
CMSC 420
Data Structures1

David M. Mount
Department of Computer Science

University of Maryland
Fall 2019

1 Copyright, David M. Mount, 2019, Dept. of Computer Science, University of Maryland, College Park, MD,
20742. These lecture notes were prepared by David Mount for the course CMSC 420, Data Structures, at the
University of Maryland. Permission to use, copy, modify, and distribute these notes for educational purposes and
without fee is hereby granted, provided that this copyright notice appear in all copies.

Lecture Notes 1 CMSC 420

Lecture 1: Course Introduction and Background

Algorithms and Data Structures: The study of data structures and the algorithms that ma-
nipulate them is among the most fundamental topics in computer science. Most of what
computer systems spend their time doing is storing, accessing, and manipulating data in one
form or another. Some examples from computer science include:

Information Retrieval: List the 10 most informative Web pages on the subject of “how to
treat high blood pressure?” Identify possible suspects of a crime based on fingerprints or
DNA evidence. Find movies that a Netflix subscriber may like based on the movies that
this person has already viewed. Find images on the Internet containing both kangaroos
and horses.

Geographic Information Systems: How many people in the USA live within 25 miles of
the Mississippi River? List the 10 movie theaters that are closest to my current location.
If sea levels rise 10 meters, what fraction of Florida will be under water?

Compilers: You need to store a set of variable names along with their associated types.
Given an assignment between two variables we need to look them up in a symbol table,
determine their types, and determine whether it is possible to cast from one type to the
other).

Networking: Suppose you need to multicast a message from one source node to many other
machines on the network. Along what paths should the message be sent, and how can
this set of paths be determined from the network’s structure?

Computer Graphics: Given a virtual reality system for an architectural building walk-
through, what portions of the building are visible to a viewer at a particular location?
(Visibility culling)

In many areas of computer science, much of the content deals with the questions of how to
store, access, and manipulate the data of importance for that area. In this course we will
deal with the first two tasks of storage and access at a very general level. (The last issue of
manipulation is further subdivided into two areas, manipulation of numeric or floating point
data, which is the subject of numerical analysis, and the manipulation of discrete data, which
is the subject of discrete algorithm design.) An good understanding of data structures is
fundamental to all of these areas.

What is a data structure? Whenever we deal with the representation of real world objects in
a computer program we must first consider a number of issues:

Modeling: the manner in which objects in the real world are modeled as abstract mathe-
matical entities and basic data types,

Operations: the operations that are used to store, access, and manipulate these entities and
the formal meaning of these operations,

Representation: the manner in which these entities are represented concretely in a com-
puter’s memory, and

Algorithms: the algorithms that are used to perform these operations.

Note that the first two items above are essentially mathematical in nature, and deal with
the “what” of a data structure, whereas the last two items involve the implementation issues
and the “how” of the data structure. The first two essentially encapsulate the essence of

Course Introduction 2 CMSC 420

an abstract data type (or ADT). In contrast the second two items, the concrete issues of
implementation, will be the focus of this course.

For example, you are all familiar with the concept of a stack from basic programming classes.
This a sequence of objects (of unspecified type). Objects can be inserted into the stack
by pushing and removed from the stack by popping. The pop operation removes the last
unremoved object that was pushed. Stacks may be implemented in many ways, for example
using arrays or using linked lists. Which representation is the fastest? Which is the most
space efficient? Which is the most flexible? What are the tradeoffs involved with the use of
one representation over another? In the case of a stack, the answers are all rather mundane.
However, as data structures grow in complexity and sophistication, the answers are far from
obvious.

In this course we will explore a number of different data structures, study their implemen-
tations, and analyze their efficiency (both in time and space). One of our goals will be to
provide you with the tools and design principles that will help you to design and implement
your own data structures to solve your own data storage and retrieval problems efficiently.

Course Overview: In this course we will consider many different abstract data types and various
data structures for implementing each of them. There is not always a single “best” data
structure for a given task. For example, there are many common sorting algorithms: Bubble-
Sort is easy to code but slow, Quick-Sort is very fast but not stable, Merge-Sort is stable but
needs additional memory, and Heap-Sort needs no additional memory but is hard to code
(relative to Quick-Sort). It will be important for you, as a designer of the data structure, to
understand each structure well enough to know the circumstances where one data structure
is to be preferred over another.

How important is the choice of a data structure? There are numerous examples from all areas
of computer science where a relatively simple application of good data structure techniques
resulted in massive savings in computation time and, hence, money.

Perhaps a more important aspect of this course is a sense of how to design new data structures,
how to implement these designs, and how to evaluate how good your design is. The data
structures we will cover in this course have grown out of the standard applications of computer
science. But new applications will demand the creation of new domains of objects (which we
cannot foresee at this time) and this will demand the creation of new data structures. It will
fall on the students of today to create these data structures of the future. We will see that
there are a few important elements which are shared by all good data structures. We will
also discuss how one can apply simple mathematics and common sense to quickly ascertain
the weaknesses or strengths of one data structure relative to another.

Our Approach: We will consider the design of data structures from two different perspectives:
theoretical and practical. Our theoretical analysis of data structures will be similar in style
to the approach taken in algorithms courses (such as CMSC 351). The emphasis will be
on deriving asymptotic (so called, “big-O”) bounds on the space, query time, and cost of
operations for a given data structure. On the practical side, you will be writing programs
to implement a number of classical data structures. This will acquaint you with the skills
needed to develop clean designs and debug them.

The remainder of the lecture will review some material from your earlier algorithms course,
which hopefully you still remember.

Course Introduction 3 CMSC 420

Algorithmics: Review material. Please be sure you are familiar with this.

It is easy to see that the topics of algorithms and data structures cannot be separated since
the two are inextricably intertwined. So before we begin talking about data structures, we
must begin with a quick review of the basics of algorithms, and in particular, how to measure
the relative efficiency of algorithms. The main issue in studying the efficiency of algorithms
is the amount of resources they use, usually measured in either the space or time used. There
are usually two ways of measuring these quantities. One is a mathematical analysis of the
general algorithm being used, called an asymptotic analysis, which can capture gross aspects
of efficiency for all possible inputs but not exact execution times. The second is an empirical
analysis of an actual implementation to determine exact running times for a sample of specific
inputs, but it cannot predict the performance of the algorithm on all inputs. In class we will
deal mostly with the former, but the latter is important also.2

For now let us concentrate on running time. (What we are saying can also be applied to
space, but space is somewhat easier to deal with than time.) Given a program, its running
time is not a fixed number, but rather a function. For each input (or instance of the data
structure), there may be a different running time. Presumably as input size increases so does
running time, so we often describe running time as a function of input/data structure size
n, denoted T (n). We want our notion of time to be largely machine-independent, so rather
than measuring CPU seconds, it is more common to measure basic “steps” that the algorithm
makes (e.g. the number of statements executed or the number of memory accesses). This will
not exactly predict the true running time, since some compilers do a better job of optimization
than others, but its will get us within a small constant factor of the true running time most
of the time.

Even measuring running time as a function of input size is not really well defined, because,
for example, it may be possible to sort a list that is already sorted, than it is to sort a list that
is randomly permuted. For this reason, we usually talk about worst case running time. Over
all possible inputs of size n, what is the maximum running time. It is often more reasonable
to consider expected case running time where we average over all inputs of size n. When
dealing with randomized algorithms (where the execution depends on random choices), it is
common to focus on the worst case over all inputs (of a given size) and expected case over
all random choices. Another example that is often used in data structure design is called
amortized analysis, where the average is taken over a series of operation. Any one operation
might be costly, but the overall average in any long sequence cannot be. We will usually do
worst-case analysis, except where it is clear that the worst case is significantly different from
the expected case.

Review of Asymptotics: There are particular bag of tricks that most algorithm analyzers use
to study the running time of algorithms. For this class we will try to stick to the basics. The
first element is the notion of asymptotic notation. Suppose that we have already performed
an analysis of an algorithm and we have discovered through our worst-case analysis that

T (n) = 13n3 + 42n2 + 2n log n+ 3
√
n.

(This function was just made up as an illustration.) Unless we say otherwise, assume that
logarithms are taken base 2. When the value n is small, we do not worry too much about

2Of course, there is another aspect of complexity, that we will not discuss at length (but needs to be considered)
and that is the software-engineering issues regarding the complexity of programming a correct implementation.

Course Introduction 4 CMSC 420

this function since it will not be too large, but as n increases in size, we will have to worry
about the running time. Observe that as n grows larger, the size of n3 is much larger than n2,
which is much larger than n log n (note that 0 < log n < n whenever n > 1) which is much
larger than

√
n. Thus the n3 term dominates for large n. Also note that the leading factor 13

is a constant. Such constant factors can be affected by the machine speed, or compiler, so we
may ignore it (as long as it is relatively small). We could summarize this function succinctly
by saying that the running time grows “roughly on the order of n3”, and this is written
notationally as T (n) = O(n3). Informally, the statement T (n) = O(n3) means, “when you
ignore constant multiplicative factors, and consider the leading (i.e. fastest growing) term,
you get n3”. This intuition can be made more formal, however. We refer you back to your
algorithms course for how to do this.

Digression about Notation: Let us pause for a moment to explain the “=” in the assertion
that “T (n) = O(n3)”. It is not being used in the usual mathematical sense. By definition,
“a = b” implies “b = a”. The use of “=” in asymptotic notation just a lazy way of saying
T (n) “is” on the order of n3. It would not make sense to express this as O(n3) = T (n).
A more proper way of writing this expression would be “T (n) ∈ O(n3)”, that is T (n)
is a member of the set of functions whose asymptotic growth rate is at most n3. But,
most of the world simply uses the “=” notation, and so shall we.

Common Complexity Classes: To get a feeling what various growth rates mean here is a sum-
mary. In data structures, our objective is usually to answer a query in time that is less than
the size of the data set n, so in this class we will be primarily interested in the following
complexity classes, which are collectively called sublinear.

T (n) = O(1) : Great. This means your algorithm takes only constant time. You can’t beat
this. (Example: Popping a stack.)

T (n) = O(α(n)) : The function α is the inverse of the famous Ackerman’s function. Acker-
man’s function grows insanely rapidly, and hence its inverse grows insanely slowly. How
slowly? If n is less than the number of atoms in the visible universe, then α(n) ≤ 5.
Thus, α(n) is a constant “for all practical purposes”. However, formally it is not a con-
stant. In the limit, as n tends to infinity, α(n) also tends to infinity. It just gets there
extremely slowly! Believe or not, there are actually a number of data structures whose
running times are O(α(n)), but they are not O(1). (Example: Disjoint set union-find.)

T (n) = O(log log n) : Super fast! For most practical purposes, this is as fast as a constant
time. (Example: Van Emde Boas trees.)

T (n) = O(log n) : Very good. This is called logarithmic time, and is the “gold standard”
for data structures based on making binary comparisons. It is the running time of
binary search and the height of a balanced binary tree. This is about the best that
can be achieved for data structures based on binary trees. Note that log 1000 ≈ 10 and
log 1, 000, 000 ≈ 20 (log’s base 2). (Example: Binary search.)

T (n) = O((log n)k) : (where k is a constant). This is called polylogarithmic time. Not bad,
when simple logarithmic time is not achievable. We will often write this as O(logk n).
(Example: Orthogonal range searching, that is, counting the number of points in a
d-dimensional axis-parallel rectangle.)

T (n) = O(np) : (where 0 < p < 1 is a constant). An example is O(
√
n). This is slower than

polylogarithmic (no matter how big k is or how small p), but is still faster than linear

Course Introduction 5 CMSC 420

q

(a) (b) (c)

Fig. 1: (a) A point set, (b) orthogonal range search query, and (c) nearest-neighbor query.

time, which is acceptable for data structure use. (Example: Nearest neighbor searching
in d-dimensional space.)

In an algorithms course, it is more common to focus on running times that grow at least
linearly. These are described below.

T (n) = O(n) : This is called linear time. It is about the best that one can hope for if your
algorithm has to look at all the data. (Example: Enumerating the elements of a linked
list.)

T (n) = O(n log n) : This one is famous, because this is the time needed to sort a list of
numbers by means of comparisons. It arises in a number of other problems as well.
(Example: Sorting, of course.)

T (n) = O(n2) : Quadratic time. Okay if n is in the thousands, but rough when n gets into
the millions. (Example: 3Sum: Given a list of n numbers (positive and negative), do
any three sum to zero?)

T (n) = O(nk) : (where k is a constant). This is called polynomial time. Practical if k is not
too large. (Example: Matrix multiplication.)

T (n) = O(2n), O(nn), O(n!) : Exponential time. Algorithms taking this much time are only
practical for the smallest values of n (e.g. n ≤ 10 or maybe n ≤ 20). (Example: Your
favorite NP-complete problem. . . as far as anyone knows!)

Lecture 2: Some Basic Data Structures

Note: In addition to the material presented here, in class we also presented and discussed a Fun
Challenge Problem. Please check out the PowerPoint version of the slides for information about this.
This material will not be covered on exams, but it might be the topic of a homework assignment.

Basic Data Structures: Before we go into our coverage of complex data structures, it is good to
remember that in many applications, simple data structures are sufficient. This is true, for
example, if the number of data objects is small enough that efficiency is not so much an issue,
and hence a complex data structure is not called for. In many instances where you need a
data structure for the purposes of prototyping an application, these simple data structures
are quick and easy to implement.

Abstract Data Types: An important element to good data structure design is to distinguish
between the functional definition of a data structure and its implementation. By an abstract

Basic Data Structures 6 CMSC 420

data structure (ADT) we mean a set of objects and a set of operations defined on these
objects. For example, a stack ADT is a structure which supports operations such as push
and pop (whose definition you are no doubt familiar with). A stack may be implemented in
a number of ways, for example using an array or using a linked list. An important aspect of
object-oriented languages, like Java, is the capability to present the user of a data structure
with an abstract view of its function without revealing the methods with which it operates.
Java’s interface/implements mechanism is an example. To a large extent, this course will be
concerned with the various approaches for implementing simple abstract data types and the
tradeoffs between these options.

Linear Lists: A linear list or simply list is perhaps the most basic of abstract data types. A list
is simply an ordered sequence of elements 〈a1, a2, . . . , an〉. We will not specify the actual type
of these elements here, since it is not relevant to our presentation. (In Java this would be
handled through generics.)

The size or length of such a list is n. Here is a very simple, minimalist specification of a list:

init(): Initialize an empty list

get(i): Returns element ai

set(i,x): Sets the ith element to x

length(): Returns the number of elements currently in the list

insert(i,x): Insert element x just prior to element ai (causing the index of all subsequent
items to be increased by one).

delete(i): Delete the ith element (causing the indices of all subsequent elements to be
decreased by 1).

I am sure that you can imagine many other useful operations, for example searching the list
for an item, splitting or concatenating lists, generating an iterator object for enumerating the
elements of the list.

There are a number of possible implementations of lists. The most basic question is whether
to use sequential allocation (meaning storing the elements sequentially in an array) or linked
allocation (meaning storing the elements in a linked list). (See Fig. 2.) With linked allocation
there are many other options to be considered. Is the list singly linked (each node pointing
to its successor in the list), doubly linked (each node pointing to both its successor and
predecessor), circularly linked (with the last node pointing back to the first)?

Sequential allocation

Singly linked list

Doubly linked list

a1
a2
a3
a4

a1 a2 a3 a4head

tail

a1

head

tail

a2 a3 a4

Fig. 2: Common types of list allocation.

Basic Data Structures 7 CMSC 420

Stacks, Queues, and Deques: There are a few very special types of lists. The most well known
are of course stacks and queues. We’ll also discuss an interesting generalization, called the
deque.

Stack: Supports insertion (push) and removal (pop) from only one end of the list, called the
stack’s top. Stacks are among the most widely used of all data structures, and we will
see many applications of them throughout the semester.

Queue: Supports insertion (called enqueue) and removal (called dequeue), each from opposite
ends of the list. The end where insertion takes place is called the tail, and the end where
removals occur is called the head.

Deque: This data structure is a combination of stacks and queues, called a double-ended
queue or deque for short. It supports insertions and removals from either end of the list.

The name is actually a play on words. It is written like “d-e-que” for a “double-ended
queue”, but it is pronounced like deck, because it behaves like a deck of cards, since you
can deal off the top or the bottom.

Both stacks and queues can be implemented efficiently as arrays or as linked lists. Note
that when a queue is implemented using sequential allocation (as an array) the head and tail
pointers chase each other around the array. When each reaches the end of the array it wraps
back around to the beginning of the array.

Dynamic Storage Reallocation: When sequential allocation is used for stacks and queues, an
important issue is what to do when an attempt is made to insert an element into an array
that is full. When this occurs, the usual practice is the allocate a new array of twice the
size as the existing array, and then copy the elements of the old array into the new one. For
example, if the initial stack or queue has 8 elements, then when an attempt is made to insert
a 9th element, we allocate an array of size 16, copy the existing 8 elements to this new array,
and then add the new element. When we fill this up, we then allocate an array of size 32,
and when it is filled an array of size 64, and so on.

You might wonder, why do we double the array size? Why not, instead, just allocate an array
with 100 additional elements? Alternatively, why not be more aggressive and square the size
of the array (jumping from 8 to 64 elements)?

If you have no additional knowledge regarding the access sequence, there is a good reason
why increasing the size by a constant factor is the “right” thing to do. (Doubling itself is not
essential. You could increase the size by another factor, such as 1.5 or 3.0, but the increase
should be by a constant factor.)

This reason is related to the notion of amortization, which we introduced in the previous
lecture. Remember that amortization means that, rather than reporting the cost of single
operation, the cost of maintaining the data structure is averaged over a long sequence of
operations. In our case, many operations are very “cheap”, involving just a adding or removing
one element from the end of the array. But, when reallocation is performed, the cost of that
one operation is very high. But in order to get to a reallocation, we must have performed a
significant number of “cheap” insertions, where no reallocation was needed. Thus, the average
cost is low.

For example, in Fig. 3, we have a stack array with capacity of 8, which initially contains 4
elements. The next four push operations are all cheap, each taking just a constant amount of

Basic Data Structures 8 CMSC 420

time, but the fifth push causes us to allocate an array of size 16. The total work for this last
operation is 17 (16 to pay for the allocation of the new array, and 1 more for the actual push
operation). In an amortized analysis, we will “pretend” that each of the cheap operations
takes 5 time units, rather than the actual 1 unit. We’ll call this the adjusted cost. This is
just an accounting trick. We save the additional 4 units, which we call work tokens in a bank
account. Note that when we add the final element, we have enough in our bank account to
pay for the reallocation. Thus, we can say that the amortized cost of each operation is 5
units, that is, a constant per operation. (You will notice that the sum of the amortized costs
of 25 in our figure is a bit higher than the sum of the actual costs of 21. This is because we
will need the extra 4 work tokens to pay for the next reallocation, when we jump from 16 to
32.)

+4+4+4+4

1 11 171Actual cost:

Work tokens:

Adjusted cost: 5 5 5 5 5

Total = 21

Total = 25

8

16

Amortized Cost = 25/5 = 5

Fig. 3: Doubling reallocation.

The following theorem makes this intuition formal.

Theorem: When doubling reallocation is used for stack/queue/deque operations, the amor-
tized cost of each operation is O(1).

Proof: Let us do the proof for stacks, since the generalization to the other structures is
straightforward. Let us also assume that the initial allocation is of constant size (e.g.,
we always start with capacity for 8 elements). The initialization takes O(1) time.

We will use a charging argument to show that the amortized cost is constant per opera-
tion. In particular, we will “amortize” the cost of reallocation among the push operations
that came just before it.

Let n denote the current size of the array allocated for the stack. Each time we do a
push operation, we perform the operation and put 4 work tokens in a bank account. The
operation itself takes only a constant time, and the 4 work tokens will be saved up for
later. Now, suppose that the latest push operation causes us to run out of space in the
array. We allocate a new array of size 2n, which must be initialized and elements copied
to it. Let’s say that the actual cost of performing this work is 2n. We want to pay for
this work from our bank account. Have we accumulated enough funds to do so? Well,
the last time we reallocated we went from an array of size n/2 to an array of size n. In
order to overflow this array, we must have performed at least n− n/2 = n/2 additional
push operations. Since each push allows us to place 4 tokens in our bank account, we
have accumulated at least 4(n/2) = 2n tokens. Thus, we have enough to pay for the
cost of reallocation.

Basic Data Structures 9 CMSC 420

Would this work if instead we had added 100 additional elements? The answer is no. If this
list was really large (say, millions), the reallocations are expensive (on the order of millions),
but the accumulated work tokens would be much smaller (on the order of hundreds). So,
our bank account would be way too small to pay for the actual work done (and both our
accountant and us would wind up in math prison!)

On the other hand, what if we increased by a much larger amount, say squaring the current
array size. The good news is that we would definitely have enough tokens to pay for the
reallocation, but this is wasteful. For example, if our final insertion caused our array to go
from 1,000 entries to 1,001, the doubling scheme would generate allocate 2,000 entries, while
squaring would result in 1,000,000 entries!

As mentioned above, it is not necessary to double. The above proof can be modified to show
that any scheme that increases the array size by a constant factor c, where c > 1 will achieve
an O(1) amortized cost. The bigger you set c, the small the amortized cost (but the more
space is wasted).

Multilists and Sparse Matrices: Although lists are very basic structures, they can be combined
in numerous nontrivial ways. A multilist is a structure in which a number of lists are combined
to form a single aggregate structure. Java’s ArrayList is a simple example, in which a
sequence of lists are combined into an array structure. A more interesting example of this
concept is its use to represent a sparse matrix.

Recall from linear algebra that a matrix is a structure consisting of n rows and m columns,
whose entries are drawn from some numeric field, say the real numbers. In practice, n and m
can be very large, say on the order of tens to hundred of thousands. For example, a physicist
who wants to study the dynamics of a galaxy might model the n stars of the galaxy using an
n × n matrix, where entry A[i, j] stores the gravitational force that star i exerts on star j.
The number of entries of such a matrix is n2 (and generally nm for an n×m matrix). This
may be impractical if n is very large.

The physicist knows that most stars are so far apart from each other that (due to the inverse
square law of gravity), only a small number of matrices are significant, and all the others could
be set to zero. For example, n = 10, 000 but a star typically exerts a significant gravitational
pull on only its 20 nearest stellar neighbors, then only 20/10, 000 = 0.02% of the matrix
entries are nonzero. Such a matrix in which only a small fraction of the entries are nonzero
is called sparse.

We can use a multilist representation to store sparse matrices. The idea is to create 2n linked
lists, one for each row and one for each column. Each entry of each list stores five things, its
row and column index, its numeric value, and links to the next items in the current row and
current column (see Fig. 4). We will not discuss the technical details, but all the standard
matrix operations (such as matrix multiplication, vector-matrix multiplication, transposition)
can be performed efficiently using this representation.

Lecture 3: Rooted Trees and Binary Trees

Tree Definition and Notation: Trees and their variants are among the most fundamental data
structures. A tree is a special class of graph.3 The most general form of a tree, called a free

3Recall from your previous courses that a graph G = (V,E) consists of a finite set of nodes V and a finite set of
edges E. Each edge is a pair of nodes. In an undirected graph, the edge pairs are unordered, and in a directed graph,

Trees 10 CMSC 420

Matrix contents

0

15

0

77

85

0

22

0

0

0

0

39

67

99

0

0

0

1

2

3

Row

0 1 2 3

Column

1501

7703

2212

3923

8510 6730

9931

row col val

next in col
next in row

Node structure

0

1

2

3

0 1 2 3

Fig. 4: Sparse matrix representation using a multilist structure.

tree, is simply a connected, undirected graph that has no cycles (see Fig. 5(a)). An example
of a free tree is the minimum cost spanning tree (MST) of a graph.

Free tree (no root)

v1

v3

v2

v4

v6v7

v8

v5

v9

Rooted tree

v1

v3v2 v4

v6 v7 v8v5

v9 v10

r

T1 T2 Tk

root

leaves

(a) (b) (c)

Recursive definition

Fig. 5: Trees: (a) free tree, (b) rooted tree, (c) recursive definition.

Since we will want to use trees for applications in searching, it will be useful to assign some
sense of order and direction to our trees. This will be done by designating a special node,
called the root. In the same manner as a family tree, we think of the root as the ancestor of
all the other nodes in the tree, or equivalently, the other nodes are descendants of the root.
Nodes that have no descendants are called leaves (see Fig. 5(b)). All the others are called
internal nodes.

A rooted tree can be defined formally as follows. First, a single node is a rooted tree. Second,
given any set {T1, . . . , Tk} of one or more rooted trees, joining these trees together under a
common root node r is also a rooted tree (see Fig. 5(c)).

Since we will be dealing with rooted trees almost exclusively for the rest of the semester,
when we say “tree” we will mean “rooted tree.” We will use the term “free tree” otherwise.

There is a lot of notation involving trees. Most terms are easily understood from the family-
tree analogy. Each non-leaf node has one or more children, and except for the root, every

the edge pairs are ordered. An undirected graph is connected if there is path between any pair of nodes.

Trees 11 CMSC 420

node has a single parent. The degree of a node is the number children it has. Two nodes that
share the same parent are siblings of each other. Each node of the tree can be viewed as the
root of a subtree, consisting of this node an all of its descendants. (For example, referring
to Fig. 5(b), v7 and v8 are the children of v4. Nodes v2, v3, and v4 are siblings, and they
share v1 as their common parent. Node v6 has degree 2, and it is the root of a 3-node subtree
consisting of v6, v9 and v10.)

Although we have not specified a direction to the edges, it is natural to do so for rooted
trees. When the edges are directed away from the root, the tree is called an arborescence or
out-tree (see Fig. 6(a)). When they are directed in towards the root, the tree is called an
anti-arborescence or in-tree (see Fig. 6(c)).

Arborescence (Out-Tree) Anti-Arborescence (In-Tree)

v1

v3v2 v4

v6 v7 v8v5

v9 v10

(a) (c)

0v1

v3v2 v4

v6 v7 v8v5

v9 v10

1

2

3

Depth

Height = 3

(b)

Fig. 6: More notation involving trees.

The depth of a node in the tree is the length (number of edges) of the (unique) path from
the root to that node. Thus, the root is at depth 0. The height of a tree is the maximum
depth of any of its nodes (see Fig. 6(b)). For example, the tree of Fig. 5(b) is of depth 3, as
evidenced by nodes v9 and v10, which are at this depth. As we defined it, there is no special
ordering among the children of a node. When the ordering among a node’s is significant, it
is called an ordered tree.

Representing Rooted Trees: Rooted trees arise in many applications in which hierarchies exist.
Examples include computer file systems, hierarchically-based organizations (e.g., military and
corporate), documents and reports (volume→ chapter→ section . . . paragraph). There are a
number of ways of representing rooted trees. Later we will discuss specialized representations
that are tailored for special classes of trees (e.g., binary search trees), but for now let’s consider
how to represent a “generic” rooted out-tree. (In-trees are easier to represent, since each node
can just store a single pointer to its parent.) Out-trees (arborescences) are tricky because the
number of children a node has is not fixed.

We will present a widely-used representation, which has the feature that all nodes have the
same size, irrespective of the number of children the node has. This representation works for
ordered trees (where the siblings are ordered), but of course by ignoring the order information
it can be applied to unordered trees as well. In addition to storing whatever data about the
node that is pertinent to the application, each node stores two references (pointers), one
to the node’s first child and the other to its next sibling (see Fig. 7(a)). Let us call these
firstChild and nextSibling, respectively. Fig. 7(b) illustrates how the tree in Fig. 6(a)
would be represented using this technique. This is minimal representation. In practice, we

Trees 12 CMSC 420

(a) (b)

v1

v2 v3 v4

v5 v6

v9 v10

v7 v8

root

data

firstChild

nextSibling

Fig. 7: Standard (binary) representation of rooted trees.

may wish to add additional information. For example, each node could also include a reference
to its parent.

It is interesting to observe that this representation is itself a binary tree (defined below).

