
CSMC 412
Operating Systems

Prof. Ashok K Agrawala

Set 8

Feb 2019 1

Readers-Writers Problem

• A data set is shared among a number of concurrent processes
• Readers – only read the data set; they do not perform any updates
• Writers – can both read and write

• Problem – allow multiple readers to read at the same time
• Only one single writer can access the shared data at the same time

• Several variations of how readers and writers are considered – all
involve some form of priorities

• Shared Data
• Data set
• Semaphore rw_mutex initialized to 1
• Semaphore mutex initialized to 1
• Integer read_count initialized to 0

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 2

Readers-Writers Problem (Cont.)

• The structure of a writer process

do {

wait(rw_mutex);

...

/* writing is performed */

...

signal(rw_mutex);

} while (true);

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 3

Readers-Writers Problem (Cont.)

• The structure of a reader process
do {

wait(mutex);

read_count++;

if (read_count == 1)

wait(rw_mutex);

signal(mutex);

...

/* reading is performed */

...

wait(mutex);

read count--;

if (read_count == 0)

signal(rw_mutex);

signal(mutex);

} while (true);

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 4

Readers-Writers Problem Variations

• First variation – no reader kept waiting unless writer has
permission to use shared object

• Second variation – once writer is ready, it performs the write ASAP

• Both may have starvation leading to even more variations

• Problem is solved on some systems by kernel providing reader-
writer locks

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 5

Dining-Philosophers Problem

• Philosophers spend their lives alternating thinking and eating

• Don’t interact with their neighbors, occasionally try to pick up 2 chopsticks (one at a time) to eat
from bowl

• Need both to eat, then release both when done

• In the case of 5 philosophers

• Shared data

• Bowl of rice (data set)

• Semaphore chopstick [5] initialized to 1

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 6

Dining-Philosophers Problem Algorithm

• The structure of Philosopher i:
do {

wait (chopstick[i]);

wait (chopStick[(i + 1) % 5]);

// eat

signal (chopstick[i]);

signal (chopstick[(i + 1) % 5]);

// think

} while (TRUE);

• What is the problem with this algorithm?

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 7

Monitor Solution to Dining Philosophers

monitor DiningPhilosophers

{

enum { THINKING; HUNGRY, EATING) state [5] ;

condition self [5];

void pickup (int i) {

state[i] = HUNGRY;

test(i);

if (state[i] != EATING) self[i].wait;

}

void putdown (int i) {

state[i] = THINKING;

// test left and right neighbors

test((i + 4) % 5);

test((i + 1) % 5);

}

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 8

Solution to Dining Philosophers (Cont.)

void test (int i) {

if ((state[(i + 4) % 5] != EATING) &&

(state[i] == HUNGRY) &&

(state[(i + 1) % 5] != EATING)) {

state[i] = EATING ;

self[i].signal () ;

}

}

initialization_code() {

for (int i = 0; i < 5; i++)

state[i] = THINKING;

}

}

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 9

• Each philosopher i invokes the operations pickup() and putdown() in
the following sequence:

DiningPhilosophers.pickup(i);

EAT

DiningPhilosophers.putdown(i);

• No deadlock, but starvation is possible

Solution to Dining Philosophers (Cont.)

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 10

A Monitor to Allocate Single Resource
monitor ResourceAllocator

{

boolean busy;

condition x;

void acquire(int time) {

if (busy)

x.wait(time);

busy = TRUE;

}

void release() {

busy = FALSE;

x.signal();

}

initialization code() {

busy = FALSE;

}

}

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 11

Deadlocks

• System Model

• Deadlock Characterization

• Methods for Handling Deadlocks

• Deadlock Prevention

• Deadlock Avoidance

• Deadlock Detection

• Recovery from Deadlock

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 12

Objectives

• To develop a description of deadlocks, which prevent
sets of concurrent processes from completing their tasks

• To present a number of different methods for preventing
or avoiding deadlocks in a computer system

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 13

System Model

• System consists of resources

• Resource types R1, R2, . . ., Rm
CPU cycles, memory space, I/O devices

• Each resource type Ri has Wi instances.

