CMSC 420:Fall 2019 Dave Mount

Practice Problems for the Final Exam

Final Exam will be in class on Wed, Dec 11, 8:00-10:00am. The exam will be closed-book,
closed-notes, but you will be allowed & sheets of notes, front and back (handwritten or typeset,
your choice). Please plan to bring your university ID with you during the exam.

Disclaimer: This just reflects the material since the second midterm. These practice problems
have been extracted from old homework assignments and exams. Material changes from semester to
semester. These do not necessarily reflect the actual coverage, difficulty, or length of the midterm
exam.

Problem 1. Since the exam is comprehensive, please look over all the old homework assignments,
exams, and practice problems.

Problem 2. Recall the buddy system of allocating blocks of memory (see Fig. 1). Throughout
this problem you may use the following standard bit-wise operators:

& bit-wise “and” | bit-wise “or”
~ bit-wise “exclusive-or” ~ bit-wise “complement”
<< left shift (filling with zeros) | >> right shift (filling with zeros)

You may also assume that you have access to a function bitMask (k), which returns a binary
number whose k lowest-order bits are all 1’s. For example bitMask(3) = 1115, = 7.

Level 0 1 2 3 4 5 6 7 8 9 101112131415

4 [0 |
310 — |8 —= |
N N
2 |0 |4 |8 12 |
/ N /N /

N/
2

1 {0 | |4 6 [8 Jio 12 14 |
ANAN AN AN ANWARWAWAY
o [o]1]2]3]4]5]6]7]8]9]10]11]12]13]14[15]

Figure 1: Buddy relatives.

Present a short (one-line) expression for each of the following functions in terms of the above
bit-wise functions:

(i) boolean isValid(int k, int x): True if and only if x > 0 a valid starting address
for a buddy block at level £ > 0.

(ii) int sibling(int k, int x): Given a valid buddy block of level £ > 0 starting at
address x, returns the starting address of its sibling.

(iii) int parent(int k, int x): Given a valid buddy block of level £ > 0 starting at
address x, returns the starting address of its parent at level k + 1.

(iv) int left(int k, int x): Given a valid buddy block of level k > 1 starting at address
x, returns the starting address of its left child at level k — 1.

(v) int right(int k, int x): Given a valid buddy block of level £ > 1 starting at address
x, returns the starting address of its right child at level k — 1.

Problem 3. Suppose you have a large span of memory, which starts at some address start and
ends at address end-1 (see Fig. 2). (The variables start and end are generic pointers of type
void*.) As the dynamic memory allocation method of Lecture 15, this span is subdivided
into blocks. The block starting at address p is associated with the following information:

e p.inUse is 1 if this block is in-use (allocated) and 0 otherwise (available)
e p.prevInUse is 1 if the block immediately preceeding this block in memory is in-use.
(It should be 1 for the first block.)

e p.size is the number of words in this block (including all header fields)

e p.size2 each available block has a copy of the size stored in its last word, which is

located at address p + p.size - 1.

(For this problem, we will ignore the available-list pointers p.prev and p.next.)

In class, we said that in real memory-allocation systems, blocks cannot be moved, because they
may contain pointers. Suppose, however, that the blocks are movable. Present pseudo-code
for a function that compacts memory by copying all the allocated blocks to a single contiguous
span of blocks at the start of the memory span (see Fig. 2). Your function compress(voidx
start, voidx* end) should return a pointer to the head of the available block at the end.
Following these blocks is a single available block that covers the rest of the memory’s span.

start —l ond
3 2 2 S
Initial:] = N) 2 B | = S
S ST [SIRES =
o ~ o ~i ~ [«
; :‘ 50 e 2(} e 80 vle 20 30 wle 50 _I
compact (sté;t , end) """""""""""""" i
: : - return
. =
S I o
[=] = = —
= =] bl Rl
— — =)
fe-20--ofe-- 20w 30 oo 180 o

Figure 2: Memory compactor.

To help copy blocks of memory around, you may assume that you have access to a function
void* memcpy(void* dest, void* source, int num), which copies num words of memory

from the address source to the address dest.