Binary Trees: Among rooted trees, by far the most popular in the context of data structures is
the binary tree. A binary tree is a rooted, ordered tree in which every non-leaf node has two
children, called left and right (see Fig. 8(a)). We allow for a binary tree to empty. (We will
see that, like the empty string, it is convenient to allow for empty trees.)

` m

(a) (b)

d

h i

e

j k

b c

f g

a

d

h i

b c

f

g

a

e d

h i

b c

f

g

a

e

(c)

Fig. 8: Binary trees: (a) standard definition, (b) full binary tree, (c) extended binary tree.

Binary trees can be defined more formally as follows. First, an empty tree is a binary tree.
Second, if TL and TR are two binary trees (possibly empty) then the structure formed by
making TL and TR the left and right children of a node is also a binary tree. TL and TR are
called the subtrees of the root. If both children are empty, then the resulting node is a leaf.
Note that, unlike standard rooted trees, there is a difference between a node that has just
one child on its left side as opposed to a node that has just one child on its right side. All the
definitions from rooted trees (parent, sibling, depth, height) apply as well to binary trees.

Allowing for empty subtrees can make coding tricky. In some cases, we would like to forbid
such binary trees. We say that a binary tree is full if every node has either zero children (a
leaf) or exactly two (an internal node). An example is shown in Fig. 8(b).

Another approach to dealing with empty subtrees is through a process called extension. This
is most easily understood in the context of the tree shown in Fig. 8(a). We extend the tree
by adding a special external node to replace all the empty subtrees at the bottom of the tree.

Trees 13 CMSC 420

The result is called a extended tree. (In Fig. 8(c) the external nodes are shown has squares.)
This has the effect of converting an arbitrary binary tree to a full binary tree.

Java Representation: The typical Java representation of a tree as a data structure is given
below. The data field contains the data for the node and is of some generic entry type E. The
left field is a pointer to the left child (or null if this tree is empty) and the right field is
analogous for the right child.

Binary Tree Node

class BinaryTreeNode <E> {

private E entry; // this node’s data

private BinaryTreeNode <E> left; // left child reference

private BinaryTreeNode <E> right; // right child reference

// ... remaining details omitted

}

As with our rooted-tree representation, this is a minimal representation. Perhaps the most
useful augmentation would be a parent link.

Binary trees come up in many applications. One that we will see a lot of this semester is
for representing ordered sets of objects, a binary search tree. Another is an expression tree,
which is used in compiler design in representing a parsed arithmetic exception (see Fig. 9).

Traversals: There are a number of natural ways of visiting or enumerating every node of a tree.
For rooted trees, the three best known are preorder, postorder, and (for binary trees) inorder.
Let T be a tree whose root is r and whose subtrees are T1, . . . , Tk for k ≥ 0. They are all
most naturally defined recursively. (Fig. 9 illustrates these in the context of an expression
tree.)

Preorder: Visit the root r, then recursively do a preorder traversal of T1, . . . , Tk.

Postorder: Recursively do a postorder traversal of T1, . . . , Tk and then visit r. (Note that
this is not the same as reversing the preorder traversal.)

Inorder: (for binary trees) Do an inorder traversal of TL, visit r, do an inorder traversal of
TR.

+

* -

/ Preorder: / * + a b c - d e

Postorder: a b + c * d e - /

Inorder: a + b * c / d - e
a b

c d e

Fig. 9: Expression tree for ((a+ b) ∗ c)/(d− e)) and common traversals.

These traversals are most easily coded using recursion. The code block below shows a possible
way of implementing the preorder traversal in Java. The procedure visit would depend on
the specific application. The algorithm is quite efficient in that its running time is proportional
to the size of the tree. That is, if the tree has n nodes then the running time of these traversal
algorithms are all O(n).

Trees 14 CMSC 420

Preorder Traversal

void preorder(BinaryTreeNode v)

{

if (v == null) return; // empty subtree - do nothing

visit(v); // visit (depends on the application)

preorder(v.left); // recursively visit left subtree

preorder(v.right); // recursively visit right subtree

}

These are not the only ways of traversing a tree. For example, another option would be
breadth-first, which visits the nodes level by level: “/ * - + c d e a b.” An interesting
question is whether a traversal uniquely determines the tree’s shape. The short answer is
no, but if you have an extended tree and you know which nodes are internal and which are
leaves (as is the case in the expression tree example from Fig. 9), then such a reconstruction
is possible. Think about this.

Extended Binary Trees: Let us explore a few basic combinatorial facts regarding extended bi-
nary trees. Consider an extended binary tree having n internal nodes. Can we predict how
many external nodes there will be? The answer is yes, and the number is n + 1. If you
draw a few extended trees, you can convince yourself of this. It is also easy to see this by
incrementally replacing an arbitrary external node with a triple consisting of an internal node
and two external children. Let’s provide a formal proof by induction. This sort of induction
is so common on binary trees, that it is worth going through this simple proof to see how
such proofs work in general.

Claim: An extended binary tree with n internal nodes has n+ 1 external nodes, and hence
2n+ 1 nodes altogether.

Proof: (by induction on the size of the tree) Let x(n) denote the number of external nodes
in a binary tree of n nodes. We want to show that for all n ≥ 0, x(n) = n+ 1.

The basis case is trivial. An extended tree with zero internal nodes has a single external
node, so x(0) = 1, which agrees with our formula.

Now let us consider the case of n ≥ 1. The induction hypothesis states that, for all
n′ < n, x(n′) = n′ + 1. Let nL and nR denote the number of internal nodes in the left
and right subtrees, respectively. Together with the root, these must sum to n, so we
have n = 1+nL+nR. By the induction hypothesis, the numbers of external nodes in the
left and right subtrees are x(nL) = nL + 1 and x(nR) = nR + 1. Putting this together,
we find that the total number of external nodes is

x(n) = x(nL) + x(nR) = (nL + 1) + (nR + 1) = (1 + nL + nR) + 1 = n+ 1,

as desired. Since there are n internal nodes and n+ 1 external nodes, the total number
is 2n+ 1.

The key “take-away” from this proof is that over half of the nodes in an extended binary tree
are leaf nodes. In fact, it is generally true that if the degree of a tree is two or greater, leaves
constitute the majority of the nodes.

Threaded Binary Trees: We have seen that extended binary trees provide one way to deal with
the null pointers in the nodes of a binary tree. In this section we will consider another rather
cute use of these pointers.

Trees 15 CMSC 420

Recall that binary tree traversals are naturally defined recursively. Therefore a straightfor-
ward implementation would require extra space to store the stack for the recursion. Is some
way to traverse the tree without this additional storage? The answer is yes, and the trick
is to employ each null pointer encode some additional information to aid in the traversal.
Each left-child null pointer stores a reference to the node’s inorder predecessor, and each
right-child null pointer stores a reference to the node’s inorder successor. The resulting rep-
resentation is called a threaded binary tree. (For example, in Fig. 10(a), we show a threaded
version of the tree in Fig. 8(b)).

(a) (b)

d

h i

b c

f

g

a

e

v

u

u

v

(c)

Fig. 10: A Threaded Tree.

We also need to add a special “mark bit” to each child link, which indicates whether the link
is a thread or a standard parent-child link. Let us consider how to do an inorder traversal in
a threaded-tree representation. Suppose that we are currently visiting a node u. How do we
find the inorder successor of u? First, if u’s right-child link is a thread, then we just follow
it (see Fig. 10(b)). Otherwise, we go the node’s right child, and then traverse left-child links
until reaching the bottom of the tree, that is a threaded link (see Fig. 10(c)).

Inorder Successor in a Threaded Tree

BinaryTreeNode inorderSuccessor(BinaryTreeNode v) {

BinaryTreeNode u = v.right; // go to right child

if (v.right.isThread) return u; // if thread , then done

while (!u.left.isThread) { // else u is right child

u = u.left; // go to left child

} // ... until hitting thread

return u;

}

For example, in Fig. 10(b), if we start at d, the thread takes us directly to a, which is d’s
inorder successor. In Fig. 10(c), if we start at a, then we follow the right-child link to b, and
then follow left-links until arriving at d, which is the inorder successor.

Threading is more of a “cute trick” than a common implementation technique with binary
trees. Nonetheless, it is representative of the number of clever ideas that have been developed
over the years for representing and processing binary trees.

Complete Binary Trees: We have discussed linked allocation strategies for rooted and binary
trees. Is it possible to allocate trees using sequential (that is, array) allocation? In general
it is not possible because of the somewhat unpredictable structure of trees (unless you are
willing to waste a lot of space). However, there is a very important case where sequential
allocation is possible.

Trees 16 CMSC 420

Complete Binary Tree: Every level of the tree is completely filled, except possibly the
bottom level, which is filled from left to right.

It is easy to verify that a complete binary tree of height h has between 2h and 2h+1 − 1
nodes, implying that a tree with n nodes has height O(log n) (see Fig. 11). (We leave these
as exercises involving geometric series.)

d

i

b c

fe

a

h j k `

g

a b c d e f g h i j k m

0 1 2 3

1

2 3

4 5 6

8 10 12

7

9 11

4 5 6 7 8 9 10 11 12

m
13

`

13

Fig. 11: A complete binary tree.

The extreme regularity of complete binary trees allows them to be stored in arrays, so no
additional space is wasted on pointers. Consider an indexing of nodes of a complete tree from
1 to n in increasing level order (so that the root is numbered 1 and the last leaf is numbered
n). Observe that there is a simple mathematical relationship between the index of a node
and the indices of its children and parents. In particular:

leftChild(i): if (2i ≤ n) then 2i, else null.

rightChild(i): if (2i+ 1 ≤ n) then 2i+ 1, else null.

parent(i): if (i ≥ 2) then bi/2c, else null.

As an exercise, see if you can also compute the sibling of node i and the depth of node i.

Observe that the last leaf in the tree is at position n, so adding a new leaf simply means
inserting a value at position n+1 in the list and updating n. Since arrays in Java are indexed
from 0, omitting the 0th entry of the matrix is a bit of wastage. Of course, the above rules
can be adapted to work even if we start indexing at zero, but they are not quite so simple.

Lecture 4: Binary Search Trees

Searching: Searching is among the most fundamental problems in data structure design. We are
storing a set of entries {e1, . . . , en}, where each ei is a pair (xi, vi), where xi is a key value
drawn from some totally ordered domain (e.g., integers or strings) and vi is an associated data
value. The data value is not used in the search itself, but is needed by whatever application
is using our data structure.

We assume that each key value occurs at most once in the data structure, and given an
arbitrary search key x, the basic search problem is determining whether there exists an entry
matching this key value. To implement this, we will assume that we are given two types,
Key and Value. (In a Java implementation, this can be handled by defining a class with
two generic types, one for the key and one for the value.) We will also assume that key
values can be compared using the usual comparison operators, such as <, ==, >=. In actual

Binary Search Trees 17 CMSC 420

implementation, it is assumed that the Key class supports a function for comparing keys.
For example, in Java’s various map classes, it is assumed that the Key class implements the
Comparator interface. This means that there is a function compare(x1, x2), which returns a
negative integer, zero, or a positive integer depending on whether the x1 is less than, equal
to, or greater than x2, respectively.

The Dictionary ADT: Perhaps the most basic example of a search data structure is the dictio-
nary. A dictionary is an ADT that supports the operations of insertion, deletion, and finding.
There are a number of additional operations that one may like to have supported, but these
are the core operations.

void insert(Key x, Value v): Stores an entry with the key-value pair (x, v). We assume
that keys are unique, and so if this key already exists, an error condition will be signaled
(e.g., an exception will be thrown).

void delete(Key x): Delete the entry with x’s key from the dictionary. If this key does not
appear in the dictionary, then an error conditioned is signaled.

Value find(Key x): Determine whether there is an entry matching x’s key in the dictionary?
If so, it returns a reference to associated value. Otherwise, it returns a null reference.

Other operations that might like to see in a dictionary include iterating the entries, answering
range queries (that is, reporting or counting all objects between some minimum and maximum
key values), returning the kth smallest key value, and computing set operations such as union
and intersection.

There are three common methods for storing dictionaries: sorted arrays, hash tables, and
binary search trees. We discuss two of these below. Hash tables will be presented later this
semester.

Sequential Allocation: The most naive approach for implementing a dictionary data structure
is to simply store the entries in a linear array without any sorting. To find a key value, we
simply run sequentially through the list until we find the desired key. Although this is simple,
it is not efficient. Searching and deletion each take O(n) time in the worst case, which is very
bad if n (the number of items in the dictionary) is large. Although insertion only involves
O(1) to insert a new item at the end of the array (assuming we don’t overflow), it would
require O(n) to check that we haven’t inserted a duplicate element.

An alternative is to sort the entries by key value. Now, binary search can be used to locate
a key in O(log n) time, which is much more efficient. (For example, if n = 1, 000, 000, log2 n
is only around 20.) While searches are fast, updates are slow. Insertion and deletion require
O(n) time, since the elements of the array must be moved around to make space.

Binary Search Trees: In order to provide the type of rapid access that binary search offers, but
at the same time allows efficient insertion and deletion of keys, the simplest generalization
is called a binary search tree. The idea is to store the records in the nodes of a binary tree,
such that an inorder traversal visits the nodes in increasing key order. In particular, if x is
the key stored in the root node, then the left subtree contains all keys that are less than x,
and the right subtree stores all keys that are greater than x (see Fig. 12(a)). (Recall that we
assume that keys are distinct, so no other key can be equal to x.)

Defining such an object in an object-oriented language like Java typically involves two class
definitions. The main class is for the dictionary itself, and the other is for the individual

Binary Search Trees 18 CMSC 420

13

7 16

84

51 11

9

15 22

18

21172

13

7 16

84

51 11

9

15 22

18

21172

8

11

9

8

11

9

Binary Search Tree Extended Binary Search Tree

(a) (b)

find(5) find(14)

(successful) (unsuccessful)

Fig. 12: Binary Search Tree.

nodes of the tree. We will call these BinarySearchTree and BinaryNode, respectively. The
BinarySearchTree class has all the public functions and stores a reference to the root node of
the tree. But most of the hard work is done by the methods associated with the BinaryNode

class.

A node in the binary search tree would typically store the key, the value, and left and right
pointers. It may also store additional information, such as parent pointers. When presenting
our code examples, we will not be concerned with the value component, and will just focus
on the key and the other pointers.

Search in Binary Search Trees: The search for a key x proceeds as follows. We start by as-
signing a pointer p to the root of the tree. We compare x to p’s key, that is, p.key. If they
are equal, we are done. Otherwise, if x is smaller, we recursively search p’s left subtree, and
if x is larger, we recursively visit p’s right subtree. The search proceeds until we either find
the key (see Fig. 12(b)) or we fall out of the tree (see Fig. 12(b)).

Note that if we think of the tree as an extended tree, then an unsuccessful search terminates
at an external node. Each external node represents the unsuccessful searches for keys that
lie between its inorder predecessor and inorder successor. (For example, in Fig. 12(b), the
external node where the search for 14 ends represents all the searches for keys that are larger
than 13 and smaller than 15.) One argument in favor of using extended trees is that the
external node provides this additional information (as opposed to a simple null pointer).

A natural way to handle this would be to make the search procedure a recursive member
function of the BinaryNode class. The initial call is made from the find() method associated
with the BinarySearchTree class, which invokes find(x, root), where root is the root of
the tree.

It is easy to see based on the definition of a binary tree why this is correct. While most
tree-based algorithms are best expressed recursively, this one is easy enough to do iteratively,
and shown in the following code block. If you really wanted the best in performance, you
would likely prefer this iterative form.

What is the running time of the search algorithm? Well, it depends on the key you are

Binary Search Trees 19 CMSC 420

Recursive Binary Tree Search
Value find(Key x, BinaryNode p) {

if (p == null) return null; // unsuccessful search

else if (x < p.key) // x is smaller?

return find(x, p.left); // ... search left

else if (x > p.key) // x is larger?

return find(x, p.right); // ... search right

else return p.value; // successful search

}

Iterative Binary Tree Search
Value find(Key x) {

BinaryNode p = root; // start at the root

while (p != null) { // proceed until we fall out of the tree

if (x < p.key) p = p.left; // x is smaller? ...search left

else if (x > p.key) p = p.right; // x is larger? ...search right

else return p.value; // successful search

}

return null; // unsuccessful search

}

7 9

8

13 16

15

22 26

24

1 4

2

5 19

11 1

2

4

5

7

8

Balanced: Height = O(log n) Degenerate: Height = O(n)

Fig. 13: Balanced and degenerate binary trees.

Binary Search Trees 20 CMSC 420

searching for. In the worst case, the search time is proportional to the height of the tree. The
height of a binary search tree with n entries can be as low as O(log n) for the case of balanced
tree (see Fig. 13 right) or as large as O(n) for the case of a degenerate tree (see Fig. 13 left).
However, we shall see that if the keys are inserted in random order, the expected height of
the tree is just O(log n).

Insertion: To insert a new key-value entry (x, v) in a binary search tree, we first try to locate the
key in the tree. If we find it, then the attempt to insert a duplicate key is an error. If not,
we effectively “fall out” of the tree at some node p. We insert a new leaf node containing the
desired entry as a child of p. It turns out that this is always the right place to put the new
node. (For example, in Fig. 14, we fall out of the tree at the left child of node 15, and we
insert the new node with key 14 here.)

146

13

7 19

104

61 17

15 22

20 6 6

13

7 19

104

61 17

15 22

20 6

insert(14)

Fig. 14: Binary tree insertion.

The insertion procedure is shown in the code fragment below. There is one technical difficulty
with implementing this in Java (or generally, any language that uses pass-by-value in function
calls). When we create the new node, we want to “reach up” and modify one of the pointer
fields in the parent’s node. Unfortunately, this is not easy to do in our recursive formulation,
since the parent node is not a local variable. There are a number of ways to fix this issue
(including coding the procedure iteratively or explicitly passing in a reference to the parent
node). Instead, we will employ a coding trick to get around this. In particular, the insertion
function will return a reference to the modified subtree after insertion, and we store this value
in the appropriate child pointer for the parent.

The initial call from the BinarySearchTree class is root = insert(x, v, root). We as-
sume that there is a constructor for the BinaryNode, which is given the key, value, and the
initial values of the left and right child pointers.

Recursive Binary Tree Insertion
BinaryNode insert(Key x, Value v, BinaryNode p) {

if (p == null) // fell out of the tree?

p = new BinaryNode(x, v, null, null); // ... create a new leaf node here

else if (x < p.key) // x is smaller?

p.left = insert(x, v, p.left); // ...insert left

else if (x > p.key) // x is larger?

p.right = insert(x, v, p.right); // ...insert right

else throw DuplicateKeyException; // x is equal ...duplicate key!

return p // return ref to current node (sneaky!)

}

Binary Search Trees 21 CMSC 420

A Closer Look at the Trick: To better understand how our coding trick works, see Fig. 15 to
insert 14. We first search for 14 in the tree, falling out of the tree at the left child of node
15, that is, when the local variable p refers to node 15. Let’s call this local variable p2. We
generate a call p2.left = insert(14, v, p2.left).

14 6

13

7 19

104

61 17

15 22

20 6

p0

p1

p2

p3

Fig. 15: Child link update in insertion.

Since node 15 has no left child, the next recursive call discovers right away that its local
p (which has the value p2.left) value is null, and so we create the new node with key
value 14, and assign it to the current local variable p. Let’s call this p3. The last line of the
recursive procedure returns p3 to the calling procedure at node 15, at the statement p2.right
= insert(14, v, p2.right). Since the insert function returns the pointer p3 to the new
node, we effectively perform the action p2.right = p3, which links the new node into the
tree as desired. Voila!

Deletion: Next, let us consider how to delete an entry from the tree. Deletion is a more involed
than insertion. While insertion adds nodes at the leaves of the tree, but deletions can occur
at any place within the tree. Deleting a leaf node is relatively easy, since it effectively involves
“undoing” the insertion process (see Fig. 16(a)). Deleting an internal node requires that we
“fill the hole” left when this node goes away. The easiest case is when the node has just
a single child, since we can effectively slide this child up to replace the deleted node (see
Fig. 16(b)).

delete(7)
9

2 11

71

5

4

13

9

2 11

1 5

4

13

9

2 11

71

5

4

13

8

9

2 11

71

5

4

13

delete(8)

Leaf deletion Single-child case

(a) (b)

(remove) (slide up)

Fig. 16: Deletion: (a) Leaf and (b) single-child case.

The hardest case is when the deleted node that has two children. Let p denote the node to
be deleted (see Fig. 17(a)):

Binary Search Trees 22 CMSC 420

• Find the node r that is p’s inorder successor in the tree (see Fig. 17(b)). Note that
because p has two children, its inorder successor is the “leftmost” node of p’s right
subtree. Call r the replacement node.

• Copy the contents of r to p (see Fig. 17(c)).

• Delete node r (see Fig. 17(d)). (Because r’s key immediately follows p’s key, this re-
placement maintains the sorted order of keys.)

13

3 14

92

4

6

16

11

delete(3) Two-Child Case

1

7

13

3 14

92

4

6

16

111

75 5

replacement

13

4 14

92 16

111

13

4 14

92

6

16

111

75

4

6

75

copy

p

r

p p p

r

(a) (b) (c) (d)

delete(4)

Fig. 17: Deletion: Two-child case.

It may seem that we have made no progress, because we have just replaced one deletion
problem (for p) with another (for r). However, the task of deleting r is much simpler. The
reason is, since r is p’s inorder successor, r is the leftmost node of p’s right subtree. It follows
that r has no left child. Therefore, r is either a leaf or it has a single child, implying that it
is one of the two “easy” deletion cases that we discussed earlier.

Deletion Implementation: Before giving the code for deletion, we first present a utility function,
findReplacement(), which returns a pointer to the node that will replace p in the two-child
case. As mentioned above, this is the inorder successor of p, that is, the leftmost node in
p’s right subtree. As with the insertion method, the initial call is made to the root of the
tree, delete(x, root). Again, we will employ the sneaky trick of returning a pointer to the
revised subtree after deletion, and store this value in the child link. See the code fragment
below.

Replacement Node for the Two-child Case
BinaryNode findReplacement(BinaryNode p) { // find p’s replacement node

BinaryNode r = p.right; // start in p’s right subtree

while (r.left != null) r = r.left; // go to the leftmost node

return r;

}

The full deletion code is given in the following code fragment. As with insertion, the code
is quite tricky. For example, can you see where the leaf and single-child cases are handled
in the code? We do not have a conditional that distinguishes between these cases. How can
that be correct. (But it is!)

Binary Search Trees 23 CMSC 420

Binary Tree Deletion
BinaryNode delete(Key x, BinaryNode p) {

if (p == null) // fell out of tree?

throw KeyNotFoundException; // ...error - no such key

else {

if (x < p.data) // look in left subtree

p.left = delete(x, p.left);

else if (x > p.data) // look in right subtree

p.right = delete(x, p.right);

// found it!

else if (p.left == null || p.right == null) { // either child empty?

if (p.left == null) return p.right; // return replacement node

else return p.left;

}

else { // both children present

r = findReplacement(p); // find replacement node

copy r’s contents to p; // copy its contents to p

p.right = delete(r.key, p.right); // delete the replacement

}

}

return p;

}

Analysis of Binary Search Trees: It is not hard to see that all of the procedures find(),
insert(), and delete() run in time that is proportional to the height of the tree being
considered. (The delete() procedure is the only one for which this is not obvious. Because
the replacement node is the inorder successor of the deleted node, it is the leftmost node of
the right subtree. This implies that the replacement node has no left child, and so it will fall
into one of the easy cases, which do not require a recursive call.)

The question is, given a binary search tree T containing n keys, what can be said about the
height of the tree? It is not hard to see that in the worst case, if we insert keys in either strictly
increasing or strictly decreasing order, then the resulting tree will be completely degenerate,
and have height n − 1. We will show that, if keys are inserted in random order, then the
expected depth of any node is O(log n). (We emphasize that this assumes insertions only.
See below for a discussion of the situation when insertions and deletions are combined.)

Proving that the expected depth is O(log n) is not an trivial exercise. The proof involves
setting up a fairly complicated recurrence and solving it. (If you have ever seen the complete
analysis of QuickSort, the two recurrences are very similar.) Instead, we will produce a “quick
and dirty” proof, which hopefully will convince you that the assertion is reasonable, if not
fully convincing. In particular, rather than proving that every node of the tree is at expected
depth O(log n), we will prove that the leftmost node of the tree (that is, the node associated
with the smallest key value) will be at expected depth O(log n).

Theorem: Given a set of n keys x1 < x2 < . . . < xn, let D(n) denote the expected depth
of node x1 after inserting all these keys in a binary search tree, under the assumption
that all n! insertion orders are equally likely. Then D(n) ≤ 1 + lnn, where ln denotes
the natural logarithm.

Proof: We will track the depth of the leftmost node of the tree through the sequence of
insertions. Suppose that we have already inserted i− 1 keys from the sequence, and we

Binary Search Trees 24 CMSC 420

are in the process of inserting the ith key. The only way that the leftmost node changes
is when the ith key is the lowest key value that has been seen so far in the sequence.
That is, the i element to be inserted in the new minimum value among all the keys in
the tree.

For example, consider the insertion sequence S = 〈9, 5, 10, 6, 3, 4, 2〉. Observe that the
minimum value changes three times, when 5, 3, and 2 are inserted. If we look at the
binary tree that results from this insertion sequence we see that the depth of the leftmost
node also increases by one with each of these insertions.

Insertion order: 〈9, 5, 10, 6, 3, 4, 2〉

9

5

9

5

9

10 5

9

10

6

5

9

10

63

5

9

10

63

4

5

9

10

63

42

insert(5) insert(2)insert(4)insert(3)insert(6)insert(10)

insert(9)

Fig. 18: Length of the leftmost chain.

To complete the analysis, it suffices to determine (in expectation) the number of times
that the minimum in a sequence of n random values changes. To make this formal, for
2 ≤ i ≤ n, let Xi denote the random variable that is 1 if the ith element of the random
sequence is the minimum among the first i elements, and 0 otherwise. (In our sequence
S above, X2 = X5 = X7 = 1, because the minimum changed when the second, fifth, and
seventh elements were added. The remaining Xi’s are zero.)

To analyze Xi, let’s just focus on the first i elements and ignore the rest. Since every
permutation of the numbers is equally likely, the minimum among the first i is equally
likely to come at any of the positions first, second, . . . , up to ith. The minimum changes
only if comes last out of the first i. Thus, Pr(Xi = 1) = 1

i and Pr(Xi = 0) = 1 − 1
i .

Whenever this random event occurs (Xi = 1), the minimum has changed one more time.
Therefore, to obtain the expected number of times that the minimum changes, we just
need to sum the probabilities that Xi = 1, for i = 2, . . . , n. Thus we have

D(n) =
n∑

i=2

1

i
=

(
n∑

i=1

1

i

)
− 1.

This summation is among the most famous in mathematics. It is called the Harmonic
Series. Unlike the geometric series (1/2i), the Harmonic Series does not converge. But
it is known that when n is large, its value is very close to lnn, the natural log of n. (In
fact, it is not more than 1 + lnn.)

Therefore, we conclude that the expected depth of the leftmost node in a binary search
tree under n random insertions is at most 1 + lnn = O(log n), as desired.

Random Insertions and Deletions: Interestingly, this analysis breaks down if we are doing
both insertions and deletions. Suppose that we consider a very long sequence of insertions

Binary Search Trees 25 CMSC 420

and deletions, which occur at roughly the same rate so that, in steady state, the tree has
roughly n nodes. Let us also assume that insertions are random (drawn say from some large
domain of candidate elements) and deletions are random in the sense that a random element
from the tree is deleted each time.

It is natural to suppose that the O(log n) bound should apply, but remarkably it does not! It
can be shown that over a long sequence, the height of the tree will converge to a significantly
larger value of O(

√
n).4

The reason has to do with the fact that the replacement element was chosen in a biased
manner, always taking the inorder successor. Over the course of many deletions, this repeated
bias causes the tree’s structure to skew away from the ideal. This bias can be eliminated by
selecting the replacement node (randomly) as the inorder successor or inorder predecessor. It
has been shown experimentally that this resolves the issue, but (to the best of my knowledge)
it is not known whether the expected height of this balanced version of deletion matches the
expected height for the insertion-only case (see Culberson and Munro, Algorithmica, 1990).