• Each process utilizes a resource as follows:
• request

• use

• release

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 14

Deadlock Characterization

• Mutual exclusion: only one process at a time can use a resource

• Hold and wait: a process holding at least one resource is waiting
to acquire additional resources held by other processes

• No preemption: a resource can be released only voluntarily by
the process holding it, after that process has completed its task

• Circular wait: there exists a set {P0, P1, …, Pn} of waiting processes
such that P0 is waiting for a resource that is held by P1, P1 is
waiting for a resource that is held by P2, …, Pn–1 is waiting for a
resource that is held by Pn, and Pn is waiting for a resource that is
held by P0.

Deadlock can arise if four conditions hold simultaneously.

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 15

Deadlock with Mutex Locks

• Deadlocks can occur via system calls, locking, etc.

• Example
• mutex deadlock

• Semaphore deadlock

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 16

Resource-Allocation Graph

• V is partitioned into two types:
• P = {P1, P2, …, Pn}, the set consisting of all the processes in the system

• R = {R1, R2, …, Rm}, the set consisting of all resource types in the system

• request edge – directed edge Pi → Rj

• assignment edge – directed edge Rj → Pi

A set of vertices V and a set of edges E.

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 17

Resource-Allocation Graph (Cont.)
• Process

• Resource Type with 4 instances

• Pi requests instance of Rj

• Pi is holding an instance of Rj

Pi

Pi

Rj

Rj

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 18

Example of a Resource Allocation Graph

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 19

Resource Allocation Graph With A Deadlock

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 20

Graph With A Cycle But No Deadlock

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 21

Basic Facts

• If graph contains no cycles no deadlock

• If graph contains a cycle
• if only one instance per resource type, then deadlock

• if several instances per resource type, possibility of deadlock

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 22

Methods for Handling Deadlocks

• Ensure that the system will never enter a deadlock state:
• Deadlock prevention

• Deadlock avoidance

• Allow the system to enter a deadlock state and then recover

• Ignore the problem and pretend that deadlocks never occur in
the system; used by most operating systems, including UNIX

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 23

Deadlock Prevention

• Mutual Exclusion – not required for sharable resources (e.g., read-
only files); must hold for non-sharable resources

• Hold and Wait – must guarantee that whenever a process
requests a resource, it does not hold any other resources
• Require process to request and be allocated all its resources before it

begins execution, or allow process to request resources only when the
process has none allocated to it.

• Low resource utilization; starvation possible

Restrain the ways request can be made

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 24

Deadlock Prevention (Cont.)

• No Preemption –
• If a process that is holding some resources requests another resource that

cannot be immediately allocated to it, then all resources currently being held
are released

• Preempted resources are added to the list of resources for which the process
is waiting

• Process will be restarted only when it can regain its old resources, as well as
the new ones that it is requesting

• Circular Wait – impose a total ordering of all resource types, and
require that each process requests resources in an increasing order of
enumeration

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 25

Deadlock Example

/* thread one runs in this function */

void *do_work_one(void *param)
{

pthread_mutex_lock(&first_mutex);

pthread_mutex_lock(&second_mutex);

/** * Do some work */
pthread_mutex_unlock(&second_mutex);

pthread_mutex_unlock(&first_mutex);

pthread_exit(0);

}

/* thread two runs in this function */

void *do_work_two(void *param)
{

pthread_mutex_lock(&second_mutex);

pthread_mutex_lock(&first_mutex);

/** * Do some work */
pthread_mutex_unlock(&first_mutex);

pthread_mutex_unlock(&second_mutex);

pthread_exit(0);

}

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 26

Deadlock Example with Lock Ordering

void transaction(Account from, Account to, double amount)

