismatch
• To maintain “copy semantics”
• Double buffering – two copies of the data

• Kernel and user
• Varying sizes
• Full / being processed and not-full / being used
• Copy-on-write can be used for efficiency in some cases

26Copyright 2018 Silberschatz, Gavin & Gagne

Device-status Table

27Copyright 2018 Silberschatz, Gavin & Gagne

Sun Enterprise 6000 Device-Transfer Rates

28Copyright 2018 Silberschatz, Gavin & Gagne

Kernel I/O Subsystem

• Caching - faster device holding copy of data
• Always just a copy

• Key to performance

• Sometimes combined with buffering

• Spooling - hold output for a device
• If device can serve only one request at a time

• i.e., Printing

• Device reservation - provides exclusive access to a device
• System calls for allocation and de-allocation

• Watch out for deadlock

29Copyright 2018 Silberschatz, Gavin & Gagne

Error Handling

• OS can recover from disk read, device unavailable, transient write
failures
• Retry a read or write, for example

• Some systems more advanced – Solaris FMA, AIX
• Track error frequencies, stop using device with increasing frequency of retry-able errors

• Most return an error number or code when I/O request fails

• System error logs hold problem reports

30Copyright 2018 Silberschatz, Gavin & Gagne

I/O Protection

• User process may accidentally or purposefully attempt to disrupt
normal operation via illegal I/O instructions
• All I/O instructions defined to be privileged

• I/O must be performed via system calls
• Memory-mapped and I/O port memory locations must be protected too

31Copyright 2018 Silberschatz, Gavin & Gagne

Use of a System Call to Perform I/O

32Copyright 2018 Silberschatz, Gavin & Gagne

Kernel Data Structures

• Kernel keeps state info for I/O components, including open file tables,
network connections, character device state

• Many, many complex data structures to track buffers, memory
allocation, “dirty” blocks

• Some use object-oriented methods and message passing to
implement I/O
• Windows uses message passing

• Message with I/O information passed from user mode into kernel

• Message modified as it flows through to device driver and back to process

• Pros / cons?

33Copyright 2018 Silberschatz, Gavin & Gagne

UNIX I/O Kernel Structure

34Copyright 2018 Silberschatz, Gavin & Gagne

Power Management

• Not strictly domain of I/O, but much is I/O related

• Computers and devices use electricity, generate heat, frequently
require cooling

• OSes can help manage and improve use
• Cloud computing environments move virtual machines between servers

• Can end up evacuating whole systems and shutting them down

• Mobile computing has power management as first class OS aspect

35Copyright 2018 Silberschatz, Gavin & Gagne

Power Management (Cont.)

• For example, Android implements

• Component-level power management

• Understands relationship between components

• Build device tree representing physical device topology

• System bus -> I/O subsystem -> {flash, USB storage}

• Device driver tracks state of device, whether in use

• Unused component – turn it off

• All devices in tree branch unused – turn off branch

• Wake locks – like other locks but prevent sleep of device when lock is held

• Power collapse – put a device into very deep sleep

• Marginal power use

• Only awake enough to respond to external stimuli (button press, incoming call)

36Copyright 2018 Silberschatz, Gavin & Gagne

I/O Requests to Hardware Operations

• Consider reading a file from disk for a process:
• Determine device holding file

• Translate name to device representation

• Physically read data from disk into buffer

• Make data available to requesting process

• Return control to process

37Copyright 2018 Silberschatz, Gavin & Gagne

Life Cycle of An I/O Request

38Copyright 2018 Silberschatz, Gavin & Gagne

Intercomputer Communication

39Copyright 2018 Silberschatz, Gavin & Gagne

Performance

• I/O a major factor in system performance:
• Demands CPU to execute device driver, kernel I/O code

• Context switches due to interrupts

• Data copying

• Network traffic especially stressful

40Copyright 2018 Silberschatz, Gavin & Gagne

Improving Performance

• Reduce number of context switches

• Reduce data copying

• Reduce interrupts by using large transfers, smart controllers, polling

• Use DMA

• Use smarter hardware devices

• Balance CPU, memory, bus, and I/O performance for highest
throughput

• Move user-mode processes / daemons to kernel threads

41Copyright 2018 Silberschatz, Gavin & Gagne

Device-Functionality Progression

42Copyright 2018 Silberschatz, Gavin & Gagne