Lecture 5: AVL Trees

Balanced Binary Trees: The binary search trees described in the previous lecture are easy to
implement, but they suffer from the fact that if nodes are inserted in a poor order (e.g.,
increasing or decreasing) then the height of the tree can be much higher than the ideal height
of O(log n). This raises the question of whether we can design a binary search tree that is
guaranteed to have O(log n) height, irrespective of the order of insertions and deletions.

Today we will consider the oldest, and perhaps best known example of such a data structure
is the famous AVL tree, which was discovered in 1962 by G. Adelson-Velskii and E. Landis
(and hence the name “AVL”).

AVL Trees: AVL tree’s are height-balanced binary search trees. In an absolutely ideal height-
balanced tree, the two children of any internal node would have equal heights, but it is
not generally possible to achieve this goal. The most natural relaxation of this condition is
expressed in the following invariant:

AVL balance condition: For every node in the tree, the absolute difference in the heights
of its left and right subtrees is at most 1.

For any node v of the tree, let height(v) denote the height of the subtree rooted at v (shown
in blue in Fig. 19(a)). It will be convenient to define the height of an empty tree (that is, a
null pointer) to be −1. Define the balance factor of v, denoted balance(v) to be

balance(v) = height(v.right)− height(v.left)

4There is an interesting history regarding this question. It was believed for a number of years that random
deletions did not alter the structure of the tree. A theorem by T. N. Hibbard in 1962 proved that the tree structure
was probabilistically unaffected by deletions. The first edition of D. E. Knuth’s famous book on data structures, quotes
this result. In the mid 1970’s, Gary Knott, a Ph.D. student of Knuth and later a professor at UMD, discovered a
subtle flaw in Hibbard’s result. While the structure of the tree is probabilistically the same, the distribution of keys
is not. However, Knott could not resolve the asymptotic running time. The analysis showing that O(

√
n) bound was

due to Culberson and Munro in the mid 1980’s.

AVL Trees 26 CMSC 420

(see Fig. 19(b)). The AVL balance condition is equivalent to the requirement that balance(v) ∈
{−1, 0,+1} for all nodes v of the tree. (Thus, Fig. 19(b) is an AVL tree, but the tree of
Fig. 19(c) is not because node 10 has a balance factor of +2.)

1

14

5

9

10

63

4

-1

+1-1

0 00

00
1

14

5

9

10

63

4

0

+2-1

0 -10

00
12

0
1

14

5

9

10

63

4

3

12

1 00

00

Balance factors Not an AVL tree

!

Subtree heights

(a) (b) (c)

Fig. 19: AVL-tree balance condition.

Worst-case Height: Before discussing how we maintain this balance condition we should consider
the question of whether this condition is strong enough to guarantee that the height of an
AVL tree with n nodes is O(log n). Interestingly, the famous Fibonacci numbers will arise in
the analysis. Recall that for h ≥ 0, the hth Fibonacci number, denoted Fh is defined by the
following recurrence:

F0 = 0

F1 = 1

Fh = Fh−1 + Fh−2, for h ≥ 2.

An important and well-known property of the Fibonacci numbers is that they grow expo-
nentially. In particular, Fh ≈ ϕh/

√
5, where ϕ = (1 +

√
5)/2 ≈ 1.618 is the famous Golden

Ratio.

Lemma: An AVL tree of height h ≥ 0 has Ω(ϕh) nodes, where ϕ = (1 +
√

5)/2.

Proof: Let N(h) denote the minimum number of nodes in any AVL tree of height h. We
will generate a recurrence for N(h) as follows. First, observe that a tree of height zero
consists of a single root node, so N(0) = 1. Also, the smallest possible AVL tree of
height one consists of a root and a single child, so N(1) = 2.

For n ≥ 2, let hL and hR denote the heights of the left and right subtrees, respectively.
Since the tree has height h, one of the two subtrees must have height h − 1, say, hL.
To minimize the overall number of nodes, we should make the other subtree as short as
possible. By the AVL balance condition, this implies that hR = h−2. Counting the root
node plus the numbers of nodes in the left and right subtrees we obtain the following
recurrence for the total number of nodes:

N(0) = 1

N(1) = 2

N(h) = 1 +N(hL) +N(hR) = 1 +N(h− 1) +N(h− 2).

AVL Trees 27 CMSC 420

Nodes:

Leaves

1

1

Height: 0

2

1

1

4

2

2

7

3

3

12

5

4

20

8

5

Fig. 20: Most imbalanced AVL trees of various heights.

The resulting trees are shown in Fig. 20. Observe that while the number of nodes does
not follow the Fibonacci sequence exactly, the number of leaves does follow the Fibonacci
sequence.

While N(h) is not quite the same as the Fibonacci sequence, by an induction argument5

we can show that for large h, there is a constant c such that

N(h) ≥ cϕh, where ϕ =

(
1 +
√

5

2

)h

.

Theorem: An AVL tree with n nodes has height O(log n).

Proof: Let lg denote logarithm base 2. From the above lemma, up to constant factors we
have n ≥ ϕh, which implies that h ≤ logϕ n = lg n/ lgϕ. Since ϕ > 1 is a constant, so
is logϕ. Therefore, h is O(log n). (If you work through the math, the actual bound on
the height is roughly 1.44 lg n.)

Since the height of the AVL tree is O(log n), it follows that the find operation takes this
much time. All that remains is to show how to perform insertions and deletions in AVL trees,
and how to restore the AVL balance condition efficiently after each insertion or deletion.

Rotation: In order to maintain the tree’s balance, we will employ a simple operation that locally
modifies the relationship between two nodes, while preserving the tree’s inorder properties.
This operation is called rotation. It comes in two symmetrical forms, called a right rotation
and a left rotation (see Fig. 21(a) and (b)).

We have intentionally labeled the elements of Fig. 21 to emphasize the fact that the inorder
properties of the tree are preserved. That is subtree A comes before node b comes before
subtree C, and so on. The code fragment below shows how to apply a right and left rotations
to a node p. As has been our practice, we return a pointer to the modified subtree (in order
to modify the child link pointing into this subtree).

Unfortunately, a single rotation is not always be sufficient to rectify a node that is out of
balance. To see why, observe that the single rotation does not alter the height of subtree C.

5Here is a sketch of a proof. Let us conjecture that N(h) ≈ ϕh for some constant ϕ. Since we are proving a lower
bound, there is no harm in ignoring the +1 in the recurrence for N(h). Substituting our conjectured value for N(h)
into the above recurrence, we find the ϕ satisfies ϕh = ϕh−1 + ϕh−2. Removing the common factor of ϕh−2, we have
ϕ2 = ϕ + 1, that is, ϕ2 − ϕ− 1 = 0. By applying the quadratic formula, we conclude that ϕ = (1 +

√
5)/2.

AVL Trees 28 CMSC 420

Right rotation

(a) (b)

d

b

A C

E

b

d

EC

A

Left rotation

d

b

A C

E

b

d

EC

A

p

q p

q

q

p q

p

Fig. 21: (Single) Rotations. (Triangles denote subtrees, which may be null.)

Binary-Tree Rotations
BinaryNode rotateRight(BinaryNode p) { // right rotation at p

BinaryNode q = p.left;

p.left = q.right;

q.right = p;

return q;

}

BinaryNode rotateLeft(BinaryNode p) { ... symmetrical ... }

If it is too heavy, we need to do something else to fix matters. This is done by combining
two rotations, called a double rotation. They come in two forms, left-right rotation and right-
left rotation (Fig. 22). To help remember the name, note that the left-right rotation, called
rotateLeftRight(p), is equivalent to performing a left rotation to the p.left (labeled b in
Fig. 22(a)) followed by a right rotation to p (labeled d in Fig. 22(a)). The right-left rotation
is symmetrical (see Fig. 22(b)).

Left-Right rotation

(a) (b)

d

b

A

C ′

E

Right-Left rotation

c

C ′′

db

A C ′ E

c

C ′′

b

d

E

c

C ′′

A

C ′

db

A C ′ E

c

C ′′

p p

Fig. 22: Double rotations (rotateLeftRight(p) and RotateRightLeft(p)).

Insertion: The insertion routine for AVL trees starts exactly the same as the insertion routine for
standard (unbalanced) binary search trees. In particular, we search for the key and insert a
new node at the point that we fall out of the tree. After the insertion of the node, we must

AVL Trees 29 CMSC 420

update the subtree heights, and if the AVL balance condition is violated at any node, we then
apply rotations as needed to restore the balance.

The manner in which rotations are applied depends on the nature of the imbalance. An
insertion results in the addition of a new leaf node, and so the balance factors of the ancestors
can be altered by at most ±1. Suppose that after the insertion, we find that some node has a
balance factor of −2. For concreteness, let us consider the naming of the nodes and subtrees
shown in Fig. 23, and let the node in equation be d. Note that this node must be along the
search path for the inserted node, since these are the only nodes whose subtree heights may
have changed. Clearly, d’s left subtree, is too deep relative to d’s right subtree E. Let b
denote the root of d’s left subtree.

At this point there are two cases to consider. Either b’s left child is deeper or its right child
is deeper. (The subtree that is deeper will be the one into which the insertion took place.)

Let’s first consider the case where the insertion took place in the the subtree A (see Fig. 23(b)).
In this case, we can restore balance by performing a right rotation at node d. This operation
pulls the deep subtree A up by one level, and it pushes the shallow subtree E down by one
level (see Fig. 23(c)). Observe that the depth of subtree C is unaffected by the operation. It
follows that the balance factors of the resulting subtrees rooted at b and d are now both zero.
The AVL balance condition is satisfies by all nodes, and we are in good shape.

(b)

d

b

A C

E

-1

0

new insertion

d

b

A C

E

-2 !!

-1

d

b

A

C E

0

0insert rotate

(a) (c)

Fig. 23: Restoring balance after insertion through a single rotation.

Next, us consider the case where the insertion occurs within subtree C (see Fig. 24(b)). As
observed earlier, the rotation at d does not alter C’s depth, so we will need to do something
else to fix this case. Let c be the root of the subtree C, and let C ′ and C ′′ be its two subtrees
(either of these might be null). The insertion took place into either C ′ or C ′′. (We don’t care
which, but the “?” in the figure indicate our uncertainty.) We restore balance by performing
two rotations, first a left rotation at b and then a right rotation at d (see Fig. 24(c)). This
double rotation has the effect of moving the subtree E down one level, leaving A’s level
unchanged, and pulling both C ′ and C ′′ up by one level.

The balance factors at nodes b and d will depend on whether the insertion took place into C ′

or C ′′, but irrespective of which, they will be in the range from −1 to +1. The balance factor
at the new root node c is now 0. So, again we are all good with respect to the AVL balance
condition.

Insertion Implementation: The entire insertion procedure for AVL trees is shown in the follow-
ing code fragment. It starts with a few utilities. We assume that we store the height of each
node in a field p.height, which contains the height of the subtree rooted at this node. We

AVL Trees 30 CMSC 420

(b)

d

b

A C

E

-1

0
d

b

A

C ′

E

-2 !!

1

d

c

E

0insert rotate

(a) (c)

c

C ′′? ?

double

C ′′

b

A

0 or -1

C ′

insert into C ′ or C ′′

0 or +1

Fig. 24: Restoring balance after insertion through a double rotation.

define a utility function height(p), which returns p.height if p is non-null and −1 otherwise.
Based on this we provide a utility function updateHeight, which is used for updating the
height’s of nodes (assuming that their children’s heights are properly computed). We also
provide a utility for computing balance factors and the rotation functions. We omit half of
the rotation functions since they are symmetrical, just with left and right swapped.

An interesting feature of the insertion algorithm (which is not at all obvious) is that whenever
rebalancing is required, the height of the modified subtree is the same as it was before the
insertion. This implies that no further rotations are required. (This is not the case for
deletion, however.)

Deletion: After having put all the infrastructure together for rebalancing trees, deletion is actually
relatively easy to implement. As with insertion, deletion starts by applying the deletion
algorithm for standard (unbalanced) binary search trees. Recall that this breaks into three
cases, leaf, single child, and two children. This part of the deletion process is identical to the
standard case. The only change is that (as in insertion) we restore balance to the tree by
invoking the function rebalance(p) just prior to returning from each node. Even though we
design this piece of code to work in the case of insertion, it can be shown that it works just
as well for deletion.

In Fig. 25, we illustrate a deletion of a node (from the subtree E) which can be remedied by a
single rotation. This happens because the left subtree (rooted at b) is too heavy following the
deletion, and the left child of the left subtree (A) is at least as heavy as the right child (C).
(The “?” in our figures illustrate places where the subtree’s height is not fully determined.
For this reason, some of the balance factors are listed as “x or y” to indicate the possible
options.)

In Fig. 26, we illustrate an instance where a double-rotation is needed. In this case, the left
subtree (rooted at b) is too heavy following the deletion, but the right child of the left subtree
(C) is strictly heavier than the left child (A).

Note that in the case of the double rotation, the height of the entire tree rooted at d has de-
creased by 1. This means that further ancestors need to be checked for the balance condition.
Unlike insertion, where at most one rebalancing operation is needed, insertion could result in
a cascade of O(log n) rebalancing operations.

2-3, Red-black, and AA Trees 31 CMSC 420

AVL Tree Utilities and Insertion
int height(AvlNode p) { return p == null ? -1 : p.height; }

void updateHeight(AvlNode p) { p.height = 1 + max(height(p.left), height(p.right));}

int balanceFactor(AvlNode p) { return height(p.right) - height(p.left); }

AvlNode rotateRight(AvlNode p) // right single rotation

{

AvlNode q = p.left;

p.left = q.right; // swap inner child

q.right = p; // bring q above p

updateHeight(p); // update subtree heights

updateHeight(q);

return q; // q replaces p

}

AvlNode rotateLeft(AvlNode p) { ... symmetrical to rotateRight ... }

AvlNode rotateLeftRight(AvlNode p) // left-right double rotation

{

p.left = rotateLeft(p.left);

return rotateRight(p);

}

AvlNode rotateRightLeft(AvlNode p) { ... symmetrical to rotateLeftRight ... }

AvlNode insert(Key x, Value v, AvlNode p) {

if (p == null) { // fell out of tree; create new node

p = new AvlNode(x, v, null, null);

}

else if (x < p.key) { // x is smaller - insert left

p.left = insert(x, p.left); // ... insert left

else if (x > p.key) { // x is larger - insert right

p.right = insert(x, p.right); // ... insert right

}

else throw DuplicateKeyException; // key already in the tree?

return rebalance(p); // rebalance if needed

}

AvlNode rebalance(AvlNode p) {

if (p == null) return p; // null - nothing to do

if (balanceFactor(p) < -1) { // too heavy on the left?

if (height(p.left.left) >= height(p.left.right)) { // left-left heavy?

p = rotateRight(p); // fix with single rotation

else // left-right heavy?

p = rotateLeftRight(p); // fix with double rotation

} else if (balanceFactor(p) > +1) { // too heavy on the right?

if (height(p.right.right) >= height(p.right.left)) { // right-right heavy?

p = rotateLeft(p); // fix with single rotation

else // right-left heavy?

p = rotateRightLeft(p); // fix with double rotation

}

updateHeight(p); // update p’s height

return p; // return link to updated subtree

}

2-3, Red-black, and AA Trees 32 CMSC 420

(b)

d

b

A C

E

-1

-1 or 0

deleted item

delete

(a) (c)

d

b

A C

E

-2 !!

?

C

?

b

A
d

CC

?

E

0 or +1

0 or -1-1 or 0

rotate

Fig. 25: Restoring balance after deletion with single rotation.

E

deleted item

E

(b)

d

b

A C

-1

+1
d

b

A

C ′

-2 !!

+1

d

c

E

0delete rotate

(a) (c)

c

C ′′

double

b

A

0 or -1 0 or +1

C ′ C ′′

Fig. 26: Restoring balance after deletion with double rotation.

Lecture 6: 2-3, Red-black, and AA trees

“A rose by any other name”: In today’s lecture, we consider three closely related search trees.
All three have the property that they support find, insert, and delete in time O(log n) for a
tree with n nodes. Although the definitions appear at first glance to be different, they are
essentially equivalent or very slight variants of each other. These are 2-3 trees, red-black trees,
and AA trees. Together, they show that the same idea can be viewed from many different
perspectives.

2-3 Trees: An “ideal” binary search tree has n nodes and height roughly lg n. (More precisely,
the ideal would be blg nc, where we recall our convention that “lg” means logarithm base 2.)
However, it is not possible to efficiently maintain a tree subject to such rigid requirements.
AVL trees relax the height restriction by allowing the two subtrees associated with each node
to be of similar heights.

Another way to relax the requirements is to say that a node may have either two or three
children (see Fig. 27(a) and (b)). When a node has three children, it stores two keys. Given
the two key values b and d, the three subtrees A, C, and E must satisfy the requirement that
for all a ∈ A, c ∈ C, and e ∈ E, we have

a < b < c < d < e,

(The concept of an inorder traversal of such a tree can be generalized, but it involves visiting
each 3-node twice, once to visit the first key and again to visit the second key.) These are
called 2-nodes and 3-nodes, respectively.

2-3, Red-black, and AA Trees 33 CMSC 420

(b)(a) (c)

A C

b

A C E

2

1 3

15 : 208

9 14 18 23

3-node2-node
2-3 tree

b : d

4 : 11

5 : 7

Fig. 27: (a) 2-node, (b) 3-node, and (c) a 2-3 tree.

A 2-3 tree is defined recursively as follows. It is either:

• empty (i.e., null), or

• its root is a 2-node, and its two subtrees are each 2-3 trees of equal height, or

• its root is a 3-node, and its three subtrees are each 2-3 trees of equal height.

As we did with AVL trees, we define the height of an empty tree to be −1. (For an example,
Fig. 27(c) shows a 2-3 tree of height 2.)

Since all the leaves are at the same level, and the sparsest possible 2-3 tree is a complete
binary tree. We have the following direct consequence.

Theorem: A 2-3 tree with n nodes has height O(log n).

Since our foray into 2-3 trees will be brief, we will not bother to present an implementation.
(Later this semester, we will discuss B-trees in detail, and a 2-3 tree is a special case of a
B-tree.)

It is easy to see how to perform the operation find(x) in a 2-3 tree. We apply the usual
recursive descent as for a standard binary tree, but whenever we come to a 3-node, we need
to check the relationship between x and the two key values in this node in order to decide
which of the three subtrees to visit. The important issues are insertion and deletion, which
we discuss next.

In the descriptions that follow, it will be convenient to temporarily allow for the existence
of “invalid” 1-nodes and 4-nodes. As soon as one of these exceptional nodes comes into
existence, we will need to take action to replace them with proper 2-nodes and 3-nodes.

Insertion into a 2-3 tree: The insertion procedure follows the general structure that we have
established with AVL trees. We first search for the insertion key, and make a note of the last
node we visited just before falling out of the tree. Because all leaf nodes are at the same level,
we always fall out at the lowest level of the tree. We insert the new key into this leaf node. If
the node was a 2-node, it now becomes a 3-node, and we are fine. If it was a 3-node, it now
becomes a 4-node, and we need to fix it.

While the initial insertion takes place at a leaf node, we will see that the restructuring process
can propagate to internal nodes. So, let us consider how to remedy the problem of a 4-node
in a general setting. A 4-node has three keys, say b, d, and f and four children, say A, C, E,
and G. To resolve the problem we split this node into two 2-nodes: one for b with A and C
as subtrees, and the other for e with E and F as subtrees. We then promote the middle key

2-3, Red-black, and AA Trees 34 CMSC 420

d by inserting it (recursively) into the parent node (see Fig. 28(a)). If the parent is a 2-node,
this can be accommodated without problem. On the other hand, if the parent is a 3-node,
this creates a 4-node, and the splitting process continues recursively until either (a) we arrive
at a node that does not overflow, or (b) we reach the root. When the root node overflows,
the promoted key becomes the new root node, which must be a 2-node (see Fig. 28(b)). It is
easy to see that this process preserves the 2-3 tree structural properties.

(b)

A C E G A C E G

b f

d

A C E G

b f

d

split
promote

(a)

Splitting a 4-node Creating new root

b : d : f
!!

Fig. 28: 2-3 tree insertion: (a) splitting a 4-node into two 2-nodes and (b) creating a new root.

In the figure below, we present an example of the result of inserting key 6 into a 2-3 tree,
which required two splits to resolve.

2

1 3 5 : 7 9 14

insert(6)

2

1 3

8 : 12

4 4

9 14

8 : 12 2

1 3

4

9 145 75 : 6 : 7
!!

split

2

1 3 9 145 7

!!
6 12

4 : 8
split

6 : 8 : 12

Fig. 29: 2-3 tree insertion involving two splits.

Deletion from a 2-3 tree: Consistent with our experience with binary search trees, deletion is
more complicated than insertion. The general process follows the usual pattern. First, we
find the key to be deleted. If it does not appear in a leaf node, then we identify a replacement
key as the inorder successor. (The inorder predecessor would work equally well.) We copy the
replacement key-value pair to replace the deleted key entry, and then we recursively delete
the replacement key from its subtree. In this manner, we can always assume that we are
deleting a key from a leaf node. So, let us focus on this.

As you might imagine, since insertion resulted in an overfull 4-node being split into two 2-
nodes, the process of deletion will involve merging “underfull” nodes. This is indeed the case,
but it will also be necessary to consider another restructuring primitive in which keys are
taken or “adopted” from a sibling.

More formally, let us consider the deletion of an arbitrary key from an arbitrary node in the
tree. If this is a 3-node, then the deletion results in a 2-node, which is fine. However, if this
is a 2-node, the deletion results in an illegal 1-node, which has one subtree and zero keys. We
remedy the situation in one of two ways.

Adoption: Consider the left and right siblings of this node (if they exist). If either sibling is
a 3-node, then it gives up an appropriate key (and subtree) to convert us back to 2-node.
The tree is now properly structured.

2-3, Red-black, and AA Trees 35 CMSC 420

Suppose, for the sake of illustration that the current node is an underfull 1-node, and
it has a right sibling that is a 3-node (see Fig. 30(a)). Then, we adopt the leftmost key
and subtree from this sibling, resulting in two 2-nodes. (A convenient mnemonic is the
equation 1 + 3 = 2 + 2.)

(b)

G

(a)

A C E

b db

GA C E

fb

d
adopt

!!
d : f

A C E

b
!!

d

A C E

!!

b : d

merge

Fig. 30: 2-3 tree deletion: (a) adopting a key/subtree from a sibling and (b) merging two nodes.

Merging: On the other hand, if neither sibling can offer a key, then it follows that at least
one sibling is a 2-node. Suppose for the sake of illustration that it is the right sibling
(see Fig. 30(b)). In this case, we merge the 1-node with this 2-node to form a 3-node.
(A convenient mnemonic is the equation 1 + 2 = 3.)

But, we need a key to complete this 3-node. We take this key from our parent. If the
parent was a 3-node, it now becomes a 2-node, and we are fine. If the parent was a
2-node, it has now become a 1-node (as in the figure), and the restructuring process
continues on up the tree. Finally, if we ever arrive at a situation where the 1-node is the
root of the tree, we remove this root and make its only child the new root.

An example of the deletion of a key is shown in Fig. 31. In this case, the initial deletion
was from a 2-node, which left it as a 1-node. We merged it with its sibling to form a 3-node
(1 + 2 = 3). This involved demoting the key 6 from the parent, which caused the parent to
decrease from a 2-node to a 1-node. Since the parent has a 3-node sibling, we can adopt from
it. (By the way, there is also a sibling which is a 2-node, containing the key 2. Could we have
instead merged with this node? The answer is “yes”, but it is not in our interest to do this.
This is because merging results in more disruptions to ancestors of the tree, whereas a single
adoption terminates the restructuring process.)

2

1 3 9 145 7

6

4 : 8

17

10 : 16 2

1 3 9 147

6

4 : 8

17

10 : 16

delete(5)

!!

2

1 3 9 14

4 : 8

17

10 : 16

merge

6 : 7

!!
2

1 3 9 14

4 : 10

176 : 7

adopt

8 16

Fig. 31: 2-3 tree deletion involving a merge and an adoption.

Red-Black trees: While a 2-3 tree provides an interesting alternative to AVL trees, the fact that
it is not a binary tree is a bit annoying. As we saw earlier in the semester, there are ways
of representing arbitrary trees as binary trees. This suggests the idea of encoding a 2-3 tree
as a binary tree. Unfortunately, the first-child, next-sibling approach presented earlier in the
semester will not work. (Can you see why not? At issue is whether the inorder properties of
the tree hold under this representation.)

2-3, Red-black, and AA Trees 36 CMSC 420

Here is a simple approach that works, however. First, there is no need to modify 2-nodes,
since they are already binary-tree nodes. To represent a 3-node as a binary-tree node, we
create a two-node combination, as shown in Fig. 32(a) below. The 2-3 tree shown in Fig. 27(c)
above would be represented in the manner shown in Fig. 32(b).

(b)(a)

A C E

b : d

A C E

d

b

2

1 3

8

9 14 18 23

Red-black tree

11

4

20
15

7
5

2

1 3

15 : 208

9 14 18 23

2-3 tree

4 : 11

5 : 7

Fig. 32: Representing the 2-3 tree of Fig. 27 as an equivalent binary tree.

If we label each of “second nodes” of the 3-nodes as red and label all the other nodes as black,
we obtain a binary tree with both red and black nodes. It is easy to see that the resulting
binary tree satisfies the following properties:

• Each node is either red or black.
• The root is black.
• All null pointers are labeled as black. (This is just a convenient convention.)
• If a node is red, then both its children are black.
• Every path from a given node to any of its null descendants contains the same number

of black nodes.

A binary search tree that satisfies these conditions is called a red-black tree. Because 2-3 trees
have O(log n) height, the following is an immediate consequence:

Lemma: A red-black tree with n nodes has height O(log n).

It is easy to see that any the transformation that we described above for 2-3 trees always
results in a valid red-black tree. Thus, we have:

Lemma: Every 2-3 tree corresponds to a red-black tree.

However, the converse is not true. There are two issues. First, the red-black conditions do
not distinguish between left and right children, so a 3-node could be encoded in two different
ways in a red-black tree (see Fig. 33(a)). More seriously, the red-black condition allows for
the sort of structure in Fig. 33(b), which clearly does not correspond to a node of a 2-3 tree.

(a)

b : d

d

b

b

d
f

d

b

b : d : f

(b)

or

Fig. 33: Color combinations allowed by the red-black tree rules.

2-3, Red-black, and AA Trees 37 CMSC 420

It is interesting to observe that this three-node combination can be seen as a way of modeling
a node with four children. Indeed, there is a generalization of the 2-3 tree, called a 2-3-4
tree, which allows 2-, 3-, and 4-nodes. Red-black trees as defined above correspond 1–1 with
2-3-4 trees. Red-black trees are the basis of TreeMap class in the java.util package. The
principle drawback of red-black trees is that they are rather complicated to implement. For
this reason, we will introduce a simpler variant of the red-black tree below, called an AA tree.

AA trees (Red-Black trees simplified): In an effort to simplify the complicated cases that
arise with the red-black tree, in 1993 Arne Anderson developed a restriction of the red-black
tree. He called his data structure a BB tree (for “Binary B-tree”), but over time the name has
evolved into AA trees, named for the inventor (and to avoid confusion with another popular
but unrelated data structure called a BB[α] tree).

Anderson’s idea was to allow the conversion described above between 2-3 trees and red-black
trees, and forbid the other red-black combinations. In particular, each red node can arise only
as the right child of a black node. (The other rules of red-black trees are the same.) The edge
between a red node and its black parent is called a red edge, and is shown as a dashed red
edge in our figures. While AA-trees are simpler to code, they are a bit slower than red-black
trees in practice.