{

mutex lock1, lock2;

lock1 = get_lock(from);

lock2 = get_lock(to);

acquire(lock1);

acquire(lock2);

withdraw(from, amount);

deposit(to, amount);

release(lock2);

release(lock1);

}

Transactions 1 and 2 execute concurrently. Transaction 1 transfers $25

from account A to account B, and Transaction 2 transfers $50 from account

B to account A

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 27

Deadlock Avoidance

• Simplest and most useful model requires that each process declare the
maximum number of resources of each type that it may need

• The deadlock-avoidance algorithm dynamically examines the resource-
allocation state to ensure that there can never be a circular-wait
condition

• Resource-allocation state is defined by the number of available and
allocated resources, and the maximum demands of the processes

Requires that the system has some additional a priori information available

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 28

Safe State

• When a process requests an available resource, system must decide if
immediate allocation leaves the system in a safe state

• System is in safe state if there exists a sequence <P1, P2, …, Pn> of ALL
the processes in the systems such that for each Pi, the resources that Pi

can still request can be satisfied by currently available resources +
resources held by all the Pj, with j < I

• That is:
• If Pi resource needs are not immediately available, then Pi can wait until all Pj

have finished

• When Pj is finished, Pi can obtain needed resources, execute, return allocated
resources, and terminate

• When Pi terminates, Pi +1 can obtain its needed resources, and so on

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 29

Basic Facts

• If a system is in safe state no deadlocks

• If a system is in unsafe state possibility of deadlock

• Avoidance ensure that a system will never enter an unsafe state.

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 30

Safe, Unsafe, Deadlock State

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 31

Avoidance Algorithms

• Single instance of a resource type
• Use a resource-allocation graph

• Multiple instances of a resource type
• Use the banker’s algorithm

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 32

Resource-Allocation Graph Scheme

• Claim edge Pi → Rj indicated that process Pj may request resource Rj;
represented by a dashed line

• Claim edge converts to request edge when a process requests a
resource

• Request edge converted to an assignment edge when the resource
is allocated to the process

• When a resource is released by a process, assignment edge
reconverts to a claim edge

• Resources must be claimed a priori in the system

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 33

Resource-Allocation Graph

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 34

Unsafe State In Resource-Allocation Graph

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 35

Resource-Allocation Graph Algorithm

• Suppose that process Pi requests a resource Rj

• The request can be granted only if converting the request edge
to an assignment edge does not result in the formation of a
cycle in the resource allocation graph

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 36

Banker’s Algorithm

• Multiple instances

• Each process must a priori claim maximum use

• When a process requests a resource it may have to wait

• When a process gets all its resources it must return them in a
finite amount of time

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 37

Data Structures for the Banker’s Algorithm

• Available: Vector of length m. If available [j] = k, there are k instances of
resource type Rj available

• Max: n x m matrix. If Max [i,j] = k, then process Pi may request at most k
instances of resource type Rj

• Allocation: n x m matrix. If Allocation[i,j] = k then Pi is currently
allocated k instances of Rj

• Need: n x m matrix. If Need[i,j] = k, then Pi may need k more instances of
Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Let n = number of processes, and m = number of resources types.

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 38

Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively.
Initialize:

Work = Available
Finish [i] = false for i = 0, 1, …, n- 1

2. Find an i such that both:
(a) Finish [i] = false
(b) Needi Work
If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 39

Resource-Request Algorithm for Process Pi

Requesti = request vector for process Pi. If Requesti [j] = k then process
Pi wants k instances of resource type Rj

1. If Requesti Needi go to step 2. Otherwise, raise error condition, since process
has exceeded its maximum claim

2. If Requesti Available, go to step 3. Otherwise Pi must wait, since resources
are not available

3. Pretend to allocate requested resources to Pi by modifying the state as follows:
Available = Available – Requesti;

Allocationi = Allocationi + Requesti;

Needi = Needi – Requesti;

If safe the resources are allocated to Pi

If unsafe Pi must wait, and the old resource-allocation state is restored

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 40

Example of Banker’s Algorithm

• 5 processes P0 through P4;