The implementation of the AA tree has the following two noteworthy features:

We do not use null pointers: Instead, we create a special sentinel node, called nil (see
Fig. 34(a)), and every null pointer is replaced with a pointer to nil. (Although the tree
may have many null pointers, there is only one nil node allocated, with potentially
many incoming pointers.) This node is considered to be black.

Why do this? Observe that nil.left == nil and nil.right == nil. This simplifies
the code because we can always de-reference a pointer, without having to check first
whether it is null.

(b)(a)

nil
2

1 3

8

9 14 18 23

AA tree

11
4

20
15

7
5

2

1 3

15 : 208

9 14 18 23

2-3 tree

4 : 11

5 : 7

all point to nil
level = 0

Level:

3

2

1

Fig. 34: AA trees: (a) the nil sentinel node, (b) the AA tree for the 2-3 tree of Fig. 27.

We do not store node colors: Instead, each node p stores a level number, denoted p.level

(see Fig. 34(b)). Intuitively, the level number encodes the level of the associated node
in the 2-3 tree. Formally, nil node is at level 0, and if q is a black child of some node p,
then p.level = q.level+ 1, and if q is a red child of p, then they have the same level
numbers.

We do not need to store node colors, because we can determine whether a node is red
by testing that its level number is the same as its parent.

2-3, Red-black, and AA Trees 38 CMSC 420

It is surprising that our representation does not actually assign color to the nodes! It is not
needed because color information is implicitly encoded in the level numbers. For example, if
p.right.level == p.level, then we can infer that p.right is a red node (assuming it is
not nil).

AA tree operations: Since an AA tree is essentially a binary search tree, the find operation
is exactly the same as for any binary search tree. Insertions and deletions are performed in
essentially the same way as for AVL trees: first the key is inserted or deleted at the leaf level,
and then we retrace the search path back to the root and restructure the tree as we go. As
with AVL trees, restructuring essentially involves rotations. For AA trees the two rotation
operations go under the special names skew and split. They are defined as follows:

A C E

d

b

b

d

A C E

skew(p)

p

(a)

A C E

d
b

split(p)

p

(b)

d

A C E G

b ff

G

returned

q p

q q

p

q

returned

Fig. 35: AA restructuring opertions (a) skew and (b) split. (Afterwards q may be red or black.)

skew(p): If p is black and has a red left child, rotate so that the red child is now on the
right (see Fig. 35(a)). The level of these two nodes are unchanged. Return a pointer to
upper node of the resulting subtree.

split(p): If p is black and has a chain of two consecutive red nodes to its right , split this
triple by performing a left rotation at p and promoting p’s right child, call it q, to the
next higher level (see Fig. 35(b)).

In the figure, we have shown p as a black node, but in the context of restructuring p may be
either red or black. As a result, the node q that is returned from the operations may either be
red or black. The implementation of these two operations is shown in the code block below.

AA-tree insertion: As mentioned above, we insert a node just as for a standard binary-search
tree and then work back up the tree restructuring as we go. What sort of restructuring is
needed? Recall first that (following the policies of 2-3 trees) all leaves should be at the same
level of the tree. To achieve this, when the new node is inserted, we assign it the same level
number as its parent. This is equivalent to saying that the newly inserted node is red (see
Fig. 36(a)).

The first problem might arise is that this newly inserted red node is a left child, which is
not allowed (see Fig. 36(b)). Letting p denote the node’s parent, this is easily remedied by
performing skew(p) (see Fig. 36(c)). Let q be the pointer to the resulting subtree.

Next, it might be that p already had a right child that was red, and the skew could have
resulted in a right-right chain starting from q. (This is equivalent to having a 4-node in a 2-3
tree.) We remedy this by invoking the split operation on q (see Fig. 36(d)). Note that the split
operation moves the middle node of the chain up to the next level of the tree. The problems

2-3, Red-black, and AA Trees 39 CMSC 420

AA tree skew and split utilities
AANode skew(AANode p) {

if (p.left.level == p.level) { // red node to our left?

AANode q = p.left; // do a right rotation at p

p.left = q.right;

q.right = p;

return q; // return pointer to new upper node

}

else return p; // else, no change needed

}

AANode split(AANode p) {

if (p.right.right.level == p.level) { // right-right red chain?

AANode q = p.right; // do a left rotation at p

p.right = q.left;

q.left = p;

q.level += 1; // promote q to next higher level

return q; // return pointer to new upper node

}

else return p; // else, no change needed

}

33

5

(a)

9

7

insert(5)

3

9

7
p

skew(p)

9

split(q)

p

7

q
7

3

7

5 9

. . .

!! !!

(b) (c) (d)

5

Fig. 36: AA insertion: (a) Initial tree, (b) after insertion, (c) after skewing, (d) after splitting.

2-3, Red-black, and AA Trees 40 CMSC 420

that we just experienced may occur with this promoted node, and so the skewing/splitting
process generally propagates up the tree to the root.

The insertion function is provided in the following code block. In spite of this lengthy above
explanation of how restructuring is performed, the entire restructuring process is handled
very elegantly by the statement “return split(skew(p))”. (This is the principle appeal of
AA-trees over traditional red-black trees.)

AA Tree Insertion
AANode insert(Key x, Value v, AANode p) {

if (p == nil) // fell out of the tree?

p = new AANode(x, v, 1, nil, nil); // ... create a new leaf node here

else if (x < p.key) // x is smaller?

p.left = insert(x, v, p.left); // ...insert left

else if (x > p.key) // x is larger?

p.right = insert(x, v, p.right); // ...insert right

else

throw DuplicateKeyException; // duplicate key!

return split(skew(p)); // restructure and return result

}

An example of insertion is shown in Fig. 37 (mimicking the 2-3 tree of Fig. 29).

2

1 3 9 14

4

8
12

5
7

insert(6)

2

1 3 9 14

4

8
12

5
7

6

skew

2

1 3 9 14

4

8
12

5
6

7!!

2

1 3 9 14

4

8
12

5

6

!!

!!2

1 3 9 14

4

6
8

5

12

split

7

!!

4

6

8

5 7

2

1 3

12

9 14

split skew

7

Fig. 37: Example of AA-tree insertion.

AA-tree deletion: As usual deletion is more complex than insertion. If this is not a leaf node,
we find a suitable replacement node (it’s inorder successor). We copy the contents of the
replacement node to the deleted node and then we proceed to delete the replacement. After
deleting the replacement node (which must be a leaf), we retrace the search path towards the
root and restructure as we go.

Before discussing deletion, let’s first consider a useful utility function. In the process of
deletion, a node can lose one of its children. As a result, we may need to decrease this
node’s level in the tree. To assist in this process we define two functions. The first, called
updateLevel(p), updates the level of a node p based on the levels of its children. Every node
has at least one black child, and therefore, the ideal level of any node is one more than the
minimum level of its two children. If we discover that p’s current level is higher than this ideal

2-3, Red-black, and AA Trees 41 CMSC 420

value, we set it to its proper value. If p’s right child is a red node (that is, p.right.level ==

p.level prior to the adjustment), then the level of p.right needs to be decreased as well.

AA-Tree update level utility
AANode updateLevel(AANode p) { // update p’s level

int idealLevel = 1 + min(p.left.level, p.right.level);

if (p.level > idealLevel) { // p’s level is too high?

p.level = idealLevel; // decrease its level

if (p.right.level > idealLevel) // p’s right child red?

p.right.level = idealLevel; // ...fix its level as well

}

return p;

}

When the restructuring process arrives at a node p, we first fix its level using updateLevel(p).
Next we need to skew to make sure that any red children are to its right. Deletion is com-
plicated in that we may generally need to perform up to three skew operations to achieve
this: one to p, one to p.right, and one to p.right.right (see Fig. 38). After this, p may
generally be at the top of a right-leaning chain consisting of p followed by four red nodes.
To remedy this, we perform two splits, one at p, and the other to its right-right grandchild,
which becomes its right child after the first split (see Fig. 38). Whew! These splits may
not be needed, but remember that the split function only modifies the tree if needed. The
restructuring function, called fixupAfterDelete, is presented in the following code fragment.

AA-Tree Deletion Utility
AANode fixupAfterDelete(AANode p) {

p = updateLevel(p); // update p’s level

p = skew(p); // skew p

p.right = skew(p.right); // ...and p’s right child

p.right.right = skew(p.right.right); // ...and p’s right-right grandchild

p = split(p); // split p

p.right = split(p.right); // ...and p’s (new) right child

return p;

}

1 7 115

delete(1)
4

96

14 17

16

13

3

2

7 115

4

96

14 17

16

13

3

2
!!

7 115

4

96

14 17

16

13

3

!!updateLevel

2

7 115

4

96

14 17

16

13

32

updateLevel

7 115

4
139

14 17

16
6

32

skew
skew

skew

7 115 14 17

6 13

4

32

9 16

split
split

split

!!
!!

Fig. 38: Example of AA-tree deletion.

2-3, Red-black, and AA Trees 42 CMSC 420

Finally, we can present the full deletion code. It looks almost the same as the deletion code for
the standard binary search tree, but after deleting the leaf node, we invoke fixupAfterDelete
to restructure the tree. All the operations (find, insert, and delete) take time proportional to
the height of the tree, that is, O(log n).

AA Tree Deletion
AANode delete(Key x, AANode p) {

if (p == nil) // fell out of tree?

throw KeyNotFoundException; // ...error - no such key

else {

if (x < p.key) // look in left subtree

p.left = delete(x, p.left);

else if (x > p.key) // look in right subtree

p.right = delete(x, p.right);

else { // found it!

if (p.left == nil && p.right == nil) // leaf node?

return nil; // just unlink the node

else if (p.left == nil) { // no left child?

AANode r = inorderSuccessor(p); // get replacement from right

p.copyContentsFrom(r); // copy replacement contents here

p.right = delete(r.key, p.right); // delete replacement

}

else { // no right child?

AANode r = inorderPredecessor(p); // get replacement from left

p.copyContentsFrom(r); // copy replacement contents here

p.left = delete(r.key, p.left); // delete replacement

}

}

return fixupAfterDelete(p); // fix structure after deletion

}

}

Lecture 7: Randomized Search Structures: Treaps and Skip Lists

Randomized Data Structures: A common design techlque in the field of algorithm design in-
volves the notion of using randomization. A randomized algorithm employs a pseudo-random
number generator to inform some of its decisions. Randomization has proved to be a re-
markably useful technique, and randomized algorithms are often the fastest and simplest
algorithms for a given application.

This may seem perplexing at first. Shouldn’t an intelligent, clever algorithm designer be
able to make better decisions than a simple random number generator? The issue is that a
deterministic decision-making process may be susceptible to systematic biases, which in turn
can result in unbalanced data structures. Randomness creates a layer of “independence,”
which can alleviate these systematic biases.

In this lecture, we will consider two famous randomized data structures, which were invented
at nearly the same time. The first is a randomized version of a binary tree, called a treap.
This data structure’s name is a portmanteau (combination) of “tree” and “heap.” It was
developed by Raimund Seidel and Cecilia Aragon in 1989. (Remarkably, this 1-dimensional

Treaps and Skip Lists 43 CMSC 420

data structure is closely related to two 2-dimensional data structures, the Cartesian tree by
Jean Vuillemin and the priority search tree of Edward McCreight, both discovered in 1980.)

The other data structure is the skip list, which is a randomized version of a linked list where
links can point to entries that are separated by a significant distance. This was invented by
Bill Pugh (a professor at UMD!).

Because the treaps and skiplists are randomized data structure, running times depend on
the random choices made by the algorithm. We will see that all the standard dictionary
operations take O(log n) expected time. The expectation is taken over all possible random
choices that the algorithm may make. You might protest, since this allows for rare instances
where the performance is very bad. While this is always a possibility, a more refined analysis
shows that (assuming n is fairly large) the probability of poor performance is so insanely
small that it is not worth worrying about.

Treaps: The intuition behind the treap is easy to understand. Recall back when we discussed stan-
dard (unbalanced) binary search trees that if keys are inserted in random order, the expected
height of the tree is O(log n). The problem is that your user may not be so accommodating
to insert keys in this order. A treap is a binary search tree whose structure arises “as if” the
keys had been inserted in random order.

Let’s recall how standard binary tree insertion works. When a new key is inserted into such
a tree, it is inserted at the leaf level. If we were to label each node with a “timestamp”
indicating its insertion time, as we follow any path from the root to a leaf, the timestamp
values must increase monotonically (see Fig. 39(b)). From your earlier courses you should
know a data structure that has this very property—such a tree is generally called heap.

k

e o

fb

ca h

m w

s

(a) (b)

1
k

Insertion order: k, e, b, o, f, h, w, m, c, a, s

2
e

4
o

8
m

5
f

6
h

3
b

10
a

9
c

7
w

11
s

Binary search tree With timestamps

Timestamp

Key

Fig. 39: (a) A binary search tree and (b) associating insertion timestamps with each node.

This suggests the following simple idea: When first inserted, each key is assigned a random
priority, call it p.priority. As in a standard binary tree, keys are sorted according to an
inorder traversal. But, the priorities are maintained according to heap order. Since the
priorities are random, it follows that the tree’s structure is consistent with a tree resulting
from a sequence of random insertions. Thus, we have the following:

Theorem: A treap storing n nodes has height O(log n) in expectation (over all n! possible
orderings of the random priorities present in the tree).

Since priorities are random, you might wonder about possibility of two priorities being equal.
This might happen, but if the domain of random numbers if much larger than n (say at

Treaps and Skip Lists 44 CMSC 420

least n2) then these events will be sufficiently rare that they cannot significantly affect the
tree’s structure. The next question is whether we can maintain this structure efficiently. The
answer is “yes”, and it is remarkably easy.

Treap Insertion: Insertion into the treap is remarkably simple. First, we apply the standard
binary-search-tree insertion procedure. When we “fall out” of the tree, we create a new node
p, and set its priority, p.priority, to a random integer. We then walk retrace the path
back up to the root (as we return from the recursive calls). Whenever we come to a node
p whose child’s priority is smaller than p’s, we apply an appropriate rotation (depending on
which child it is), thus reversing their parent-child relationship. We continue doing this until
the newly inserted key node is lifted up to its proper position in heap order. The code is so
simple, that we will leave as an exercise.

03
k

13
e

45
o

78
m

51
f

57
h

37
b

84
c

67
w

insert(“t”)
priority = 14

14
t

03
k

13
e

45
o

78
m

51
f

57
h

37
b

84
c

67
w

14
t

03
k

13
e

45
o

78
m

51
f

57
h

37
b

84
c

67
w

!!

!! 14
t

03
k

13
e

45
o

78
m

51
f

57
h

37
b

84
c

67
w

rotate w-t rotate o-t OK

Fig. 40: Treap insertion.

Treap Deletion: Deletion is also quite easy, but as usual it is a bit more involved than insertion.
If the deleted node is a leaf or has a single child, then we can remove it in the same manner
that we did for binary trees, since the removal of the node preserves the heap order. However,
if the node has two children, then normally we would have to find the replacement node, say
its inorder successor and copy its contents to this node. The newly copied node will then be
out of priority order, and rotations will be needed to restore it to its proper heap order.

There is, however, a cute trick for performing deletions. We first locate the node in the tree
and then set its priority to ∞ (see Fig. 41). We then apply rotations to sift it down the tree
to the leaf level, where we can easily unlink it from the tree.

14
t

03
k

45
o

67
w

14
t

03
k

45
o

67
w

14
t

03
k

45
o

67
w

57
h

57
h

57
h

89
a

89
a

89
a

14
t

03
k

13
e

45
o

51
f

37
b

67
w

delete(“e”)

∞
e

51
f

37
b

rotate e-b

!!

∞
e

51
f

37
b

!!

∞
e

51
f

57
h

37
b

89
a

rotate e-f

unlink e

Fig. 41: Treap deletion.

The treap is particularly easy to implement because we never have to worry about adjusting
the priority field. For this reason, treaps are among the fastest data tree-based dictionary
structures.

Treaps and Skip Lists 45 CMSC 420

Skip Lists: Skip lists began with the idea, “how can we make sorted linked lists better?” It is
easy to do operations like insertion and deletion into linked lists, but it is costly to locate
items efficiently because we have to walk through the list one item at a time. If we could
“skip” over multiple of items at a time, however, then we could perform searches efficiently.
Intuitively, a skip list is a data structure that encodes a collection of sorted linked lists, where
links skip over 2, then 4, then 8, and so on, elements with each link.

To make this more concrete, imagine a linked list, sorted by key value. There are two nodes
at either end of the list, called head and tail. Take every other entry of this linked list (say
the even numbered entries) and extend it up to a new linked list with 1/2 as many entries.
Now take every other entry of this linked list and extend it up to another linked with 1/4 as
many entries as the original list, and continue this until no elements remain. The head and
tail nodes are always lifted (see Fig. 42). Clearly, we can repeat this process dlg ne times.
(Recall that “lg” denotes log base 2.) The result is something that we will call an “ideal”
skip list. Unlike the standard linked list, where you may need to traverse O(n) links to reach
a given node, in this list any node can be reached with O(log n) links from the head.

2 10 13 22
8 19

11
25

head tail

∞

0

1

2

3

4

5

Fig. 42: The “ideal” skip list.

To search for a key x, we start at the highest level of head. We scan linearly along the list at
the current level i, until we are about to jump to an node whose key value is strictly greater
than to x. Since tail is associated with ∞, we will always succeed in finding such a node.
Let p point to the node just before this step. If p’s data value is equal to x then we stop.
Otherwise, if we are not yet at the lowest level, we descend to the next lower level i− 1 and
continue the search there. Finally, if we are at the lowest level and have not found x, we
announce that the x is not in the list (see Fig. 43).

2 10 13 22
8 19

11
25

head tail
find(22)

∞

0

1

2

3

4

5

Fig. 43: Searching the ideal skip list.

How long would this search require in the worst case? Observe that we need never traverse
more than one link at any given level in the path to the desired node. We will generally need
to access two nodes at each level, however, because the need to determine the node whose

Treaps and Skip Lists 46 CMSC 420

key is greater than x’s. As mentioned earlier, the number of levels is dlg ne. Therefore, the
total number of nodes accessed is O(log n).

Randomized Skip Lists: Unfortunately, like a perfectly balanced binary tree, the ideal skip list
is too pure to be able to use for a dynamic data structure. As soon as a single node was
added to the middle of the lists, all the heights following it would need to be modified. But
we can relax this requirement to achieve an efficient data structure. In the ideal skip list,
every other node from level i is extended up to level i+ 1. Instead, how about if we did this
randomly?

Suppose that we have built the skip list up to some level i, and we want to extend this to level
i+ 1. Imagine of node at level i tossing a coin. If the coin comes up heads (with probability
1/2) this node promotes itself to level i + 1, and otherwise it stops here. By the nature of
randomization, the expected number of nodes at level i+ 1 will be half the number of nodes
at level i. Thus, the expected number of nodes at level k will be n/2k, which means that the
expected number of nodes at level dlg ne is a constant. Fig. 44 shows what such a randomized
skip list, or simply skip list, will look like.

25

13

2 8 11 22
10 19

head tail

∞

0

1

2

3

4

5

Fig. 44: A (randomized) skip list.

Space Analysis: Unlike binary search trees whose nodes are all of the same size, the nodes of a
skip list have variable sizes. If we assume that the maximum number of levels of a skip is
O(log n), then in the worst case every node contributes to every level, and the skip list would
have total storage of O(n log n). In the best case (from the perspective of storage), every
node contributes only to the lowest level, and the total storage would be O(n). Note that
either of these cases is extremely unlikely.

To describe the expected case, observe that in expectation, exactly half of the nodes from
one level are promoted to the next. Thus in expectation, all n nodes contribute to level 0,
n/2 contribute to level 1, n/4 contribute to level 2, and generally n/2i contribute to level i.
In summary in expectation, the total storage (for pointers) is:

h−1∑
i=0

n

2i
= n

h−1∑
i=0

1

2i
= n

(
2− 1

2i

)
≤ n

(
2− 1

2m

)
≤ 2n.

(Here we have made use of the formula for the geometric series,
∑m−1

i=0 (12)i = 2 − (12)m.)
Thus, the expected storage just for the pointers is O(n). Storing the keys themselves takes
just O(n) storage. Finally, the head and tail nodes take O(log n) storage each, but log n is
dominated by n asymptotically, so we can ignore their contribution.

Search-Time Analysis: Earlier, we argued that the worst-case search time in an ideal skip list
is O(log n). Now, we will show that the expected case search time in the randomized skip list

Treaps and Skip Lists 47 CMSC 420

will be O(log n). It is important to note that the analysis to follow will not depend on the
choice of keys in the data structure nor the order in which they were inserted. Rather, it will
depend solely on the randomized (coin-flipping) process used to build the data structure.

The analysis of skip lists is an example of a probabilistic analysis. As observed earlier, the
expected number of levels in a skip list is O(log n). We will show that for any fixed node, the
length of the search path leading here is O(log n) in expectation. Our analysis will be based
on walking backwards along the search path. (This is sometimes called a backwards analysis.)
Observe that the forward search path drops down a level whenever the next link would have
taken us “beyond” the node we are searching for. Thus, when we consider the reversed search
path, it will always take a step up if it can (i.e., if the node it is visiting contributes to the
next higher level), otherwise it will take a step to the left.

13

2 8 11 22
10 19

head tail

∞

0

1

2

3

4

5

25

find(25)

Fig. 45: The search path (blue) to x = 25 and the reverse search path (red).

Theorem: The expected number of nodes visited in a search in a skip list of n keys is
O(log n).

Proof: We will prove this for the more general case, where the probability that a node is
promoted to the next higher level is p, for some constant 0 < p < 1. The analysis for
our coin-flipping version of the skip follows by setting p = 1/2.

For 0 ≤ i ≤ O(log n), let E(i) denote the expected number of nodes visited in the skip
list at the top i levels of the skip list. (For example, in Fig. 45, the skip list’s top level
is 5. In this case E(2) would be the expected number of steps taken at levels 4 and 5,
and E(6) would be the expected number of steps at all the levels.) Whenever we arrive
at some node of level i, the probability that it contributes to the next higher level is
exactly p. With the remaining probability 1− p we stay at the same level. Counting the
current node we are visiting (+1), we can express E(i) by the recurrence:

E(i) = 1 + pE(i− 1) + (1− p)E(i).

With a bit of algebra, we have:

E(i) =
1

p
+ E(i− 1).

By expansion, it is easy to verify that E(i) = i
p . Since i ≤ O(log n), and by our

assumption that p is a constant, it follows that the expected search time is O(log n).

Insertion and Deletion: Insertion into a skip list is almost as easy as insertion into a standard
linked list. Given a key x to insert, we first do a search on key x to find its immediate

Treaps and Skip Lists 48 CMSC 420

predecessors in the skip list at each level of the structure. Next, we create a new node x. To
determine the height of this node, we toss a coin repeatedly until it comes up tails. (More
practically, we generate a random number until its parity is odd.) Letting k denote the
number of tosses needed, we create a node who height is the minimum of k + 1 and the
maximum height of the skip list. We then link this node in to its k + 1 lowest predecessors
in the list (see Fig. 46).

25

13

2 11 22
10 19

head tail

∞

0

1

2

3

4

5

252 11
10

head tail

∞

0

1

2

3

4

5

24

insert(24)

13

19
22

Fig. 46: Inserting a new key 24.

Deletion is quite similar. Again, we search for the node containing the key to delete, and we
keep track of all its predecessors at various levels in the skip list. On finding it we unlink
the node from each level, exactly as we would do in a standard linked-list deletion. Both
operations take O(log n) time in expectation.

Implementation Notes: One of the appeals of skip lists is their ease of implementation. Most
of procedures that operate on skip lists make use of the same simple code that is used for
linked-list operations. One additional element is that you need to keep track of the level that
you are currently on when performing searching.

Skip-list nodes have variable size, which is a bit unusual. This is not a problem in program-
ming languages like Java that allow us to dynamically allocated arrays of variable size. Thus,
each node of the skip list will generally contain the key-value pair associated with this entry,
a variable-sized array of next pointers (so that p.next[i] points to the next node in the skip
list from node p at level i). Finally, the structure has two special “sentinel nodes, ” head and
tail. We assume that tail.key is set to some incredibly large value so that searches always
stop here.

Overall Performance: From a practical perspective, skip lists can do pretty much everything
that standard binary trees structures can do. In expectation, they require O(n) storage
space, and all dictionary operations can be performed in time O(log n) in expectation. Given
their simple linear structure, they are arguably easier to visualize and program. Experimental
studies show that skip lists are among the fastest data structures for sorted dictionaries (with

Treaps and Skip Lists 49 CMSC 420

treaps). This is largely because the power of randomization keeps us from having to maintain
more complex balance information, and thus simplifies the code and processing.

Lecture 8: Splay Trees

Recap: We have discussed a number of different search structures for performing the basic ordered-
dictionary operations (insert, delete, and find). Here is a brief review:

(Standard) Binary Search Trees: Very simple, but no effort is made to balance the tree.
Height is O(log n) if keys are inserted in random order, but can be as bad as Ω(n).

If deletions are also random and symmetric deletion is used (that is, selecting the re-
placement key randomly as the inorder successor or inorder predecessor), all dictionary
operations have expected running time of O(log n). (If deletions are not symmetric, the
height of the tree can degenerate to Ω(

√
n) over time.)

AVL Trees: These are height-balanced trees. Height is guaranteed to be O(log n), and all
dictionary operations run in O(log n) time. Each node stores height information (or
the balance factor), and the tree is rebalanced by rotations. This is a very well known
“classic” data structure, but AVL trees are neither the simplest nor fastest in practice.

2-3 Trees: These trees are perfectly balanced trees (all leaf nodes at the same depth), where
each node is allowed to have either two or three children. Rebalancing is performed by
splitting and merging nodes. Height is guaranteed to be O(log n), and all dictionary op-
erations run in O(log n) time. There is some space wastage, because each node allocates
space for a three children, but there may only be two.

Red-Black and AA Trees: These are both binary-tree implementations of the 2-3 tree.
(More accurately, the standard red-black tree implements the 2-3-4 tree.) Height is
guaranteed to be O(log n), and all dictionary operations run in O(log n) time.

Red-black trees are popular because they don’t suffer the space wastage of 2-3 trees and
they run very fast in practice. Unfortunately, the number of special cases is high, and
we presented the AA tree, which is a bit slower but easier to code.

Treap and Skip Lists: These are randomized structures, which means that they rely on a
random-number generator to determine their structures. The treap uses random priori-
ties and a heap-based ordering of priorities. The skip list generalizes concept of a linked
list by layering multiple linked-lists, where roughly half of the nodes of one level are
chosen at random to be promoted to the next.

In both cases, all dictionary operations run in O(log n) time in expectation (over ran-
dom choices). These structures are easy to implement and very fast in practice. The
randomized nature of the data structure is troubling to some, but the probability of poor
performance is very low. (Note that, unlike standard binary search trees, the expected-
case behavior depends only on the random number generation, not on the actions of the
user.)

At this point you might wonder, is that everything? Far from it! While these represent the
very best known ordered-dictionary structures, there are many other operations that a user
might want the data structure to support, and there are a number of variants on these ideas
and specialized data structures for particular operations. Here are a few examples:

Splay Trees 50 CMSC 420

Order-statistic queries: Given an integer k, where 1 ≤ k ≤ n, find the kth smallest element
in the set.

Range queries: Given two keys x0 and x1, compute the sum (or any associative operation)
on all the keys of the dictionary that lie between x0 and x1.

Split/Merge: Given a search tree T and a key x, split T into two search trees T1 and T2
such that all the keys of T1 are ≤ x and all the keys of T2 are > x. Conversely, given two
search trees T1 and T2 such that every key of T1 is smaller than every key of T2, merge
them into a single search tree. The target is to solve both problems in O(log n) time.

Expected-Case Optimal Search Tree: Suppose that not all searches are equally likely.
For example, a small number of keys are much more likely to be sought than the others.
Intuitively, we should place these items much closer to the root, so that searches for
them are faster. What is the best way to do this?

All of the aforementioned search structures can be adapted to solve the first three problems
(order-statistic, range, and split/merge) in the same time as the other standard dictionary
operations. In some cases, additional information needs to be stored in the nodes of the tree
tree. (We will leave these as exercises.)

The problem of expected-case optimality is a different story, however. The structures we have
seen do not address this question. Note that this is a static problem, in the sense that we
want to build a single tree, that will perform the best over a long series of find operations.
The problem can be stated more formally as follows. Suppose that the tree stores keys
{x1, . . . , xn}, and let pi denote the probability of accessing key xi. Thus, 0 ≤ pi ≤ 1 and∑n

i=1 pi = 1. Suppose a binary search tree T stores xi in a node at depth di from the root.
The expected search time for this tree is E(T) =

∑n
i=1 pidi. Given the pi’s can we compute

the binary search tree T that minimizes E(T)?

There does exist an efficient algorithm for computing the optimum binary-search tree. (It is
a nice exercise in dynamic programming.) However, in order to compute this data structure,
we assume that we know what the access probabilities. What if they are not known? What if
they are known at some time, but they change over time? In such a dynamic setting, a better
solution would be a self-adjusting tree. This is a tree that dynamically adjusts its structure
according to a dynamically changing set of access probabilities. Intuitively, keys that are
frequently accessed will filter up near the root, and keys that are rarely accessed will slowly
fall to the deeper levels of the search tree.

Achieving this goal in a manner that can be made theoretically rigorous is a challenging
problem. It was solved by Danniel Sleator and Robert Tarjan in 1985 by a data structure,
called a splay tree. The splay tree itself is an amazing idea. While the tree is provably
(theoretically) optimal with respect to a number of different criteria, the efficiency comes at
a cost. Individual operations may take a long time, and efficiency is in the amortized sense.

Splay Trees and Amortization: All the balanced binary tree structures we have seen so far
have two things in common: (1) they use rotations to maintain structure and (2) each node
stores additional information to allow the tree to maintain balance. A splay tree is a binary
search tree, and it uses rotations to maintain its structure, but unlike the others no additional
storage is needed for balance information. (Thus, each node is just a node of a standard binary
search tree. It stores a key, value, left child, and right child. That is all!)

Because a splay tree has no balance information, it is possible for the tree to become very
unbalanced. Splay trees are remarkable in that they are self-adjusting. Having nodes that

Splay Trees 51 CMSC 420

are great depth in a binary tree is not a problem per se, until such an element is accessed.
Splay trees employ a clever trick so that whenever a very deep node is accessed, the tree will
restructure itself so that the tree becomes significantly more balanced. This is really quite
clever, when you consider the fact that the tree has no idea whether it is balanced or not!

This means that, as with standard binary search trees, it is possible that a single access
operation could take as long as Ω(n) time (and not the O(log n) that we would like). However,
splay trees are efficient in the amortized sense:

Splay Tree Performance Bound: Starting with an empty tree, the total time needed to
perform any sequence of m insert/delete/find operations on a splay tree is O(m log n),
where n is the maximum number of nodes in the tree.

Thus, although any individual operation may be quite costly (as high as Ω(n) time), the
average cost of any operation is at most O(log n). This type of analysis (averaging over a
sequence of operations) is called an amortized analysis. In the business world, amortization
refers to the process of paying off a large payment over time in small installments. Here we
are paying for the total running time of the data structure’s algorithms over a sequence of
operations in small installments. Even though each individual operation may be costly, the
overall average is small.

As mentioned above, splay trees tend to bring frequently accessed keys up near the root.
Indeed, it can be shown that if the access probabilities are stable, the cost of splay-tree
operations asymptotically matches the performance of an optimal binary search tree.

No balance information, optimal expected search times, self-adjusting behavior? Splay trees
sound amazing—and they are. However, they are not used that often in practice. In spite of
their cool properties, they tend to be slower in practice than red-black trees, treaps, and skip
lists. So, these other structures tend to be used more often than splay trees.

Splaying: The key to any self-adjusting data structure is the operation that incrementally modifies
the organization of objects in the structure. In the case of a splay tree, this operation is called
splaying. Given a key value x and a splay tree T the operation T.splay(x) searches for the
key x within T , and reorganizes T while rotating the node with key x up to the root of the
tree. If x is not in the tree, either the inorder predecessor or inorder successor of x will be
brought to the root instead.

Here is how T.splay(x) works. We start with the normal binary search descent from the
root of T to find the node p containing key x, or the last node visited before we fall out of
the tree. (Observe that in the latter case, p is either the inorder successor or predecessor of
x, depending on whether we fell out along a null left child link or a null right child link.
Our objective is to bring the node p up to the root.

An idea that doesn’t work: At this point you may see an obvious strategy to bring p to
the root. We walk up the tree to p’s ancestors, applying a rotation at each. While this
will satisfy one of our requirements of moving p to the root, it will not do a good job of
reorganizing the tree. To see why, suppose that we attempt to apply rotations to node
a in Fig. 47. Observe that while a is brought up to the root, the tree is still very skewed
and unbalanced.

A better idea: The poor performance of the single-rotation method suggests that we try
something that “stirs things up” a bit more. Our next idea is to go two nodes at a time

Splay Trees 52 CMSC 420

e

d
c

b
a

e

d
c

b

a

e

d

c

b

a

e

d
c

b

a e

d
c

b

a

g

f

g

f

g

f

g

f

g

f

e

d
c

b

a
g

f

Fig. 47: Single rotations up to the root—the tree is still poorly balanced.

and apply rotations at each of these nodes. For example, in Fig. 48, we see that by
applying two rotations at a time, first at the grandparent and then at the parent has
a dramatically better result on the tree height, cutting it roughly in half. (But will it
work general?)

e

d
c

b
a

e

d

c
b

a

a

e
d

c
b

g

f

g

f

g

f

a

e
d

c
b

g
f

1

2

1

2

1

2

Fig. 48: Two-at-a-time rotations up to the root—the tree height is cut almost in half.

The above exercise suggests that we work two levels at a time. Here is a more formal descrip-
tion of the splay operation at a single node p of the tree:

• If p has both a parent and grandparent, q and r be the parent and grandparent, respec-
tively. We consider two cases:

– Zig-zig: If p and q are both right children or both left children, we apply a rotation
at r followed by a rotation at q, to bring p to the top of this 3-node ensemble (see
Fig. 49(a)), and continue up the tree.

– Zig-zag: If p and q are left-right or right-left children, we apply a rotation at
q followed by a rotation at r, to bring p to the top of this 3-node ensemble (see
Fig. 49(b)), and continue up the tree.

• Zig: If p is the child of the root, we do a single rotation at the root of T , making p the
new root (see Fig. 49(a)), and are now done.

• If p is the root of T , we are done.

A full example is shown in Fig. 50. Note that the tree’s inorder structure is preserved. Also
observe that nodes lying on or near the search path to p (such as 1) tend to be lifted much
closer to the root through this operation.

You might wonder why we performed these particular rotations in this particular order. The
situation that we are most concerned about is where the tree is highly imbalanced and we

Splay Trees 53 CMSC 420

f

d
1

2
b f

d

b f

d
1

2
b

d

b f

d

b
1

d

b

(a) (b) (c)

ZigZig-zig Zig-zag

p

p

p

q

r
p

q

r

q

r

p

p

q r

root

E

G

CA

A C

E A

C E

A

C

E G

A

C E

G

A C E G

Fig. 49: Splaying cases: (a) Zig-Zig, (b) Zig-Zag and (c) Zig.

3 5

4

2

1

6

7

8

9

10

11

3

5

42

1

6

7

8

9

10

11 3

5

4

2

1

6

7

8

9

10

11

3

5

4

2

1 6

7

8

9

10

11

p

p

p

Zig-zag Zig-zig Zig

Fig. 50: The full splay operation on p.

Splay Trees 54 CMSC 420

repeatedly attempt to access elements that are unusually deep in the tree, say much deeper
than O(log n) depth. Such an operation will be expensive. We want to be sure that we cannot
repeat it many times.

Because we rotate as we are backing up the tree, we may assume that the key we sought was
in one of p’s two children (shaded in blue in the figure). Observe in Fig. 49(a) and (b) that
both of these subtrees are lifted up at least one level in the tree following the zig-zig or zig-zag
rotation. Thus, if this were a long search path, then after repeating this operation all the way
to the root, the nodes along this long path would be lifted up to roughly half of their original
level. (The reason we say “halved” is that for every two levels we perform an operation that
lifts each subtree up by at least one level.) Thus, splaying has the desirable effect that it
tends to significantly reduce the length of long search paths, whenever we attempt to access
something within one of these long paths.

You may protest at this point. What about the negative impact splaying has on the levels of
other subtrees (like G in Fig. 49(a))? This is true. Clearly, there must be winners and losers.
But we the accessed node was in p’s subtree, and our principal concern is repeat visits deep
in the tree cannot be allowed to repeat excessively. A certain amount of damage to the rest of
the tree’s structure is the price that we pay for this. But to make this convincing, you should
read the full amortized proof. We will not cover it since it is quite mathematically involved.

Splay Tree Operations: Now that we know how to perform a single splay operation, how to we
use this to perform the basic dictionary operations, insert, delete, and find?

find(x): To find key x in tree T , we simply invoke T.splay(x). If x is in the tree it will
be transported to the root. If after the operation, the root key is not x, we know that
x is not in the dictionary. (Why bother moving x to the root? Recall that in the
case of expected-case optimal trees, a small number of nodes may have very high access
probabilities. The splaying operation has the tendency to keep these nodes nearest to
the root.)

insert(x, v): To insert the key-value pair (x, v), we first invoke T.splay(x). If x is already
in the tree, it will be transported to the root, and we can take appropriate action (e.g.,
throw an exception). Otherwise, the root will consist of some key y that is either the
key immediately before x or immediately after x in T . Let us consider the former case
(y < x), since the other case is symmetrical. Let R denote the right subtree of the
root. We know that all the keys in R are greater than x so we create a new root node
containing x and v, and we make R its right subtree (see Fig. 51). The remaining nodes
are hung off as the left subtree L of this node.

delete(x): To delete x, we first invoke T.splay(x) to bring the deleted node to the root.
If the root’s key is not x, then x is not in the tree, and we can take appropriate error
action. Otherwise, let L and R be the left and right subtrees of the resulting tree (see
Fig. 52). If L is empty, then x is the new smallest key in the tree. We remove x and R
becomes the new tree. We can do the symmetrical thing if R is empty.

Otherwise, both subtrees are nonempty, and we next find an appropriate replacement
node. To do this, we perform R.splay(x). (It might be smarter to flip a coin and do
L.splay(x) half the time for the sake of symmetry. This will not affect the theoretical
analysis of the tree’s performance.) Let’s call the resulting subtree R′. Since x is not in
R and all the keys in this subtree are greater than x, this will bring the smallest key y
of R to the root. This implies that y is x’s inorder successor from the original tree. It

Splay Trees 55 CMSC 420

y x

y

T
T.splay(x) insert x

(assume y < x)

L

L R R

Fig. 51: Splay-tree insertion of x.

xT

L R

x

L

R′
y

R′
y

L

T.splay(x) R.splay(x)

Fig. 52: Splay-tree deletion of x.

follows that y can have no left child in R′. To complete the operation, we simply link L
as the left child of R′.

Why Splay Trees Work: (Optional) Sleator and Tarjan proved that, if you start with an empty
tree and perform any sequence of m splay tree operations (insert, delete, find), then the total
running time will be O(m log n), where n is the maximum number of elements in the tree at
any time. Thus the average time per operation is O(log n), as we would like. Their amortized
analysis involves a potential-based argument. We will sketch the idea without getting into the
details.

The intuition is to associate a potential with any tree. Intuitively, the potential is a value
that informs you how badly unbalanced the tree is. In financial terms, we think of potential
as money in a bank account. As it accrues, we can use it to pay for the cost of rebalancing
the tree. The argument relies on showing that no matter what sequence of operations occurs,
there is always a nonnegative potential (“money in the bank”). The amortized cost of any
operation is defined to be the sum of the actual cost of the operation (e.g., the number of
rotations performed) and the change in potential. The objective is to show that the amortized
cost of every operation is O(log n). Some operations may be very costly (e.g., splaying along
a path of length n), but the resulting decrease in the tree’s potential will be large enough to
compensate for this.

So, what is the potential function used for proving splay trees have good amortized perfor-
mance? First, for each node p of the tree, define size(p) to be the number of nodes in the
subtree rooted at p. Define rank(p) = lg size(p). Intuitively, the rank of a node is the “ideal
height” of this subtree in a perfectly balanced tree. The potential function of a tree is defined

Splay Trees 56 CMSC 420

to be
Φ(T) =

∑
p∈T

rank(p) =
∑
p∈T

lg size(p).

The following is the key to the analysis. It bounds the amortized cost of each rotation
operation.

Rotation Lemma: Given any node p, let rank(p) and rank′(p) denote its rank before and
after applying a rotation step. The amortized cost of a zig rotation at p is at most
1 + 3(rank′(p)− rank(p)), and the amortized cost of a zig-zig or zig-zag rotation at any
node p is at most 3(rank′(p)− rank(p)).

(Partial) Proof: We will only prove the case of the zig-zig rotation. The other cases follow
by a similar sort of derivation, which we leave as an exercise.

To simplify notation, let’s write rank(x) as r(x) and size(x) and s(x). Suppose that
we perform a zig-zig rotation involving three nodes x, y, and z, as shown in Fig. 49(a)
(where x, y, and z play the roles of p, q, and r, respectively). Let r(x), r(y), and
r(z) denote the ranks of these items before the rotation, and let r′(x), r′(y), and r′(z)
denote these ranks after the rotation. The actual cost for the zig-zig is 2 rotations,
and since these are the only changes made in the tree, the change in potential is ∆Φ =
(r′(x) + r′(y) + r′(z))− (r(x) + r(y) + r(z)). Thus, the amortized cost of this operation
is

A = 2 + ∆Φ = 2 + (r′(x) + r′(y) + r′(z))− (r(x) + r(y) + r(z)).

Rearranging terms we have

A = 2 + (r′(x)− r(z)) + r′(y) + r′(z)− r(x)− r(y).

Observe that after the rotation x’s subtree is the same as z’s subtree before the rotation,
so r′(x) = r(z). Also, observe that before the rotation y’s subtree contains x’s subtree,
so r(y) ≥ r(x) or equivalently −r(y) ≤ −r(x). After the rotation y’s subtree is contained
in x’s subtree, so r′(y) ≤ r′(x). Thus, we have

A ≤ 2 + 0 + r′(x) + r′(z)− r(x)− r(x) = 2 + r′(x) + r′(z)− 2r(x).

Next, we will employ an observation about the logarithm function. It is a concave
function, which implies that for any a and b, (lg a+lg b)/2 ≤ lg((a+b)/2). Also, observe
that s(x) + s′(z) ≤ s′(x). Using these and the fact that r(x) = lg s(x), we have

r(x) + r′(z)

2
=

lg s(x) + lg s′(z)

2
≤ lg

s(x) + s′(z)

2

≤ lg
s′(x)

2
= (lg s′(x))− 1 = r′(x)− 1.

This implies that r′(z) ≤ 2r′(x)− r(x)− 2. Plugging this in to our expression for A, we
have

A ≤ 2 + r′(x) + (2r′(x)− r(x)− 2)− 2r(x) ≤ 3r′(x)− 3r(x) ≤ 3(r′(x)− r(x)),

which is what we set out to prove. Whew!

Splay Trees 57 CMSC 420

It is rather difficult to see what the benefit of this symbol manipulation is, but the key is that
we have completely eliminated the +2 term in the zig-zig and zig-zag cases. This means that
we can perform any number of these and the only terms that accumulate will be of the form
r′(x)− r(x), which is just the potential change. By applying this all the way up the rotation
path, we obtain a telescoping series (and a final +1 for the last zig rotation). This implies
the following:

Splay Lemma: The amortized cost of a T.splay(p) is at most 1 + 3(rank(root)− rank(p)).

Since the rank of the root cannot exceed lg n and the rank of p is nonnegative, we immediately
have:

Corollary: The amortized cost of T.splay(p) is O(log n).

Finally, since each dictionary operation involves a constant number of splaying operations,
we obtain the final result.

Theorem: The amortized cost of each dictionary operation in a splay tree is O(log n).

Wow! That is one impressive bit of data structure analysis. You are not responsible for
knowing it, but this is great example of how amortized analyses are performed.

Why are Splay Trees Great? Splay trees are amazing in the sense that they satisfy (at least
theoretically) many optimality properties, which none of the other search trees that we have
seen. Here is a partial list.

Balance Theorem: The cost of applying any sequence of m accesses (insert, delete, find)
on a splay tree with n elements is O(m log n+ n log n)

Static Optimality Theorem: Let qx denote the number of times that an element x is
accessed in a sequence of m accesses to a splay tree. (Think of qx/m = px as an
empirical measure of the probability of accessing x.) Then the cost of performing these
accesses is

O

(
m+

∑
x

qx log
m

qx

)
.

The expression in the summation is the entropy of the access probability distribution,
and this is a theoretical lower bound on the performance of any decision-based data
structure.

Static Finger Theorem: Assume that the items are numbered 1 through n in ascending
order. Let f be any fixed element (the “finger”). Then the cost of performing any
sequence of operations is

O

(
m+ n log n+

∑
x

log(|x− f |+ 1)

)
.

Intuitively, this says that the cost of any operation is the logarithm of the number of
elements between the accessed element and the finger.

Splay Trees 58 CMSC 420

Dynamic Finger Theorem: Assume that finger for each step in accessing an element y is
the location of element accessed in the previous step x. Then the cost of performing any
sequence of operations is

O

(
m+ n log n+

∑
x,y

log(|y − x|+ 1)

)
.

Intuitively, this that if you start a search from some element y to another element x, the
cost of the operation is the log of the number of elements between them.

Working-Set Theorem: Each time an element x is accessed, let t(x) be the number of
elements that were accessed since x’s last access. Then the cost of performing the
sequence is

O

(
m+ n log n+

∑
x

log(t(x) + 1)

)
.

Intuitively, this says that if we accessed an element t steps ago, then the time to access
it now is rougly log t.

Scanning Theorem: If each element of a splay tree is accessed in ascending (or descending)
order, the total time for all these accesses is O(n). (A naive bound would be O(n log n).)

Lecture 9: B-Trees

B-trees: While binary trees are great data structures for ordered dictionaries stored in main
memory, these data structures are really not appropriate for data stored on external memory
systems (i.e., disks). When accessing data on a disk, an entire block (or page) is input at
once. So it makes sense to design the tree so that each node of the tree essentially occupies
one entire block. This idea applies more generally to modern memory hierarchies, where
memory is divided into various levels of caches. The data structure we will discuss today is
appropriate whenever memory can be accessed efficiently in blocks.

An alternative strategy is to use multiway search trees, where each node is chosen so that
it fits coincides with a memory block. Standard binary search tree store a single key value
and two children left and right storing keys that are smaller than and greater than this key,
respectively. In a j-ary multiway search tree node, a node stores references to j different
subtrees, T1, . . . , Tj and contains j−1 key values, a1 < . . . < aj−1, such that subtree Ti stores
nodes whose key values x such that ai−1 < x < ai. (To handle the boundary cases, let’s make
the convention that a0 = −∞ and aj = +∞, but these are not stored in the node.)

(b)

a

(a)

x < a1 a1 < x < a2 a2 < x < a3 a3 < xx < a x > a

a1 : a2 : a3

T1 T2 T3 T4

Fig. 53: Binary and 4-ary search tree nodes.

B-Trees 59 CMSC 420

B-trees are multiway search trees, in which we achieve balance by constraining the “width”
of each node. We have already introduced this concept in our discussion of 2-3 trees. In this
lecture, we will consider how to generalize this to nodes of arbitrary width.

B-trees were first introduced way back in 1970 by Rudolf Bayer and Edward McCreight. They
have proven to be very popular, but with popularity comes variety. Numerous modifications
and adaptations of B-trees have been developed over the years. We will present one (fairly
simple) formulation. Later in the lecture we will discuss a particularly popular variant, called
B+ trees.

For any integer m ≥ 3, a B-tree of order m is a multiway search tree has the following
properties:

• The root is either a leaf or has between two and m children.

• Each node except the root has between dm/2e and m children (which may be empty,
that is null). A node with j children contains j − 1 key.

• All leaves are at the same level of the tree.

A B-tree of order 5 is shown in Fig. 54.

07 20 31 40 56 66 71 --

02
04
06
--

08
09
13
19

23
25
26
30

35
38
--
--

42
44
48
--

53
54
--
--

58
59
62
64

67
68
70
--

72
74
--
--

81 89 -- --

77
78
80
--

84
85
87
--

90
91
94
97

49 75 -- --

Fig. 54: B-tree of order 3, also known as a 2-3 tree.

The 2-3 tree that we presented earlier is an example of a B-tree of order 3. The typical fan-out
values for B-trees are quite large. For example, B-trees of order of around 100 are common
in practice. A node in such a tree has between 50 and 100 children and holds between 49 and
99 keys. Of course, with such high fan-outs, the depth of the tree is quite small.

Height Analysis: The following theorem show that as fan-out of a B-tree grows, the height of
the tree decreases.

Theorem: A B-tree of order m containing n keys has height at most (lg n)/γ, where γ =
lg(m/2).

Proof: To avoid messy floor-ceiling arithmetic, let’s just assume that m is even. Let N(h)
denote the number of nodes in the skinniest possible order-m B-tree of height h. The
root has at least two children, each of them has at least m/2 children. Therefore, there
are at least two nodes at depth 1, 2(m/2) nodes at depth 2, 2(m/2)2 nodes at depth 3,
2(m/2)3 nodes at depth 4, and in general, there are at least 2(m/2)k−1 nodes at depth
k. Thus, the total number of nodes in an entire tree of height h is at least

N(h) =
h∑

i=1

2
(m

2

)i−1
= 2

h−1∑
i=0

(m
2

)i
.

B-Trees 60 CMSC 420

This is a geometric series of the form
∑

i c
i, where c = m/2, and by standard formulas

we have N(h) = 2(ch − 1)/(c − 1). Assuming that m is relatively large, we may ignore
the −1 in the numerator and denominator to yield N(h) ≈ 2ch/c = 2ch−1 = 2(m/2)h−1.
Each node contains at least m/2 − 1 keys. Again, assuming that m is large, we can
approximate this as m/2. So the number of keys is at least (m/2)2(m/2)h−1 = 2(m/2)h.

By our hypothesis, the tree has n keys, and thus (recalling that “lg” means log base 2)
we infer that

n ≥ N(h) ≥ 2
(m

2

)h
⇒

(m
2

)h
≤ n

2

⇒ h lg
m

2
≤ lg

n

2

⇒ h ≤
(

lg
n

2

)/
lg
m

2

⇒ h ≤ (lg n)

/
lg
m

2
.

In the case where m = 100, the above result implies that the height of the B-tree is not
greater than (lg n)/5.6, that is, it is 5.6 times smaller than a binary search tree. For example,
this means that you can store over a 100 million keys in a search structure of depth roughly
5.

Node structure: Although B-tree nodes can hold a variable number of items, this number gener-
ally changes dynamically as keys are inserted and deleted. Therefore, every node is allocated
with the maximum possible size, but most nodes will not be fully utilized. (Experimental
studies show that B-tree nodes are on average about 2/3 utilized.)

The code block below shows a possible Java implementation of a B-tree node implementation.
In this case, we are storing integers as the elements. We place twice as many elements in each
leaf node as in each internal node, since we do not need the storage for child pointers.

B-Tree Node
final int M = ... // order of the B-tree

class BTreeNode {

int nChildren; // number of children (from M/2 to M)

BTreeNode child[M]; // children pointers

Key key[M-1]; // keys

Value value[M-1]; // values

}

Note that 2-3 trees and 2-3-4 trees discussed in earlier lectures are special cases (when M = 3
and M = 4, respectively.)

Search: Searching a B-tree for a key x is a straightforward generalization of binary tree searching.
When you arrive at an internal node with keys a1 < a2 < . . . < aj−1 search (either linearly or
by binary search) for x in this list. If you find x in the list, then we have found x. Otherwise,
determine the index i such that ai−1 < x < ai. (Recall that a0 = −∞ and aj = +∞.) Then
recursively search the subtree Ti. When you arrive at a leaf, search all the keys in this node.
If it is not here, then x is not in the B-tree.

B-Trees 61 CMSC 420

Restructuring: In an earlier lecture, we showed how to restructure 2-3 trees. We had three
mechanisms: splitting nodes, merging nodes, and subtree adoption. We will generalize each
of these operations to general B-trees.

Key Rotation (Adoption): Recall that a node in a B-tree can have from dm/2e up to m
children, and the number of keys is smaller by one. As a result of insertion or deletion,
a node may acquire one too many (m + 1 children and hence, m keys) or one too few
(dm/2e − 1 children and hence, dm/2e − 2 keys).

16 27 44 -- -- 63 -- -- -- --

T1 T2 T3 T4 T5

Key rotation

(m = 5)
!!

T6 T1 T2 T3 T4 T5 T6

16 27 -- -- -- 57 63 -- -- --

?? ?? 57 ?? ?? ?? ?? 44 ?? ??

Fig. 55: Key rotation for a B-tree of order m = 5.

The easiest way in which to remedy the imbalanced is to move a child into or from one
of your siblings, assuming that you have a sibling can absorb this change. This is called
key rotation (or as I call it, adoption). For example, in Fig. 55, the node in red has too
few children, and since its left sibling can spare a child, we move this node’s rightmost
child over, sliding the associated key value up to the parent and we take the parent’s
key value.

This operation is not always possible, because it depends on the existence of a sibling
with a proper number of keys. Because allocating and deallocating nodes is a relatively
expensive operation, we prefer this operation whenever it is available.

Node Splitting: As the result of insertion, a node may acquire one too many children (m+1
children and hence, m keys). When this happens and key rotation is not available, we
split the node into two nodes, one having m′ = dm/2e children and the other having the
remaining m′′ = m+1−dm/2e children. Clearly, the first node has an acceptable number
of children. The following lemma demonstrates that the other node has an acceptable
number of children as well.

Lemma: For all m ≥ 2, dm/2e ≤ m+ 1− dm/2e ≤ m.

Proof: If m is even, then dm/2e = m/2, and the middle expression in the inequality
reduces to m+ 1−m/2 = m/2 + 1. Thus, the claim is equivalent to

m

2
≤ m

2
+ 1 ≤ m,

which is clearly true for any m ≥ 2. On the other hand, if m is odd then dm/2e =
(m+1)/2, and the middle expression in the inequality reduces to m+1−(m+1)/2 =
(m+ 1)/2. Thus, the claim is equivalent to

m+ 1

2
≤ m+ 1

2
≤ m,

which is also clearly true for any m ≥ 1.

B-Trees 62 CMSC 420

16 27 44 63 76 16 27 -- -- -- 63 76 -- -- --

T1 T2 T3 T4 T5 T6

!!

44

T1 T2 T3 T4 T5 T6

Node splitting

Promote

(m = 5)

Fig. 56: Node splitting for a B-tree of order m = 5.

Returning to node splitting, we create two nodes and distribute the smallest m′ subtrees
to the first and the remaining m′′ to the second node (see Fig. 56). Among the m − 1
keys, m′ − 1 smallest keys go with the first node and the m′′ − 1 largest keys go with
the other node. Since (m′ − 1) + (m′′ − 1) = m − 2, we have one extra key that does
not fit into either of these nodes. This node is promoted to the parent node. (As with
2-3 trees, if we do not have a parent, we create a new root node with this single key and
just two children. By the way, this is the reason that we allowed the root to have fewer
than dm/2e children.)

Since the parent acquires an extra key and extra child, the splitting process may prop-
agate to the parent node.

Node Merging: As the result of deletion, a node may have one too few children (dm/2e−1
children and hence, dm/2e−2 keys). When this happens and key rotation is not available,
we may infer that its siblings have the minimum number dm/2e children. We merge this
node with either of its siblings into a single node having a total of m′ = (dm/2e − 1) +
dm/2e = 2 dm/2e − 1 children. The following lemma demonstrates that the resulting
node has an acceptable number of children.