3 resource types:

A (10 instances), B (5instances), and C (7 instances)

• Snapshot at time T0:

Allocation Max Available

A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 41

Example (Cont.)
• The content of the matrix Need is defined to be Max – Allocation

Need

A B C

P0 7 4 3

P1 1 2 2

P2 6 0 0

P3 0 1 1

P4 4 3 1

• The system is in a safe state since the sequence < P1, P3, P4, P2, P0> satisfies
safety criteria

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 42

Example: P1 Request (1,0,2)

• Check that Request Available (that is, (1,0,2) (3,3,2) true

Allocation Need Available

A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0

P1 3 0 2 0 2 0

P2 3 0 2 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1

• Executing safety algorithm shows that sequence < P1, P3, P4, P0,
P2> satisfies safety requirement

• Can request for (3,3,0) by P4 be granted?

• Can request for (0,2,0) by P0 be granted?

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 43

Deadlock Detection

• Allow system to enter deadlock state

• Detection algorithm

• Recovery scheme

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 44

Single Instance of Each Resource Type

• Maintain wait-for graph
• Nodes are processes

• Pi → Pj if Pi is waiting for Pj

• Periodically invoke an algorithm that searches for a cycle in the
graph. If there is a cycle, there exists a deadlock

• An algorithm to detect a cycle in a graph requires an order of n2

operations, where n is the number of vertices in the graph

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 45

Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 46

Several Instances of a Resource Type

• Available: A vector of length m indicates the number of available
resources of each type

• Allocation: An n x m matrix defines the number of resources of each
type currently allocated to each process

• Request: An n x m matrix indicates the current request of each
process. If Request [i][j] = k, then process Pi is requesting k more
instances of resource type Rj.

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 47

Detection Algorithm

1. Let Work and Finish be vectors of length m and n, respectively
Initialize:

(a) Work = Available

(b) For i = 1,2, …, n, if Allocationi 0, then
Finish[i] = false; otherwise, Finish[i] = true

2. Find an index i such that both:
(a) Finish[i] == false

(b) Requesti Work

If no such i exists, go to step 4

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 48

Detection Algorithm (Cont.)

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish[i] == false, for some i, 1 i n, then the system is in deadlock state.
Moreover, if Finish[i] == false, then Pi is deadlocked

Algorithm requires an order of O(m x n2) operations

to detect whether the system is in deadlocked state

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 49

Example of Detection Algorithm

• Five processes P0 through P4; three resource types
A (7 instances), B (2 instances), and C (6 instances)

• Snapshot at time T0:

Allocation Request Available

A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

• Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for
all i

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 50

Example (Cont.)

• P2 requests an additional instance of type C
Request

A B C
P0 0 0 0
P1 2 0 2
P2 0 0 1
P3 1 0 0
P4 0 0 2

• State of system?
• Can reclaim resources held by process P0, but insufficient

resources to fulfill other processes; requests
• Deadlock exists, consisting of processes P1, P2, P3, and P4

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 51

Detection-Algorithm Usage

• When, and how often, to invoke depends on:
• How often a deadlock is likely to occur?

• How many processes will need to be rolled back?
• one for each disjoint cycle

• If detection algorithm is invoked arbitrarily, there may be
many cycles in the resource graph and so we would not be
able to tell which of the many deadlocked processes
“caused” the deadlock.

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 52

Recovery from Deadlock: Process Termination

• Abort all deadlocked processes

• Abort one process at a time until the deadlock cycle is eliminated

• In which order should we choose to abort?
1. Priority of the process

2. How long process has computed, and how much longer to completion

3. Resources the process has used

4. Resources process needs to complete

5. How many processes will need to be terminated

6. Is process interactive or batch?

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 53

Recovery from Deadlock: Resource Preemption

• Selecting a victim – minimize cost

• Rollback – return to some safe state, restart process for that state

• Starvation – same process may always be picked as victim,
include number of rollback in cost factor

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 54