Lemma: For all m ≥ 2, dm/2e ≤ 2 dm/2e − 1 ≤ m.

Proof: If m is even, then dm/2e = m/2, and the middle expression in the inequality
reduces to 2(m/2)− 1 = m− 1. Thus, the claim is equivalent to

m

2
≤ m− 1 ≤ m,

which is easily true for any m ≥ 2. On the other hand, if m is odd then dm/2e =
(m + 1)/2, and the middle expression in the inequality reduces to m. Thus, the
claim is equivalent to

m+ 1

2
≤ m ≤ m,

which is easily true for any m ≥ 1.

Returning to node merging, we merge the two nodes into a single node having m′ children
(see Fig. 57). The number of keys from the two initial nodes is dm/2e − 2 + dm/2e =
2 dm/2e − 2 = m′ − 2, which is one too few. We demote the appropriate key from the
parent’s node to yield the desired number of keys.

Since the parent has lost a key and a child, the merging process may propagate to the
parent node.

B-Trees 63 CMSC 420

16 27 -- -- -- 63 -- -- -- --

T1 T2 T3 T4 T5

44

T1 T2 T3 T4 T5

Node mergingDemote

(m = 5)
!!

16 27 44 63 --

Fig. 57: Node merging for a B-tree of order m = 5.

Given these operations, we can now describe how to perform the various dictionary operations.

Insertion: In the case of 2-3 trees, we would always split a node when it had too many keys. With
B-trees, creating nodes is a more expensive operation. So, whenever possible we will try to
employ key rotation to resolve nodes that are too full, and we will fall back on node splitting
only when necessary.

To insert a key into a B-tree of order m, we perform a search to find the appropriate leaf into
which to insert the node. If we find the key, then we signal a duplicate-key error. Otherwise,
if the leaf is not at full capacity (it has fewer than m− 1 keys) then we simply insert it and
are done. Note that this will involve sliding keys around within the leaf node to make room
for the new entry, but since m is assumed to be a constant (e.g., the size of one disk page),
we ignore this extra cost.

07 20 31 40 56 66 71 75

02
04
06
--

08
09
13
19

23
25
26
30

32
34
35
38

42
44
48
--

53
54
--
--

58
59
62
64

67
68
70
--

72
74
--
--

77
78
80
--

49 -- -- --

07 20 31 40 56 66 71 75

02
04
06
--

08
09
13
19

42
44
48
--

53
54
--
--

58
59
62
64

67
68
70
--

72
74
--
--

77
78
80
--

49 -- -- --

23
25
26
29
30

!!

56 66 71 75

02
04
06
--

08
09
13
19

42
44
48
--

53
54
--
--

58
59
62
64

67
68
70
--

72
74
--
--

77
78
80
--

49 -- -- --

!!

23
25
--
--

29
30
--
--

07 20 31 402656 66 71 75

02
04
06
--

08
09
13
19

42
44
48
--

53
54
--
--

58
59
62
64

67
68
70
--

72
74
--
--

77
78
80
--

26 49 -- --

23
25
--
--

29
30
--
--

07 20 -- -- 31 40 -- --

insert(29)

split split

32
34
35
38

32
34
35
38

32
34
35
38

Fig. 58: Insertion of key 29 (m = 5).

Otherwise the node overflows and to remedy the situation, we first check whether either
sibling is less than full. If so, we perform a rotation moving the extra key and child into

B-Trees 64 CMSC 420

this sibling. Otherwise, we perform a node split as described above (see Fig. 58). When this
happens, the parent acquires a new child and new key, and thus the splitting process may
continue with the parent node.

Deletion: As in binary tree deletion we begin by finding the node to be deleted. We need to find
a suitable replacement for this node. This is done by finding the largest key in the left child
(or equivalently the smallest key in the right child), and moving this key up to fill the hole.
This key will always be at the leaf level. This creates a hole at the leaf node. If this leaf node
still has sufficient capacity (at least dm/2e − 1 keys) then we are done.

Otherwise, we have an underflow situation at this node. As with insertion we first check
whether a key rotation is possible. If one of the two siblings has at least one key more than
the minimum, then we rotate the extra key into this node, and we are done (see Fig. 59).

56 66 71 75

02
04
06
--

08
09
13
19

35
38
--
--

42
44
48
--

53
54
--
--

58
59
62
64

67
68
70
--

72
74
--
--

77
78
80
--

26 49 -- --

23
25
--
--

29
30
--
--

07 20 -- -- 31 40 -- --

Copy replacement (23)

56 66 71 75

02
04
06
--

08
09
13
19

35
38
--
--

42
44
48
--

53
54
--
--

58
59
62
64

67
68
70
--

72
74
--
--

77
78
80
--

26 49 -- --

25
--
--
--

29
30
--
--

07 23 -- -- 31 40 -- --

!!

56 66 71 75

02
04
06
--

08
09
13
--

35
38
--
--

42
44
48
--

53
54
--
--

58
59
62
64

67
68
70
--

72
74
--
--

77
78
80
--

26 49 -- --

23
25
--
--

29
30
--
--

07 19 -- -- 31 40 -- --

key rotation

56 66 71 75

02
04
06
--

08
09
13
19

35
38
--
--

42
44
48
--

53
54
--
--

58
59
62
64

67
68
70
--

72
74
--
--

77
78
80
--

26 49 -- --

23
25
--
--

29
30
--
--

07 23 -- -- 31 40 -- --

delete(20)

delete replacement

Fig. 59: Deletion of key 23 (m = 5).

If this is not possible, then any siblings of ours must have the minimum number of dm/2e
children, and so we can apply a node node merge (see Fig. 60).

The removal of a key from the parent’s node may cause it to underflow. Thus, the process
may need to be repeated recursively up to the root. If the root now has only one child, and
we make this single child the new root of the B-tree.

B+ trees: B-trees have been very successful, and a number of variants have been proposed. A
particularly popular one for disk storage is called a B+ tree. The key differences with the
standard B-tree as the following:

• Internal and leaf nodes are different in structure:

– Internal nodes store keys only, no values. The keys in the internal nodes are used
solely for locating the leaf node containing the actual data, so it is not necessary
that every key appearing in an internal node need correspond to an actual key-value
pair.

B-Trees 65 CMSC 420

delete(30)

56 66 71 75

02
04
06
--

08
09
13
--

35
38
--
--

42
44
48
--

53
54
--
--

58
59
62
64

67
68
70
--

72
74
--
--

77
78
80
--

26 49 -- --

20
25
--
--

29
30
--
--

07 19 -- -- 31 40 -- --

merge

56 66 71 75

02
04
06
--

08
09
13
--

35
38
--
--

42
44
48
--

53
54
--
--

58
59
62
64

67
68
70
--

72
74
--
--

77
78
80
--

26 49 -- --

20
25
--
--

29
--
--
--

07 19 -- -- 31 40 -- --

!!

56 66 71 75

02
04
06
--

08
09
13
--

29
31
35
38

42
44
48
--

53
54
--
--

58
59
62
64

67
68
70
--

72
74
--
--

77
78
80
--

26 49 -- --

20
25
--
--

07 19 -- -- 40 -- -- --
!!

66 71 75 --

02
04
06
--

08
09
13
--

29
31
35
38

42
44
48
--

53
54
--
--

58
59
62
64

67
68
70
--

72
74
--
--

77
78
80
--

26 56 -- --

20
25
--
--

07 19 -- -- 40 49 -- --

rotate key

Fig. 60: Deletion of key 30 (m = 5).

– All the key-value pairs are stored in the leaf nodes. There is no need for child
pointers. (This also saves space.)

• Each leaf node has a next-leaf pointer, which points to the next leaf in sorted order.

Storing keys only in the internal nodes saves space, and allows for increased fan-out. This
means the tree height is lower, which reduces number of disk accesses. Thus, the internal
nodes are merely an index to locating the actual data, which resides at the leaf level. (The
policy regarding which keys a subtree contains are changed. Given an internal node with keys
〈a1, . . . , aj−1〉, subtree Tj contains keys x such that ai−1 < x ≤ ai.)
The next-leaf links enable efficient range reporting queries. In such a query, we are asked to
list all the keys in a range [xmin, xmax]. We simply find the leaf node for xmin and then follow
next-leaf links until reaching xmax.

Lecture 10: Hashing - Basic Concepts and Hash Functions

Hashing: We have seen various data structures (e.g., binary trees, AVL trees, splay trees, skip
lists) that can perform the dictionary operations insert(), delete() and find(). We know
that these data structures provide O(log n) time access. It is unreasonable to expect any
type of comparison-based structure to do better than this in the worst case. Using binary
decisions, there is a lower bound of Ω(log n) (and more precisely, 1+ blg nc) on the worst case
search time.

Remarkably, there is a better method, assuming that we are willing to give up on the idea of
using comparisons to locate keys. The best known method is called hashing. Hashing and its
variants support all the dictionary operations inO(1) (i.e. constant) expected time. Hashing is
considered so good, that in contexts where just these operations are being performed, hashing
is the method of choice. The price we pay is that we cannot perform dictionary operations

Hashing - Basic Concepts 66 CMSC 420

based on search order, such as range queries (finding the keys x such that x1 ≤ x ≤ x2) or
nearest-neighbor queries (find the key closest to a given key x).

The idea behind hashing is very simple. We have a table of given size m, called the table size.
We will assume that m is at least a small constant factor larger n. We select a hash function
h(x), which is an easily computable function that maps a key x to a “virtually random” index
in the range [0..m-1]. We then attempt to store x (and its associated value) in index h(x)
in the table. Of course, it may be that different keys are mapped to the same location. Such
events are called collisions, and a key element in the design of a good hashing system how
collisions are to be handled. Of course, if the table size is large (relative to the total number
of entries) and the hashing function has been well designed, collisions should be relatively
rare.

Hashing is quite a versatile technique. One way to think about hashing is as a means of
implementing a content-addressable array. We know that arrays can be addressed by an
integer index. But it is often convenient to have a look-up table in which the elements
are addressed by a key value which may be of any discrete type, strings for example or
integers that are over such a large range of values that devising an array of this size would
be impractical. Note that hashing is not usually used for continuous data, such as floating
point values, because similar keys 3.14159 and 3.14158 may be mapped to entirely different
locations.

There are two important issues that need to be addressed in the design of any hashing system,
the hash function and the method of collision resolution. Let’s discuss each of these in turn.

Hash Functions: A good hashing function should have the following properties:

• It should be efficiently computable, say in constant time and using simple arithmetic
operations.

• It should produce few collisions. Two additional aspects of a hash function implied by
this are:

– It should be a function of every bit of the key (otherwise keys that differ only in
these bits will collide)

– It break up (scatter) naturally occuring clusters of key values.

As an example of the last rule, observe that in writing programs it is not uncommon to use
very similar variables names, “temp1”, “temp2”, and “temp3”. It is important such similar
names be mapped to very different locations in the hash output space. By the way, the origin
of the name “hashing” is from this mixing aspect of hash functions (thinking of “hash” in
food preparation as a mixture of things).

We will think of hash functions as being applied to nonnegative integer keys. Keys that are
not integers will generally need to be converted into this form (e.g., by converting the key into
a bit string, such as an ASCII or Unicode representation of a string) and then interpreting the
bit string as an integer. Since the hash function’s output is the range [0..m− 1], an obvious
(but not very good) choice for a hash function is:

h(x) = x mod m.

This is called division hashing. It satisfies our first criteria of efficiency, but consecutive keys
are mapped to consecutive entries, and this is does not do a good job of breaking up clusters.

Hashing - Basic Concepts 67 CMSC 420

Some Common Hash Functions: Many different hash functions have been proposed. The topic
is quite deep, and we will not claim to have a definitive answer for the best hash function.
Here are three simple, commonly used hash functions:

Multiplicative Hash Function: Uses the hash function

h(x) = (ax) mod m,

where a is a large prime number (or at least, sharing no common factors with m).

Linear Hash Function: Enhances the multiplicative hash function with an added constant
term

h(x) = (ax+ b) mod m.

Polynomial Hash Function: We can further extend the linear hash function to a polyno-
mial. This is often handy with keys that consist of a sequence of objects, such as strings
or the coordinates of points in a multi-dimensional space.

Suppose that the key being hashed involves a sequence of numbers x = (c0, c1, . . . , ck−1).
We map them to a single number by computing a polynomial function whose coefficients
are these values. For example, if the ci’s are characters of a string, we might convert each
to an integer (e.g., using Java’s function Character.getNumericValue(c[i]), which
returns the character’s Unicode value as an integer) and then for some fixed value p
(which you as the hash function designer pick) compute the polynomial

h(x0, . . . , xn) =

(
k−1∑
i=0

cip
i

)
mod m

For example, if k = 4 and p = 37, the associated polynomial would be c0+c137+c2372+
c3373.

You might wonder whether we can efficiently compute high-order polynomial functions.
A useful algorithm for computing polynomials is called Horner’s rule. The idea is to
compute the polynomial through nested multiplications. To see how it works, observe
that the above polynomial could be expressed equivalently as

c0 + c137 + c2372 + c3373 = ((c3 · 37 + c2) · 37 + c1) · 37 + c0.

Using this idea, the polynomial hash function could be expressed in Java as

Polynomial hash function with Horner’s rule
public int hash(String c, int m) { // polynomial hash of a string

final int P = 37; // replace this with whatever you like

int hashValue = 0;

for (int i = c.length()-1; i >= 0; i--) { // Horner’s rule

hashValue = P * hashValue + Character.getNumericValue(c.charAt(i));

}

return hashValue % m; // take the final result mod m

}

Randomization and Universal Hashing: Any deterministic hashing scheme runs the risk that
we may (very rarely) come across a set keys that behaves badly for this choice. As we have

Hashing - Basic Concepts 68 CMSC 420

seen before, one way to evade attacks by a clever adversary is to employ randomization. Any
given hash function might be bad for a particular set of keys. So, it would seem that we can
never declare that any one hash function to be “ideal.”

One way to approach this conundrum is to flip the question on its head. Rather than trying to
determine the chances that a fixed hash function works for a random set of keys, let us instead
fix two keys x and y, say, and then select our hash function h at random out of large bag of
possible hash functions. Then we ask the question, what is the probability that h(x) = h(y),
given that the choice of h is random. Since there are m table entries, a probability of 1/m
would be the best we could hope for.

This gives rise to the notion of universal hashing. A hashing scheme is said to be universal if
the hash function is selected randomly from a large class of functions, and the probability of
a collision between any two fixed keys is 1/m.

There are many different universal hash functions. Let’s consider one simple one (which was
first proposed by the inventors of universal hashing, Carter and Wegman). First, let p be any
prime number that is chosen to be larger than any input key x to the hash function. Next,
select two integers a and b at random where

a ∈ {1, 2, . . . , p− 1} and b ∈ {0, 1, . . . , p− 1}.

(Note that a 6= 0.) Finally, consider the following linear hash function, which depends on the
choice of a and b.

ha,b(x) = ((ax+ b) mod p) mod m.

As a and b vary, this defines a family of functions. Let Hp denote the class of hash functions
that arise by considering all possible choices of a and b (subject to the above restrictions).
The following theorem shows that Hp is a universal hashing system by showing that the
probability that two fixed keys collide is 1/m. The proof is not terribly deep, but it involves
some nontrivial modular arithmetic. We present it for the sake of completeness.

Theorem: Consider any two integers x and y, where 0 ≤ y < x < p. Let ha,b be a hash
function chosen uniformly at random from Hp. Then the probability that ha,b(x) =
ha,b(y) is at most 1/m.

Proof: (Optional) Let us select a and b randomly as specified above and let h = ha,b. Observe
that h(x) = h(y) if and only if the two values (ax+ b) mod p and (ay + b) mod p differ
from each other by a multiple of m. This is equivalent to saying that there exists an
integer i, where |i| ≤ (p− 1)/m, such that:

(ax+ b) mod p = (ay + b) mod p+ i ·m.

Because p is prime, we can express this equivalently as

ax+ b ≡ (ay + b) + i ·m (mod p),

where 0 ≤ i ≤ (p− 1)/m. Subtracting, we have

a(x− y) ≡ i ·m (mod p).

Since y < x, their difference x− y is nonzero and (since p is prime) x− y has an inverse
modulo p. That is, there exists a number q such that (x−y)·q ≡ 1 (mod p). Multiplying
both sides by q, we have

a ≡ i ·m · q (mod p)

Hashing - Basic Concepts 69 CMSC 420

By definition of our hashing system, are p − 1 possible choices for a. By varying i in
the allowed range, there are b(p− 1)/mc possible nonzero values for the right-hand side.
Thus, the probability of collision is

b(p− 1)/mc
p− 1

≤ (p− 1)/m

p− 1
=

1

m
,

as desired.

Like the other randomized structures we have seen this year, universal hash functions are both
simple and provide good guarantees on the expected-case performance of hashing systems.
We will pick this topic up in our next lecture, focusing on methods for collision resolution,
under the assumption that our hashing function has a low probability of collisions.

Lecture 11: Hashing - Handling Collisions

Hashing: In the previous lecture we introduced the concept of hashing as a method for imple-
menting the dictionary abstract data structure, supporting insert(), delete() and find().
Recall that we have a table of given size m, called the table size. We select an easily com-
putable hash function h(x), which is designed to scatter the keys in a virtually random manner
to indices in the range [0..m-1]. We then store x (and its associated value) in index h(x) in
the table.

In the previous lecture we discussed how to design a hash function in order to achieve good
scattering properties. But, given even the best hash function, it is possible that distinct keys
can map to the same location, that is, h(x) = h(y), even though x 6= y. Such events are called
collisions, and a fundamental aspect in the design of a good hashing system how collisions
are handled. We focus on this aspect of hashing in this lecture, called collision resolution.

Separate Chaining: If we have additional memory at our disposal, a simple approach to collision
resolution, called separate chaining, is to store the colliding entries in a separate linked list,
one for each table entry. More formally, each table entry stores a reference to a list data
structure that contains all the dictionary entries that hash to this location.

To make this more concrete, let h be the hash function, and let table[] be an m-element
array, such that each element table[i] is a linked list containing the key-value pairs (x, v),
such that h(x) = i. We will set the value of m so that each linked list is expected to contain
just a constant number of entries, so there is no need to be clever by trying to sort the
elements of the list. The dictionary operations reduce to applying the associated linked-list
operation on the appropriate entry of the hash table.

• insert(x,v): Compute i = h(x), and then invoke table[i].insert(x,v) to insert
(x, v) into the associated linked list. If x is already in the list, signal a duplicate-key
error (see Fig. 61).

• delete(x): Compute i = h(x), and then invoke table[i].delete(x) to remove x’s
entry from the associated linked list. If x is not in the list, signal a missing-key error.

• find(x): Compute i = h(x), and then invoke table[i].find(x) to determine (by
simple brute-force search) whether x is in the list.

Hashing - Handling Collisions 70 CMSC 420

0

1

2

3

4

5

6

7

w f

z t

d

p

table

m = 8

h("d") = 1

h("f") = 0

h("p") = 7

h("t") = 4

h("w") = 0

h("z") = 4

insert("d")

insert("z")

insert("p")

insert("w")

insert("t")

insert("f")

Fig. 61: Collision resolution by separate chaining.

Clearly, the running time of this procedure depends on the number of entries that are stored
in the given table entry. To get a handle on this, consider a hash table of size m containing
n keys. Define its load factor to be λ = n/m. If we assume that our hash function has done
a good job of scattering keys uniformly about the table entries, it follows that the expected
number of entries in each list is λ.

We say that a search find(x) is successful if x is in the table, and otherwise it is unsuccessful.
Assuming that the entries appear in each linked list in random order, we would expect that we
need to search roughly half the list before finding the item being sought after. It follows that
the expected running time of a successful search with separate chaining is roughly 1 + λ/2.
(The initial “+1” accounts for the fact that we need to check one more entry than the list
contains, if just to check the null pointer at the end of the list.) On the other hand, if the
search is unsuccessful, we need to enumerate the entire list, and so the expected running time
of an unsuccessful search with separate chaining is roughly 1 +λ. In summary, the successful
and unsuccessful search times for separate chaining are:

SSC = 1 +
λ

2
USC = 1 + λ,

Observe that both are O(1) under our assumption that λ is O(1). Since we can insert and
delete into a linked list in constant time, it follows that the expected time for all dictionary
operations is O(1 + λ).

Note the “in expectation” condition is not based on any assumptions about the insertion or
deletion order. It depends simply on the assumption that the hash function uniformly scatters
the keys. Assuming that we use universal hashing (see the previous lecture), this uniformity
assumption is very reasonable, since the user cannot predict which random hash function will
be used. It has been borne out through many empirical studies that hashing is indeed very
efficient.

The principal drawback of separate chaining is that additional storage is required for linked-
list pointers. It would be nice to avoid this additional wasted space. The remaining methods
that we will discuss have this property. Before discussing them, we should discuss the issue
of controlling the load factor.

Controlling the Load Factor and Rehashing: Recall that the load factor of a hashing scheme
is λ = n/m, and the expected running time of hashing operations using separate chaining is
O(1 + λ). We will see below that other popular collision-resolution methods have running

Hashing - Handling Collisions 71 CMSC 420

times that grow as O(λ/(1 − λ)). Clearly, we would like λ to be small and in fact strictly
smaller than 1. Making λ too small is wasteful, however, since it means that our table size
is significantly larger than the number of keys. This suggests that we define two constants
0 < λmin < λmax < 1, and maintain the invariant that λmin ≤ λ ≤ λmax. This is equivalent
to saying that n ≤ λmaxm (that is, the table is never too close to being full) and m ≤ n/λmin

(that is, the table size is not significantly larger than the number of entries). Define the ideal
load factor to be the mean of these two, λ0 = (λmin + λmax)/2.

Now, as we insert new entries, if the load factor ever exceeds λmax (that is, n > λmaxm),
we replace the hash table with a larger one, devise a new hash function (suited to the larger
size), and then insert the elements from the old table into the new one, using the new hash
function. This is called rehashing (see Fig. 62). More formally:

• Allocate a new hash table of size m′ = dn/λ0e
• Generate a new hash function h′ based on the new table size

• For each entry (x, v) in the old hash table, insert it into the new table using h′

• Remove the old table

Observe that after rehashing the new load factor is roughly n/m′ ≈ λ0, thus we have restored
the table to the ideal load factor. (The ceiling is a bit of an algebraic inconvenience. Through-
out, we will assume that n is sufficiently large that floors and ceilings are not significant.)

0

1

2

3

4

5

6

7

w f

z t

d

p

m = 8

aλ = 7/8 > λmax

n = 7 0

1

2

3

4

5

6

7

w

p

z

t

d

f

m′ = 14

aλ = 7/14 = λ0

n = 7

8

12

13

!!

rehashinsert(a)

Fig. 62: Controlling the load factor by rehashing, where λmin = 0.25, λmax = 0.75, and λ0 = 0.5.

Symmetrically, as we delete entries, if the load factor ever falls below λmin (that is, n <
λminm), we replace the hash table with a smaller one of size dn/λ0e, generate a new hash
function for this table, and we rehash entries into this new table. Note that in both cases
(expanding and contracting) the hash table changes by a constant fraction of its current size.
This is significant in the analysis.

Amortized Analysis of Rehashing: Observe that whenever we rehash, the running time is pro-
portional to the number of keys n. If n is large, rehashing clearly takes a lot of time. But
observe that once we have rehashed, we will need to do a significant number of insertions or
deletions before we need to rehash again.

Hashing - Handling Collisions 72 CMSC 420

To make this concrete, let’s consider a specific example. Suppose that λmin = 1/4 and
λmax = 3/4, and hence λ0 = 1/2. Also suppose that the current table size is m = 1000.
Suppose the most recent insertion caused the load factor to exceed our upper bound, that is
n > λmaxm = 750. We allocate a new table of size m′ = n/λ0 = 2n = 1500, and rehash all
the old elements into this new table. In order to overflow this new table, we will need for n
to increase to some higher value n′ such that n′/m′ > λmax, that is n′ > (3/4)1500 = 1125.
In order to grow from the current 750 keys to 1125 keys, we needed to have at least 375 more
insertions (and perhaps many more operations if finds and deletions were included as well).
This means that we can amortize the (expensive) cost of rehashing 750 keys against the 375
(cheap) insertions.

Hopefully, this idea will sound familiar to you. In an earlier lecture, we discussed the idea of
doubling an array to store a stack. We showed there that by doubling the storage each time
the stack overflowed, the amortized cost of each operation is just O(1). There was no magic to
doubling. Increasing the storage by any constant factor works, and the same analysis applies
here as well. Each time we rehash, we are either increasing or decreasing the hash-table size
by a constant factor. Assuming that the hash operations themselves take constant time, we
can “charge” the expensive rehashing time to the inexpensive insertions or deletions that led
up to the present state of affairs.

Recall that the amortized cost of a series of operations is the total cost divided by the number
of operations.

Theorem: Assuming that individual hashing operations take O(1) time each, if we start with
an empty hash table, the amortized complexity of hashing using the above rehashing
method with minimum and maximum load factors of λmin and λmax, respectively, is at
most 1 + 2λmax/(λmax − λmin).

Proof: Our proof is based on the same token-based argument that we used in the earlier
lecture. Let us assume that each standard hashing operation takes exactly 1 unit of
time, and rehashing takes time n, where n is the number of entries currently in the table.
Whenever we perform a hashing operation, we assess 1 unit to the actual operation, and
save 2λmax/(λmax − λmin) work tokens to pay for future rehashings. (Where did this
“magic” number of tokens come from? The answer is to work through the analysis
below treating the number of tokens as an unknown quantity x. Then figure out what
value x needs to be to make the inequalities work out.)

There are two ways to trigger rehashing: expansion due to insertion, and contraction due
to deletion. Let us consider insertion first. Suppose that our most recent insertion has
triggered rehashing. This implies that the current table contains roughly n ≈ λmaxm
entries. (Again, to avoid worrying about floors and ceilings, let’s assume that n is
quite large.) The last time the table was rehashed, the table contained n′ = λ0m
entries immediately after the rehashing finished. This implies that we inserted at least
n−n′ = (λmax−λ0)m entries. Therefore, the number of work tokens we have accumulated
since then is at least

(λmax − λ0)m
2λmax

λmax − λmin
=

(
λmax −

λmax + λmin

2

)
m

2λmax

λmax − λmin

=

(
λmax − λmin

2

)
m

2λmax

λmax − λmin

= λmaxm ≈ n,

Hashing - Handling Collisions 73 CMSC 420

which implies that we have accumulated enough work tokens to pay the cost of n to
rehash.

Next, suppose that our most recent deletion has triggered rehashing. This implies that
the current table contains roughly n ≈ λminm entries. (Again, to avoid worrying about
floors and ceilings, let’s assume that n is quite large.) The last time the table was
rehashed, the table contained n′ = λ0m entries immediately after the rehashing finished.
This implies that we deleted at least n′−n = (λ0−λmin)m entries. Therefore, the number
of work tokens we have accumulated since then is at least

(λ0 − λmin)m
2λmax

λmax − λmin
=

(
λmax + λmin

2
− λmin

)
m

2λmax

λmax − λmin

=

(
λmax − λmin

2

)
m

2λmax

λmax − λmin

= λmaxm ≥ λminm ≈ n,

again implying that we have accumulated enough work tokens to pay the cost of n to
rehash.

To make this a bit more concrete, suppose that we set λmin = 1/4 and λmax = 3/4, so
that λ0 = 1/2 (see Fig. 62). Then the amortized cost of each hashing operation is at most
1 + 2λmax/(λmax − λmin) = 1 + 2(3/4)/(1/2) = 4. Thus, we pay just additional factor of four
due to rehashing. Of course, this is a worst case bound. When the number of insertions and
deletions is relatively well balanced, we do not need rehash very often, and the amortized cost
is even smaller.

Open Addressing: Let us return to the question of collision-resolution methods that do not
require additional storage. Our objective is to store all the keys within the hash table.
(Therefore, we will need to assume that the load factor is never greater than 1.) To know
which table entries store a value and which do not, we will store a special value, called empty,
in the empty table entries. The value of empty must be such that it matches no valid key.

Whenever we attempt to insert a new entry and find that its position is already occupied, we
will begin probing other table entries until we discover an empty location where we can place
the new key. In it most general form, an open addressing system involves a secondary search
function, f . If we discover that location h(x) is occupied, we next try locations

(h(x) + f(1)) mod m, (h(x) + f(2)) mod m, (h(x) + f(3)) mod m,

until finding an open location. (To make this a bit more elegant, let us assume that f(0) = 0,
so even the first probe fits within the general pattern.) This is called a probe sequence, and
ideally it should be capable of searching the entire list. How is this function f chosen? There
are a number of alternatives, which we consider below.

Linear Probing: The simplest idea is to simply search sequential locations until finding one that
is open. In other words, the probe function is f(i) = i. Although this approach is very simple,
it only works well for fairly small load factor. As the table starts to get full, and the load
factor approaches 1, the performance of linear probing becomes very bad.

To see what is happening consider the example shown in Fig 63. Suppose that we insert four
keys, two that hash to table[0] and two that hash to table[2]. Because of the collisions,
we will fill the table entries table[1] and table[3] as well. Now, suppose that the fifth key

Hashing - Handling Collisions 74 CMSC 420

(“t”) hashes to location table[1]. This is the first key to arrive at this entry, and so it is
not involved any collisions. However, because of the previous collisions, it needs to slide down
three positions to be entered into table[4].

0

1

2

3

4

5

h("d") = 0

h("p") = 2

h("t") = 1

h("w") = 0

h("z") = 2

d 0

1

2

3

4

5

d

insert(z)

insert(d)

z

0

1

2

3

4

5

d

insert(p)
z

p

0

1

2

3

4

5

d
insert(w)

z

p

w

0

1

2

3

4

5

d
insert(t)

z

p

w

t

!!

!!

!!

Fig. 63: Linear probing.

This phenomenon is called secondary clustering. Primary clustering happens when multiple
keys hash to the same location. Secondary clustering happens when keys hash to different
locations, but the collision-resolution has resulted in new collisions. Note that secondary
clustering cannot occur with separate chaining, because the lists for separate hash locations
are kept separate from each other. But in open addressing, secondary clustering is a significant
phenomenon. As the load factor approaches 1, secondary clustering becomes more and more
pronounced, and probe sequences may become unacceptably long.

While we will not present it, a careful analysis shows that the expected costs for successful
and unsuccessful searches using linear probing are, respectively:

SLP =
1

2

(
1 +

1

1− λ

)
ULP =

1

2

(
1 +

(
1

1− λ

)2
)
.

The proof is quite sophisticated, and we will skip it. Observe, however, that in the limit as
λ→ 1 (a full table) the running times (especially for unsuccessful searches) rapidly grows to
infinity. A rule of thumb is that as long as the table remains less than 75% full, linear probing
performs fairly well. Nonetheless, the issue of secondary clustering is a major shortcoming,
and the methods given below do significantly better in this regard.

Quadratic Probing: To avoid secondary clustering, one idea is to use a nonlinear probing function
which scatters subsequent probes around more effectively. One such method is called quadratic
probing, which works as follows. If the index hashed to h(x) is full, then we consider next
h(x) + 1, h(x) + 4, h(x) + 9, . . . (again taking indices mod m). Thus, the probing function is
f(i) = i2.

The find function is shown in the following code block. Rather than computing h(x)+ i2, we
use a cute trick to update the probe location. Observe that i2 = (i− 1)2 + 2i− 1. Thus, we
can advance to the next position in the probe sequence (i2) by incrementing the old position
((i − 1)2) by the value 2i − 1. We assume that each table entry table[i] contains two
elements, table[i].key and table[i].value. If found, the function returns the associated
value, and otherwise it returns null.

Experience shows that this succeeds in breaking up the secondary clusters that arise from
linear probing, but this simple procedure conceals a rather knotty problem. Unlike linear
probing, which is guaranteed to try every entry in your table, quadratic probing bounces

Hashing - Handling Collisions 75 CMSC 420

Find Operation with Quadratic Probing
Value find(Key x) { // find x

int c = h(x) // initial probe location

int i = 0 // probe offset

while (table[c].key != empty) && (table[c].key != x) {

c += 2*(++i) - 1 // next position

c = c % m // wrap around if needed

}

return table[c].value // return associated value (or null if empty)

}

around less predictably. Might it miss some entries? The answer, unfortunately, is yes! To
see why, consider the rather trivial case where m = 4. Suppose that h(x) = 0 and your table
has empty slots at table[1] and table[3]. The quadratic probe sequence will inspect the
following indices:

12 mod 4 = 1 22 mod 4 = 0 32 mod 4 = 1 42 mod 4 = 0 . . .

It can be shown that it will only check table entries 0 and 1. This means that you cannot find
a slot to insert this key, even though your table is only half full! A more realistic example is
when m = 105. In this case,

The following lemma shows that, if you choose your table size m to be a prime number, then
quadratic probing is guaranteed to visit at least half of the table entries before repeating.
This means that it will succeed in finding an empty slot, provided that m is prime and your
load factor is smaller than 1/2.

Theorem: If quadratic probing is used, and the table size m is a prime number, the first
bm/2c probe sequences are distinct.

Proof: Suppose by way of contradiction that for 0 ≤ i < j ≤ bm/2c, both h(x) + i2 and
h(x) + j2 are equivalent modulo m. Then the following equivalencies hold modulo m:

i2 ≡ j2 ⇔ i2 − j2 ≡ 0 ⇔ (i− j)(i+ j) ≡ 0 (mod m)

This means that the quantity (i− j)(i+ j) is a multiple of m. But this cannot be, since
m is prime and both i− j and i+ j are nonzero and strictly smaller than m. (The fact
that i < j ≤ bm/2c implies that their sum is strictly smaller than m.) Thus, we have
the desired contradiction.

This is a rather weak result, however, since people usually want their hash tables to be more
than half full. You can do better by being more careful in the choice of the table size and/or
the quadratic increment. Here are two examples, which I will present without proof.

• If the table size m is a prime number of the form 4k + 3, then quadratic probing will
succeed in probing every table entry before repeating an entry.

• If the table size m is a power of two, and the increment is chosen to be 1
2(i2 + i) (thus,

you probe locations h(x), h(x) + 1, h(x) + 3, h(x) + 6, and so on) then you will succeed
in probing every table entry before repeating an entry.

Hashing - Handling Collisions 76 CMSC 420

Double Hashing: Both linear probing and quadratic probing have their shortcomings (secondary
clustering for the first and short cycles for the second). Our final method overcomes both
of these limitations. Recall that in any open-addressing scheme, we are accessing the probe
sequence h(x) + f(1), h(x) + f(2), and so on. How about if we make the increment function
f(i) a function of the search key? Indeed, to make it as random as possible, let’s use another
hash function! This leads to the concept of double hashing.

More formally, we define two hash functions h(x) and g(x). We use h(x) to determine the
first probe location. If this entry is occupied, we then try:

h(x) + g(x), h(x) + 2g(x), h(x) + 3g(x), . . .

More formally, the probe sequence is defined by the function f(i) = i · g(x). In order to be
sure that we do not cycle, it should be the case that m and g(x) are relatively prime, that
is, they share no common factors. There are lots of ways to achieve this. For example, select
g(x) to be a prime that is strictly larger than m or the product of primes that are larger than
m. Another approach would be to set m to be a power of 2, and then to generate g(x) as
the product of prime numbers other than 2. In short, we should be careful in the design of a
double-hashing scheme, but there is a lot of room for adjustment.

Fig. 64 provides an illustration of how the various open-addressing probing methods work.

Linear probing

h(x)

Quadratic probing

insert

Double hashing

h(x)

+1 +4

+g(x)

+9 +16

+2g(x) +3g(x) +4g(x)

insert

insert

h(x)

Fig. 64: Various open-addressing systems. (Shaded squares are occupied and the black square
indicates where the key is inserted.)

Theoretical running-time analysis shows that double hashing is the most efficient among
the open-addressing methods of hashing, and it is competitive with separate chaining. The
running times of successful and unsuccessful searches for open addressing using double hashing
are

SDH =
1

λ
ln

1

1− λ
UDH =

1

1− λ
.

To get some feeling for what these quantities mean, consider the following table:

λ 0.50 0.75 0.90 0.95 0.99

U(λ) 2.00 4.00 10.0 20.0 100.
S(λ) 1.39 1.89 2.56 3.15 4.65

Hashing - Handling Collisions 77 CMSC 420

Note that, unlike tree-based search structures where the search time grows with n, these
search times depend only on the load factor. For example, if you were storing 100,000 items
in your data structure, the above search times (except for the very highest load factors) are
superior to a running time of O(log n).

Deletions: Deletions are a bit tricky with open-addressing schemes. Can you see why?

The issue is illustrated Fig. 65. When we insert “a”, an existing key “f” was on the probe
path, and we inserted “a” beyond “f”. Then we delete “f” and then search for “a”. The
problem is that with “f” no longer on the probe path, we arrive at the empty slot and take
this to mean that “a” is not in the dictionary, which is not correct.

insert("a")
h("a")

a

f

f

delete("f")

a

find("a")

a

"a" not found!

h("a")

Fig. 65: The problem with deletion in open addressing systems.

To handle this we create a new special value (in addition to empty) for cells whose keys have
been deleted, called, say “deleted”. If the entry is marked deleted this means that the
slot is available for future insertions, but if the find function comes across such an entry, it
should keep searching. The searching stops when it either finds the key or arrives at an cell
marked “empty” (key not found).

af

delete("f")

a

find("a")

a

h(a)

"a" found!

D

D

(keep searching)

(deleted)

Fig. 66: Deleting in open-addressing by using special empty entry.

Using the “deleted” entry is a rather quick-and-dirty fix. It suffers from the shortcoming
that as keys are deleted, the search paths are unnaturally long. (The load factor has come

Hashing - Handling Collisions 78 CMSC 420

down, but the search paths are just as long as before.) A more clever solution would involve
moving keys that that were pushed down in the probe sequence up to fill the vacated entries.
Doing this, however make deletion times longer.

Further refinements: Hashing is a very well studied topic. We have hit the major points, but
there are a number of interesting refinements that can be applied. One example is a technique
called Brent’s method. This approach is used to reduce the search times when double hashing
is used. It exploits the fact that any given cell of the table may lie at the intersection of
two or more probe sequences. If one of these probe sequences is significantly longer than the
other, we can reduce the average search time by changing which key is placed at this point
of overlap. Brent’s algorithm optimizes this selection of which keys occupy these locations in
the hash table.

Lecture 12: Extended and Scapegoat Trees

Overview: Today’s lecture will focus on two concepts, extended binary search trees and scapegoat
trees. (The material on the SG-Tree, which was discussed in class is only covered in the lecture
slides.)

Extended Binary Search Trees: Recall from an earlier lecture the concept of an extended bi-
nary tree, that is, a binary tree whose nodes have either two children or zero children. The
former are called internal nodes and the latter are called external nodes. An example is shown
in Fig. 67(a).

(b) (c)

3

6

8 14

10

11

2

6 7

9

11 14

17

s

≤ s > s

(a)

Fig. 67: (a) Extended binary tree, (b) extended binary search tree structure, and (c) extended
binary search tree containing the keys {2, 6, 7, 9, 11, 14, 17}.

As we saw in our discussion of B+ trees in an earlier lecture, it is often useful to employ
extended trees in the context of search trees. While B+ trees are multiway trees, we will
explore this in the context of binary search trees. The idea is to store all the key-value pairs
in just the external nodes. The internal nodes are merely an index structure whose purpose
is to allow us to rapidly identify an external node of interest.

More formally, each internal node stores a key s, called a splitter, with the property that all
external nodes whose key value x is at most s reside in s’s left subtree and all external nodes
whose key value is strictly greater than s reside within s’s right subtree (see Fig. 67(b)). An
example of an extended binary search tree is shown in Fig. 67(c).

It is important to note that the tree’s contents consist stored in the external nodes, not the
internal nodes. For example, in Fig. 67(c), the tree’s contents are {2, 6, 7, 9, 11, 14, 17}. The

Scapegoat Trees 79 CMSC 420

splitter values 3, 8, and 10 appear in internal nodes, but they are not counted among the
tree’s contents.

Motivation - Multi-dimensional trees: In the context of binary search trees, the advantage
of this extended-tree approach is not very obvious. The useful of distinguishing data from
splitters becomes more evident when we consider search structures in a multi-dimensional
context of partition trees.

For example, consider the hierarchical decomposition of space shown in Fig. 68 (left). In this
case, the splitters correspond to lines in the plane. Each such line could be expressed as its
equation (e.g., y = ax + b). The points lying on one side of the line are stored in the left
subtree and the points lying on the other are stored in the right subtree. Continuing in this
manner, we obtain a data structure called a binary space partition tree, or BSP tree for short.
The key-value pairs in this case are points and whatever additional data we wish to decorate
each point with. In this case, it is easy to see that there is a fundamental difference between
splitters (line equations) and data (points). Before exploring extended trees in the context
of multi-dimensional space, it will be useful to consider them in the simpler 1-dimensional
context, which we are familiar with.

s1s2

s5s4

s3

s8

s6

s7

s4

s2

s3

s5

s6s6

s1

s7s7

s8

p1 p2 p3 p4 p5 p6

p7 p8

p9

p1
p2

p3 p4

p5

p6

p7

p8

p9

Fig. 68: Binary space partition tree, (a) decomposition of space and (b) the tree structure.

Dictionary Operations on Extended Trees: The dictionary operations that we defined for
standard (unbalanced) binary search trees are readily generalized to extended binary search
trees.

find(Key x, Node p): The initial call is find(x, root). The procedure operates recur-
sively. If x ≤ p.key we recurse on the left subtree, and otherwise we recurse on the right
subtree. On arriving to an external node p, we test whether x = p.key. If so, we report
success and otherwise we report failure.

Note that if we encounter an internal node whose key value is equal to x, we cannot
report success, since the key values in the internal nodes are not reflective of the tree’s
contents. They are merely an aid to finding the key in the external nodes. For example,
on the tree shown in Fig. 67(c), find(10) returns false, even though there is an internal
node containing 10. (In this case, the search ends at the external node containing 9.)

insert(Key x, Value v, Node p): This function returns a reference to the root of the
updated subtree where x is inserted. The initial call is root = insert(x, v, root).

Scapegoat Trees 80 CMSC 420

The procedure operates recursively. We use the same process as in find to locate an
external node p. If there is no such node because the tree is empty, we create a single
external node containing x, which we return. Otherwise, we check whether x = p.key,
and if so we signal a duplicate-key error. If neither of these happens, we create a new
external node containing x, and an internal node to split between x and p.key.

12
insert(12)

9
insert(12)

9

9 121412

14

Fig. 69: Inserting a new external node into an extended binary search tree. Note that the internal
node is assigned the smaller of the two key values.

More formally, let y ← p.key. Following our convention that the left subtree contains
key values that less than or equal to the splitter and the right subtree is strictly greater,
the splitter can be any value s such that min(x, y) ≤ s < max(x, y). We will assume
the simple convention of setting s = min(x, y). We first create a new internal node
containing s and a new external node containing key x and value v. Between the two
external nodes x and y, we make the smaller the left child of s and the larger is its
right child (see Fig. 69). Finally, we return a reference to the internal node containing
s, which is stored in the child link of the parent of p. (An example is shown in Fig. 70.)

3

6

8 14

10

11

2

6 7

9

11 14

17 3

6

8 14

10

11

2

6 7

9

11

14

17

12

12

insert(12)

Fig. 70: Inserting a key 12 into an extended binary search tree. A search for 12 leads to the external
node 14. Two nodes are created, one external node containing 12 and one internal node containing
the minimum of 12 and 14.

delete(Key x, Node p): This function returns a reference to the root of the updated sub-
tree from which x is deleted. The initial call is root = delete(x, root).

The procedure operates recursively. We use the same process as in find to locate the
external node p that contains x. If x is not found, we signal an nonexistent-key error.
Otherwise, if this external node is the root of the tree, we remove it and return the
value null. If neither of these occurs, we delete the external node and its internal node
parent. We return a reference to the other child of the parent (see Fig. 71).

As with standard (unbalanced) binary search trees, all operations take time proportional to
the height of the tree. The height of the tree is (up to a constant additive term) the same
in expectation for the extended tree as for the standard tree, namely O(log n) if n keys are
inserted in random order.

Scapegoat Trees 81 CMSC 420

3

6

8 14

10

11

2

6 7

9

11 14

17

3

6

14

10

2

6 7

delete(9)

11

11 14

17

Fig. 71: Deleting a key 9 from an extended binary search tree. After finding the external node
containing 9, we remove it and its parent, and link the other child of the parent into the grandparent.

Scapegoat Trees: We have previously studied the splay tree, a data structure that supports
dictionary operations in O(log n) amortized time. Recall that this means that, over a series of
operations, the average cost per operation is O(log n), even though the cost of any individual
operation can be as high as O(n). We will now study another example of a binary search tree
that has good amortized efficiency, called a scapegoat tree. The idea underlying the scapegoat
tree was due initially to Arne Anderson (of AA trees) in 1989. This idea was rediscovered by
Galperin and Rivest in 1993, who made some refinements and gave it the name “scapegoat
tree” (which we will explain below).

While amortized data structures often interesting in their own right, there is a particular
motivation for studying the scapegoat tree. So far, all of the binary search trees that we have
studied achieve balance through the use of rotation operation. Scapegoat trees are unique in
that they do not rely on rotation. This is significant because there exist binary trees that
cannot be balanced through the use of rotations. (One such example is the binary space
partition tree shown in Fig. 68.) As we shall see, the scapegoat tree achieves good balance by
“rebuilding” subtrees that exhibit poor balance. The trick behind scapegoat trees is figuring
out which subtrees to rebuild and when to do this.

Below, we will discuss the details of how the scapegoat tree works. Here is a high-level
overview. A scapegoat tree is a binary search tree, which does not need to store any addi-
tional information in the nodes, other than the key, value, and left and right child pointers.
(Additional information, such as parent pointers may be added to simplify coding, however,
but these are not needed.) Nonetheless, it height will always be O(log n). (Note that this
is not the case for splay trees, whose height can grow to as high as O(n).) Insertion and
deletions work roughly as follows.

Insertion:

• The key is first inserted just as in a standard (unbalanced) binary tree

• We monitor the depth of the inserted node after each insertion, and if it is too high,
there must be at least one node on the search path that has poor weight balance
(that is, its left and right children have very different sizes).

• In such a case, we find such a node, called the scapegoat,6 and we completely rebuild
the subtree rooted at this node so that it is perfectly balanced.

Deletion:

6A “scapegoat” is an individual who is assigned the blame when something goes wrong. In this case, the unbalanced
node takes the blame for the tree’s height being too great.

Scapegoat Trees 82 CMSC 420

• The key is first deleted just as in a standard (unbalanced) binary tree

• Once the number of deletions is sufficiently large relative to the entire tree size,
rebuild the entire tree so it is perfectly balanced.

You might wonder why there is a notable asymmetry between the rebuilding rules for insertion
and deletion. The existence of a single very deep node is proof that a tree is out of balance.
Thus, for insertion, we can use the fact that the inserted node is too deep to trigger rebuilding.
However, observe that the converse does not work for deletion. The natural counterpart would
be “if the depth of the external node containing the deleted key is too small, then trigger a
rebuilding operation.” However, the fact that a single node has a low depth, does not imply
that the rest of the tree is out of balance. (It may just be that a single search path has low
depth, but the rest of the tree is perfectly balanced.) Could we instead apply the deletion
rebuilding trigger to work for insertion? Again, this will not work. The natural counterpart
would be, “given a newly rebuild tree with n keys, we will rebuild it after inserting roughly n/2
new keys.” However, if we are very unlucky, all these keys may fall along a single search path,
and the tree’s height would be as bad as O((log n) + n/2) = O(n), and this is unacceptably
high.

How to Rebuild a Subtree: Before getting to the details of how the scapegoat tree works, let’s
consider the basic operation that is needed to maintain balance, namely rebuilding subtrees
into balanced form. We shall see that if the subtree contains k keys, this operation can be
performed in O(k) time. Suppose that p is a pointer to the node of the scapegoat tree whose
subtree is to be rebuilt. We begin be performing an inorder traversal of p’s subtree, copying
the keys to an array A[0, ..., k − 1]. Because we use an inorder traversal, the elements of A
are in ascending sorted order.

To create the new subtree, we will define a procedure that extracts the median element of
the array as the root, and then recursively rebuilds the subarrays to the left and right of the
median, and then makes the resulting subtrees the left and right children of the median node.
More formally, let us define a function buildSubtree(A, i, k), which returns a reference
to a balanced subtree containing the k-element subarray of A whose first element is A[i], that
is, A[i, . . . , i+ k − 1]. Pseudocode is given in the code block below.

Building a Balanced Tree from an Array
BinaryNode buildSubtree(Key[] A, int i, int k) {

if (k == 0) return null; // empty array

else {

int m = ceiling(k/2); // root is the median

BinaryNode p = new BinaryNode(A[i+m]); // A[i+m] is root

p.left = buildSubtree(A, i, m); // A[i..m-1] in left subtree

p.right = buildSubtree(A, i+m+1, k-m-1); // A[i+m+1..i+k-1] in right

return p; // return root of the subtree

}

}

Ignoring the recursive calls, we spend O(1) time within each recursive call, so the overall time
is proportional to the size of the tree, which is k, so the total time is O(k).

Scapegoat Tree Operations: In addition to the nodes themselves, the scapegoat tree maintains
two integer values. The first, denoted by n, is just the number of keys in the tree. The second,

Scapegoat Trees 83 CMSC 420

denoted by m, is an upper bound on the size of the tree. This latter value plays a role in
deciding when the rebalance the tree when deletions are performed. In particular, whenever
we insert a key, we increment m, but whenever we delete a key we do not decrement m. Thus,
m ≥ n and the difference m − n intuitively represents the number of deletions. When we
reach a point where m > 2n (or equivalently m − n > n) we can infer that the number of
deletions exceeds the number of keys remaining in the tree. In this case, we will rebuild the
entire tree in balanced form.

We are now in a position to describe how to perform the dictionary operations for a scapegoat
tree.

find(Key x): The find operation is performed exactly as in a standard (unbalanced) binary
search tree. They height of the tree never exceeds log3/2 n, so this is guaranteed to run
ins O(log n) time.

delete(Key x): This operates exactly the same as deletion in a standard binary search tree.
After the deletion, we decrement n, but we do not change m. As mentioned above, if
m > 2n, we rebuild the entire tree, and set m← n.

insert(Key x, Value v): The begins exactly as insertion does for a standard binary search
tree. But, as we are tracing the search path to the insertion point, keep track of our
depth in the tree. (Recall that depth is the number of edges to root.) Increment both n
and m. If the depth of the inserted node exceeds log3/2m then we trigger a rebuilding
event. This involves the following:

• Walk back up along the insertion search path. Let u be the current node that is
visited, and let u.child be the child of u that lies on the search path.

• Let size(u) denote the size of the subtree rooted at u, that is, the number of nodes
in this subtree. If

size(u.child)

size(u)
>

2

3
,

then rebuild the subtree rooted at u (e.g., using the method described above).

The fact that a child has over 2/3 of the nodes of the entire subtree intuitively means
that this subtree has roughly speaking more than twice as many nodes as its sibling. We
call such a node on the search path a scapegoat candidate. A short way of summarize the
above process is “rebuild the scapegoat candidate that is closest to the insertion point.”
An example is shown in Fig. 72.

You might wonder whether we will necessarily encounter an scapegoat candidate when we
trace back along the search path. The following lemma shows that this is always the case.

Lemma: Given a binary search tree of n nodes, if there exists a node p such that depth(p) >
log3/2 n, then p has an ancestor (possibly p itself) that is a scapegoat candidate.

Proof: The proof is by contradiction. Suppose to the contrary that no node from p to the
root is a scapegoat candidate. This means that for every ancestor node u from p to the
root, we have size(u.child) ≤ 2

3 ·size(u). We know that the root has a size of n. It follows
that if p is at depth k in the tree, then

size(p) ≥
(

2

3

)k

n.

Scapegoat Trees 84 CMSC 420

7

4

1

0

2

5

9

12

13

15

17

2
3

1
2

3
6

6
7 >

2
3!!

7

4

1

0 2 5 9

12

13

15

17

7

4

1

0

2

9

12

13

15

17

insert(5) rebuild(9)

6 > log3
2
11 ≈ 5.9!!

Fig. 72: Inserting a key into a scapegoat tree, which triggers a rebuilding event. The node containing
9 is the first scapegoat candidate encountered while backtracking up the search path and is rebuilt.

We know that size(p) ≥ 1 (since the subtree contains p itself, if nothing else), so it follows
that 1 ≥ (2/3)kn. With some simple manipulations, we have(

3

2

)k

≤ n,

which implies that k ≤ log3/2 n. However, this violates our hypothesis that p’s depth
exceeds log3/2 n, yielding the desired contradiction.

Recall that m ≥ n, and so if a rebuilding event is triggered, the insertion depth is at least
log3/2m, which means that it is at depth at least log3/2 n. Therefore, by the above lemma,
there must be a scapegoat candidate along the search path.

How to Compute Subtree Sizes? We mentioned earlier that the scapegoat tree does not store
any information in the nodes other than the key, value, and left and right child pointers. So
how can we compute size(u) for a node u during the insertion process?

Unfortunately, there is no clever way to do this efficiently (say in O(log n) time). Since we
are doing this as we back up the search path, we may assume that we already know the
value of s′ = size(u.child), where this is the child that lies along the insertion search
path. So, to compute size(u), it suffices to compute the size of u’s other child. To do this,
we perform a traversal of this child’s subtree to determine its size s′′. Given this, we have
size(u) = 1 + s′ + s′′, where the +1 counts the node u itself.

You might wonder, how can we possibly expect to achieve O(log n) amortized time for inser-
tion if we are using brute force (which may take as much as O(n) time) to compute the sizes
of the subtrees? The reason is to first recall that we do not need to compute subtree sizes
unless a rebuild event has been triggered. Every node that we are visiting in the counting
process will need to be visited again in the rebuilding process. Thus, the cost of this counting
process can be accounted for in the cost of the rebuilding process, and hence it essentially
comes for free!

By the way, there is an alternative method for computing sizes. This is to store the size value
of each node explicity within each node. The size of a node is easy to update whenever there
are changes in the tree’s structure, since we have:

Scapegoat Trees 85 CMSC 420

size(u) = (u == null ? 0 : size(u.left) + size(u.right))

While we are at it, it is worth noting that the height is just as easy to store and update:

height(u) = (u == null ? 0 : 1 + max(height(u.left), height(u.right)))

Amortized Analysis: We will not present a formal analysis of the amortized analysis of the
scapegoat tree. The following theorem (and the rather sketchy proof that follows) provides
the main results, however.

Theorem: Starting with an empty tree, any sequence of k dictionary operations (find, insert,
and delete) to a scapegoat tree can be performed in time O(k log k).

Proof: (Sketch)

• Find: Because the tree’s height is at most log3/2m ≤ log3/2 2n = O(log n) the costs
of a find operation is O(log n) (unconditionally).

• Delete: In order to rebuild a tree due to deletions, at least half the entries since
the last full rebuild must have been deleted. By token-based analyses (recall stacks
and rehashing from earlier lectures), it follows that the O(n) cost of rebuilding the
entire tree can be amortized against the time spent processing the deletions.

• Insert: This is analyzed by a potential argument. Intuitively, after any subtree of
size k is rebuilt it takes O(k) insertions to force this subtree to be rebuilt again.
Charge the rebuilding time against these “cheap” insertions.

Corollary: The amortized complexity of the scapegoat tree with at most n nodes is O(log n).

Lecture 13: Point quadtrees and kd-trees

Geometric Data Structures: In today’s lecture we move in a new direction by covering a num-
ber of data structures designed for storing multi-dimensional geometric data. Geometric data
structures are fundamental to the efficient processing of data sets arising from myriad applica-
tions, including spatial databases, automated cartography (maps) and navigation, computer
graphics, robotics and motion planning, solid modeling and industrial engineering, particle
and fluid dynamics, molecular dynamics and drug design in computational biology, machine
learning, image processing and pattern recognition, computer vision.

Fundamentally, our objective is to store a large datasets consisting of geometric objects (e.g.,
points, lines and line segments, simple shapes (such as balls, rectangles, triangles), and com-
plex shapes such as surface meshes) in order to answer queries on these data sets efficiently.
While some of our explorations will involve delving into geometry and linear algebra, fortu-
nately most of what we will cover assumes no deep knowledge of geometric objects or their
representations. Given a collection of geometric objects, there are numerous types of queries
that we may wish to answer.

Nearest-Neighbor Searching: Store a set of points so that qiven a query point q, it is
possible to find the closest point of the set (or generally the closest k objects) to the
query point (see Fig. 73(a)).

Range Searching: Store a set of points so that given a query region R (e.g., a rectangle
or circle), it is possible to report (or count) all the points of the set that lie inside this
region (see Fig. 73(b)).

Point quadtrees and kd-trees 86 CMSC 420

Point location: Store the subdivision of space into disjoint regions (e.g., the subdivision of
the globe into countries) so that given a query point q, it is possible determine the region
of the subdivision containing this point efficiently (see Fig. 73(c)).

Intersection Searching: Store a collection of geometric objects (e.g., rectangles), so that
given a query consisting of an object R of this same type, it is possible to report (or
count) all of the objects of the set that intersect the query object (see Fig. 73(d)).

Ray Shooting: Store a collection of object so that given any query ray, it is possible to
determine whether the ray hits any object of the set, and if so which object does it hit
first.

(a)

q
R

(b) (c)

q

(d)

R

Fig. 73: Common geometric queries: (a) nearest-neighbor searching, (b) range searching, (c) point
location, (d) intersection searching.

In all cases, you should imagine the size n of the set is huge, consisting for example of millions
of objects, and the objective is to answer the query in time that is significantly smaller than
n, ideally O(log n). We shall see that it is not always possible to achieve efficient query times
with storage that grows linearly with n. In such instances, we would like the storage to slowly,
for example, O(n log n). As with 1-dimensional data structures, it will also be desirable to
provide dynamic updates, allowing for the insertion and deletion of objects.

No Total Ordering: While we shall see that many of the ideas that we applied in the design of 1-
dimensional data structures can be adapted to the design of multi-dimensional data structure,
there is one fundamental challenge that we will face. Almost all 1-dimensional data structures
exploit the fact that the data are drawn from a total order. The existence of such a total
ordering is critical to all the tree-based search structures we studied as well as skip lists.

The only exception to this is hashing. But hashing is applicable only when we are searching for
exact matches. In typical geometric queries (as all the ones described above) exact matching
does not apply. Instead we are interested in notions such as “close to” or “contained within”
or “overlapping with,” none of which are amenable to hashing.

Point representations: Let’s first say a bit about representation and notation. We will assume
that each point pi is expressed as a d-element vector, that is pi = (pi,1, . . . , pi,d). To simplify
our presentation, we will usually describe our data structures in a 2-dimensional context,
but the generalization to higher dimensions will be straightforward. For this reason, we may
sometimes refer to a point’s in terms of its (x, y)-coordinates, for example, p = (px, py), rather
than p = (p1, p2).

While mathematicians label indices starting with 1, programming languages like Java prefer
to index starting with 0. Therefore, in Java, each point p is represented as a d-element vector:

Point quadtrees and kd-trees 87 CMSC 420

float[][] p = new float[n][d]; // array of n points, each a d-element vector

In this example, the points are p[0], p[1], p[n-1], and the coordinates of the ith point are
given by p[i][0], p[i][1], p[i][d-1].

A better approach would be to define a class that represents a point object. An example
of a simple Point object can be found in the code block below. We will assume this in our
examples. Java defines a 2-dimensional point object, called Point2d.

Simple Point class
public class Point {

private float[] coord; // coordinate storage

public Point(int dim) { /* construct a zero point */ }

public int getDim() { return coord.length; }

public float get(int i) { return coord[i]; }

public void set(int i, float x) { coord[i] = x; }

public boolean equals(Point other) { /* compare with another point */ }

public float distanceTo(Point other) { /* compute distance to another point */ }

public String toString() { /* convert to string */ }

}

Now, your point set could be defined as an array of points, for example, Point[] pointSet

= new Point[n]. Note that although we should use x.get(i) to get the ith coordinate of a
point x, we will often be lazy in our code samples, and just write x[i] instead.

Point quadtree: Let us first consider a natural way of generalizing unbalanced binary trees in
the 1-dimensional case to a d-dimensional context. Suppose that we wish to store a set
P = {p1, . . . , pn} of n points in d-dimensional space. In binary trees, each point naturally
splits the real line in two. In two dimensions if we run a vertical and horizontal line through
the point, it naturally subdivides the plane into four quadrants about this point. (In general
d-dimensional space, we consider d axis-parallel hyperplanes passing through the point. These
subdivide space into 2d orthants.)

To simplify the presentation, let us assume that we are working in 2-dimensional space. The
resulting data structure is called a point quadtree. (In dimension three, the corresponding
structure is naturally called an octtree. As the dimension grows, it is too complicated to figure
out the proper term for the number of children, and so the term quadtree is often used in
arbitrary dimensions, even though the outdegree of each node is 2d, not four.)

Each node has four (possibly null) children, corresponding to the four quadrants defined by
the 4-way subdivision. We label these according to the compass directions, as NW, NE, SW, and
SE. In terms of implementation, you can think of assigning these the values 0, 1, 2, 3, and
use them as indices to a 4-element array of children pointers.

As with standard (unbalanced) binary trees, points are inserted one by one. We descend
through the tree structure in a natural way. For example, we compare the newly inserted
point’s x and y coordinates to those of the root. If the x is larger and the y is smaller, we

Point quadtrees and kd-trees 88 CMSC 420

recurse on the SE child. The insertion of each point results in a subdivision of a rectangular
region into four smaller rectangles. Consider the insertion of the following points:

(35, 40), (50, 10), (60, 75), (80, 65), (85, 15), (5, 45), (25, 35), (90, 5).

The resulting subdivision is shown in Fig. 74(a) and the tree structure is shown in (b).

(a) (b)

(35, 40)
(5, 45)

(60, 75)

(25, 35)

(80, 65)

(85, 15)

(90, 5)

(50, 10)

(x, y)

(25, 35)(60, 75)(5, 45) (50, 10)

(80, 65) (85, 15) (90, 5)

(35, 40)

NW NE SW SE

Fig. 74: Point quadtree.

Each node in the tree is naturally associated with a rectangular region of space, which we
call its cell. Note that some rectangles are special in that they extend to infinity. Since semi-
infinite rectangles sometimes bother people, it is not uncommon to assume that everything
is contained within one large bounding rectangle, which may be provided by the user when
the tree is first constructed.

We will not discuss algorithms for the point quad-tree in detail. Instead, we will defer this
discussion to point kd-trees, and simply note that for each operation on a kd-tree, there is a
similar algorithm for quadtrees.

Point kd-tree: As observed above, point quadtrees can be generalized to higher dimensions, the
number of children grows exponentially in the dimension, as 2d. For example, if you are
working in 20-dimensional space, every node has 220, or roughly a million children. Clearly,
the simple quadtree idea is not scalable to very high dimensions. Next, we describe an
alternative data structure, that always results in a binary tree.

As in the case of a quadtree, the cell associated with each node is an axis-aligned rectangle
(assuming the planar case) or a hyper-rectangle in d-dimensional space. When a new point is
inserted into some node (equivalently into some cell), we will split the cell by a horizontal or
vertical splitting line, which passes through this point. In higher dimensions, we split the cell
by a (d− 1) dimensional hyperplane that is orthogonal to one of the coordinate axes. In any
dimension, such a split can be specified by giving the cutting axes (which can be represented
as an integer from 0 to d− 1), and also called the cutting value. Following the approach used
in point quadtrees, the cutting value will be taken from the coordinates of the point being
stored in this node. Thus, along with its left and right child pointers, we can think of every
node as storing two items, an integer cutting dimension and a point. The following code
shows a possible node structure. We add a utility method to determine whether a point lies
in the left subtree, that is, whether it is smaller along the cutting dimension. Of course, if

Point quadtrees and kd-trees 89 CMSC 420

it is in the right subtree, this returns false. Throughout, we will use the terms “left” and
“right” to by synonymous with being smaller than or larger than the splitter along the cutting
dimension, respectiely.

class KDNode { // node in a kd-tree

Point point; // splitting point

int cutDim; // cutting dimension

KDNode left; // children

KDNode right;

KDNode(Point point, int cutDim) { // constructor

this.point = point;

this.cutDim = cutDim;

left = right = null;

}

boolean inLeftSubtree(Point x) { // is x in left subtree?

return x[cutDim] < point[cutDim];

}

}

The resulting data structure is called a point kd-tree. Actually, this is a bit of a misnomer.
The data structure was named by its inventor Jon Bentley to be a 2-d tree in the plane, a
3-d tree in 3-space, and a k-d tree in dimension k. However, over time the name “kd-tree”
became commonly used irrespective of dimension. Thus it is common to say a “kd-tree in
dimension 3” rather than a “3-d tree”.

How is the cutting dimension chosen? There are a number of ways, but the most common
is just to alternate among the possible axes at each new level of the tree. For example, at
the root node we cut orthogonal to the x-axis (or 0th coordinate), for its children we cut
orthogonal to y (or 1st coordinate), for the grandchildren we cut again along x. In general,
we cycle through the various axes, setting the cutting dimension of the child to 1 plus the
cutting dimension of the parent all taken modulo the dimension. An example is shown in
Fig. 75 (given the same points as in the previous example). Again we show both the tree and
the spatial subdivision. We will assume this method of choosing the cutting dimension in our
examples, but there are better ways, for example selecting the cutting dimension based on
the direction in which the points of the subtree are most widely distributed.

The tree representation is much the same as it is for quad-trees except now every node has
only two children. The contents of the left child of a node contain the points x such that
x[cutDim] < point[cutDim] and for the right child x[cutDim] >= point[cutDim]. (How
you break ties is rather arbitrary.)

As with unbalanced binary search trees, it is possible to prove that if keys are inserted in
random order, then the expected height of the tree is O(log n), where n is the number of
points in the tree.

Insertion into kd-trees: Insertion operates as it would for a regular binary search tree. We
descend the tree until falling out, and then we create a node containing the point and assign
its cutting dimension by whatever policy is used by the tree. The principal utility function
is presented in the following code block. The function takes three arguments, the point x
being inserted, the current node p, and the cutting dimension of the newly created node. The
initial call is root = insert(x, root, 0).

Point quadtrees and kd-trees 90 CMSC 420

(a) (b)

(35, 40)
(5, 45)

(60, 75)

(25, 35)

(80, 65)

(85, 15)

(90, 5)

(50, 10)

(25, 35) (60, 75)

(5, 45) (50, 10)

(80, 65)

(85, 15)

(90, 5)

(35, 40)

(x, y)

(x, y)

cut on x

cut on y

Fig. 75: Point kd-tree decomposition.

kd-tree Insertion
KDNode insert(Point x, KDNode p, int cutDim) {

if (p == null) { // fell out of tree

p = new KDNode(x, cutDim); // create new leaf

} else if (p.point.equals(x)) {

throw Exception("duplicate point"); // duplicate data point!

} else if (p.inLeftSubtree(x)) { // insert into left subtree

p.left = insert(x, p.left, (p.cutDim + 1) % x.getDim());

} else { // insert into right subtree

p.right = insert(x, p.right, (p.cutDim + 1) % x.getDim());

}

return p;

}

Point quadtrees and kd-trees 91 CMSC 420

An example is shown in Fig. 76, where we insert the point (50, 90) into the kd-tree of Fig. 75.
We descend the tree until we fall out on the left subtree of node (60, 75). We create a new
node at this point, and the cutting dimension cycles from the parent’s x-cutting dimension
(cutDim = 0) to a y-cutting dimension (cutDim = 1).

(35, 40)
(5, 45)

(60, 75)

(80, 65)

(85, 15)

(90, 5)

(50, 10)

(25, 35) (60, 75)

(5, 45) (50, 10)

(80, 65)

(85, 15)

(90, 5)

(35, 40)
insert

(50, 90)

(50, 90)

(35, 40)
(5, 45)

(60, 75)

(25, 35)

(80, 65)

(85, 15)

(90, 5)

(50, 10)

(50,90)

Fig. 76: Insertion into the point kd-tree of Fig. 75.

Deletion and Replacement Points: We will next discuss deletion from kd-trees. As we saw
with deletion in standard bindary search trees, an issue that will arise when deleting a point
from the middle of the tree is what to use in place of this node, that is, the replacement point.
It is not as simple as selecting the next point in an inorder traversal of the tree, since we need
a point that satisfies the necessary geometric conditions.

Suppose that we wish to delete a point in some node p, and suppose further that p.cutDim

== 0, that is, the x-coordinate. An appropriate choice for the replacement point is the point
of p.right that has the smallest x-coordinate. (What do we do if the right child is null?
We’ll come to this later.) Finding such a point is a nice exercise, since it illustrates how
programming is done with kd-trees.

Let us derive a procedure findMin(p, i, cutDim) that computes the point in the subtree
rooted at p that has the smallest ith coordinate. The procedure operates recursively. When
we arrive at a node p, if the cutting dimension matches i, then we know that the subtrees are
ordered according the the ith coordinate. If the left subtree is nonempty, then the desired
point is the minimum from this subtree. Otherwise, we return p’s associated point. (There
is never a need to search the right subtree. Do you see why?)

On the other hand, if p’s cutting dimension differs from i then we cannot infer which subtree
may contain the point with the minimum ith coordinate. So, we will have to try the right
subtree, the left subtree, and the point at this node. We include a function minAlongDim(p1,

p2, i), which returns whichever point p1 or p2 is smallest along coordinate i. (The function
is written so that the second point might be null, which happens when we attempt to extract
the minimum point from an empty subtree.) The function is given in the code block below.

Fig. 77 presents an example of the execution of this algorithm to find the point with the
minimum x-coordinate in the subtree rooted at (55, 40). Since this node splits horizontally,
we need to visit both of its subtrees to find their minimum x values. (These will be (15, 10)
for the left subtree and (10, 65) for the right subtree.) These values are then compared with
the point at the root to obtain the overall x-minimum point, namely (10, 65). Observe that
because the subtrees at (45, 20) and (35, 75) both split on the x-coordinate, and we are looking
for the point with the minimum x-coordinate, we do not need to search their right subtrees.
The nodes visited in the search are shaded in blue.

Point quadtrees and kd-trees 92 CMSC 420

Find the minimum point in subtree along ith coordinate
Point findMin(KDNode p, int i) { // get min point along dim i

if (p == null) { // fell out of tree?

return null;

}

if (p.cutDim == i) { // cutting dimension matches i?

if (p.left == null) // no left child?

return p.point; // use this point

else

return findMin(p.left, i); // get min from left subtree

} else { // it may be in either side

Point q = minAlongDim(p.point, findMin(p.left, i), i);

return minAlongDim(q, findMin(p.right, i), i);

}

}

Point minAlongDim(Point p1, Point p2, int i) { // return smaller point on dim i

if (p2 == null || p1[i] <= p2[i]) // p1[i] is short for p1.get(i)

return p1;

else

return p2;

}

(a) (b)

(x, y)

(x, y)

cut on x

cut on y

(30, 25)

(35, 75)

(55, 40)

(45, 20)

(60, 30)

(70, 15)

(80, 90)

(15, 10)
(25, 15)

(70, 60)
(10, 65)

(25, 85)

(20, 50)

(55, 40)

(45, 20)

(25, 15)

(15, 10) (70, 15)

(30, 25) (60, 30)

(35, 75)

(20, 50) (25, 85)

(10, 65) (70, 60)

(80, 90)

Fig. 77: Example of findMin when i = 0 (the x-coordinate) on the subtree rooted at (55, 40). The
function returns (10, 65).

Point quadtrees and kd-trees 93 CMSC 420

Deletion from a kd-tree: As with insertion we can model the deletion code after the deletion
code for unbalanced binary search trees. However, there is an interesting twist here. Recall
that in the 1-dimensional case we needed to consider a number of different cases. If the node
is a leaf we just delete the node. Otherwise, its deletion would result in a “hole” in the tree.
We need to find an appropriate replacement element. In the 1-dimensional case, we were
able to simplify this if the node has a single child (by making this child the new child of
our parent). However, this would move the child from an even level to an odd level, or vice
versa, and this would violate our assumption that the cutting dimensions cycle among the
coordinates. (Note this might not be an issue for some implementations of the kd-tree, where
the cutting dimension is selected by some other policy, but to keep things as clean as possible,
our deletion procedure will not alter a node’s cutting dimension.)

Let us assume first that the right subtree is non-empty. Recall that in the 1-dimensional case,
the replacement key was taken to be the smallest key from the right child, and after using the
replacement to fill the hole, we recursively deleted the replacement. How do we generalize
this to the multi-dimensional case? What does it mean to find the “smallest” element in a
such a set? The proper thing to do is to find the point whose coordinate along the current
cutting dimension is minimum. Thus, if the cutting dimension is the x-axis, say, then the
replacement key is the point with the smallest x-coordinate in the right subtree. We use the
findMin() function (given above) to do this.

On the other hand, what if the right subtree is empty? At first, it might seem that the
right thing to do is to select the maximum node from the left subtree. However, there is a
subtle trap here. Recall that we maintain the invariant that points whose coordinates are
equal to the cutting dimension are stored in the right subtree. If we select the replacement
point to be the point with the maximum coordinate from the left subtree, and if there are
other points with the same coordinate value in this subtree, then we will have violated our
invariant. There is a clever trick for getting around this though. For the replacement element
we will select the minimum (not maximum) point from the left subtree, and we move the left
subtree over and becomes the new right subtree. The left child pointer is set to null. The
code is given in the following code block.

An example of the operation of this deletion algorithm is presented in Fig. 78. The original
objective is to delete the point (35, 60). This is at the root of the tree. Because the cutting
dimension is vertical, we search its right subtree to find the point with the minimum x-
coordinate, which is (50, 30). The point is copied to the root, and we then recursively delete
(50, 30) from the root’s right subtree. This recursive call then seeks the node p containing
(50, 30). Note that this node has no right child, but unlike standard binary search trees, we
cannot simply unlink it from the tree (for the reasons described above). Instead, we observe
that its cutting dimension is horizontal, and we search for the point with the minimum y-
coordinate in p’s left subtree, which is (60, 10). We copy (60, 10) to p, and then recursively
delete (60, 10) from p’s left subtree. It is a leaf, so it may simply be unlinked from the tree.
Finally we move this left subtree p over to become p’s right subtree. (Whew!)

Recall that in the 1-dimensional case, in the 2-child case the replacement node was guaranteed
to have either zero or one child. However this is not necessarily the case here. Thus we may
do many 2-child deletions. As with insertion the running time is proportional to the height
of the tree.

Analysis: The space needed by the kd-tree to store n points in d-dimensional space is O(n), which
is optimal. (We treat d like a constant, independent of n. In fact, it takes O(dn) space to

Point quadtrees and kd-trees 94 CMSC 420

kd-tree Deletion
KDNode delete(Point x, KDNode p) {

if (p == null) { // fell out of tree?

throw Exception("point does not exist");

} else if (p.point.equals(x)) { // found it

if (p.right != null) { // take replacement from right

p.point = findMin(p.right, p.cutDim);

p.right = delete(p.point, p.right);

} else if (p.left != null) { // take replacement from left

p.point = findMin(p.left, p.cutDim);

p.right = delete(p.point, p.left); // move left subtree to right!

p.left = null; // left subtree is now empty

} else { // deleted point in leaf

p = null; // remove this leaf

}

} else if (p.inLeftSubtree(x)) {

p.left = delete(x, p.left); // delete from left subtree

} else { // delete from right subtree

p.right = delete(x, p.right);

}

return p;

}

(35, 60)

(20, 45)

(10, 35)

(20, 20) (60, 10)

(50, 30)

(60, 80)

(70, 20)

(80, 40)

(90, 60)

(20, 45)

(35, 60)

(60, 80)

(10, 35)

(20, 20)

(80, 40)

(50, 30) (90, 60)

(70, 20)

(60, 10)

(20, 45)

(50, 30)

(60, 80)

(10, 35)

(20, 20)

(80, 40)

(50, 30) (90, 60)

(70, 20)

(60, 10)

replacement

delete(35,60)

copy

delete(50,30)

replacement

copy

(20, 45)

(50, 30)

(60, 80)

(10, 35)

(20, 20)

(80, 40)

(60, 10) (90, 60)

(70, 20)

(60, 10)

delete(60,10)

(20, 45)

(50, 30)

(60, 80)

(10, 35)

(20, 20)

(80, 40)

(60, 10) (90, 60)

(70, 20)

(20, 45)

(10, 35)

(20, 20)

(60, 80)

(70, 20)

(80, 40)

(90, 60)

Moved from left

to right child(60, 10)

(50, 30)

Fig. 78: Deletion from a kd-tree.

Point quadtrees and kd-trees 95 CMSC 420

store the coordinates, but since d is a constant, we can ignore the d factor.)

The height analysis of the kd-tree is essentially the same as that of the unbalanced binary
tree. If n points are inserted in random order, then the height of the tree will be O(log n)
in expectation. Because we chose replacement nodes in a biased way (always from the right
subtree, if it is nonempty), it is reasonable that the same systematic bias issues that lead to
O(
√
n) tree height over a long series of random insertions and deletions. However, to the best

of my knowledge, no systematic studies have been published on this topic.

With 1-dimensional search trees we never discussed the question of building a tree in a purely
static context, where the points are all given in advance. (The reason is that there is no need
to build a tree. You could simply sort the points and store them in an array.) However,
in multi-dimensional data sets, binary search in an array is not an option. Therefore, the
question of how to build a well-balanced tree for a fixed set of points is a natural one to ask.
Suppose that we use the method of cycling the cutting dimension from level to level of the
tree to build a kd-tree for a point set P . At the root level, we could choose the splitting point
to be the median of P according to x-coordinates. Then, after partitioning the set about this
point, into say PL and PR, the splitting value for each set would be the respective medians
but according to the y-coordinates. By doing this, we guarantee that the number of points in
each subtree is essentially half that of its parent, and this implies that the overall tree height
is O(log n).

By the way, this raises an interesting computational question. We know that it is possible to
build a 1-dimensional tree from a sorted point set in O(n log n) time, by repeatedly splitting
on the median. Can you generalize this to construct a perfectly balanced 2-dimensional kd-
tree also in O(n log n) time. The tricky issue is that sorting on x does not help you in finding
the y-splits, and sorting on y does not help you with the x splits. This is an interesting
computational problem to think about. (The answer is that it is possible to build such a tree
in O(n log n) time, but it takes a bit of cleverness. We will leave this as an exercise.)

Lecture 14: Answering Queries with kd-trees

Recap: In our previous lecture we introduced kd-trees, a multi-dimensional binary partition tree
that is based on axis-aligned splits. We have shown how to perform the operations of insertion
and deletion from kd-trees. In this lecture, we will investigate two important geometric queries
using kd-trees: orthogonal range search queries and nearest-neighbor queries.

Range Queries: Given any point set, a fundamental type of query is called a range query or more
properly, an orthogonal range query. To motivate this sort of query, suppose that you querying
a biomedical database with millions of records. Each point of the database is associated with
the medical record of a patient. Each coordinate is the numeric value of some statistic, such
as the patient’s height, weight, blood pressure, HDL and LDL cholesterol numbers, etc. So,
if there are 20 different numbers associated with each patient’s record, each patient can be
modeled as a point in a 20-dimensional space of real numbers, or R20 for short.

Suppose that as part of your study or these patients, you want to know information such as
“how many patients are there with weights in the range 70–80 kilograms, heights in the range
160–170 centimeters, etc.” This amounts to finding the number of points in the database
that lie within an axis-orthogonal rectangle, defined by the intersection of these intervals (see
Fig. 79). This is where the name orthogonal range searching originates.

Processing Queries with kd-trees 96 CMSC 420

R R

weightweight

height

8070

160

170

height

8070

170

160

Fig. 79: Orthogonal range query.

More formally, given a set P of points in d-dimensional real space, Rd, we wish to store these
points in a kd-tree so that, given a query consisting of an axis-aligned rectangle, denoted R,
we can efficiently count or report the points of P lying within R. Listing all the points lying
in the range is called a range reporting query, and counting all the points in the range is called
a range counting query. The solutions for the two problems are often similar, but some tricks
can be employed when counting, that do not apply when reporting.

A Rectangle Class: Before we get into a description of how to answer orthogonal range queries
with the kd-tree tree, let us first define a simple class for storing a multi-dimensional rectangle,
or hyper-rectangle for short. The private data consists of two points low and high. A point
q lies within the rectangle if low[i] ≤ q[i] ≤ high[i], for 0 ≤ i ≤ d − 1 (assuming Java-like
indexing). In addition to a constructor, the class provides a few useful geometric primitives
(illustrated in Fig. 80).

boolean contains(Point q): Returns true if and only if point q is contained within this
rectangle (using the above inequalities).

boolean contains(Rectangle c): Returns true if and only if this rectangle contains rect-
angle c. This boils down to testing containment on all the intervals defining each of the
rectangles’ sides:[

c.low[i], c.high[i]
]
⊆
[
low[i],high[i]

]
, for all 0 ≤ i ≤ d− 1.

high

low

q1

q2

q4

q3

r.distanceFrom(q)

r

r

new Rectangle(low, high)

q

r.contains(q)

r

r.contains(c)

r
c

r.isDisjointFrom(c)

r

c

Fig. 80: An axis-parallel rectangle methods.

Processing Queries with kd-trees 97 CMSC 420

boolean isDisjointFrom(Rectangle c): Returns true if and only if rectangle c is disjoint
from this rectangle. This boils down to testing whether any of the defining intervals are
disjoint, that is

r.high[i] < c.low[i] or r.low[i] > c.high[i], for any 0 ≤ i ≤ d− 1.

float distanceTo(Point q): Returns the minimum Euclidean distance from q to any point
of this rectangle. This can be computed by computing the distance from the coordinate
q[i] to this rectangle’s ith defining interval, taking the sums of squares of these distances,
and then taking the square root of this sum:√√√√d−1∑

i=0

(distance(q[i],
[
low[i], high[i]

]
))2

There is one additional function worth discussing, because it is used in many algorithms that
involve kd-trees. The function is given a rectangle r and a splitting point s lying within
the rectangle. We want to cut the rectangle into two sub-rectangles by a line that passes
through the splitting point. These are used in a context where the rectangle r represents the
cell associated with a given kd-tree node, and by cutting the cell through the splitter, we
generate the cells associated with the node’s left and right children.

Rectangle leftPart(int cd, Point s): (and rightPart(int cd, Point s)) These are
both given a cutting dimension cd and a point s that lies within the rectangle. The
first returns the subrectangle lying to the left (below) of s with respect to the cutting
dimension, and the other returns the subrectangle lying to the right (above) of s with
respect to the cutting dimension (see Fig. 80). More formally, leftPart(cd, s), returns
a rectangle whose low point is the same as r.low and whose high point is the same as
r.high except that the cd-th coordinate is set to s[cd]. Similarly, rightPart(cd, s),
returns a rectangle whose high point is the same as r.high and whose low point is the
same as r.low except that the cd-th coordinate is set to s[cd].

s

s

s

r.rightPart(cd, s)r.leftPart(cd, s)

r
cd = 0

low

low

high

high
(s[0], high[1])

(s[0], low[1])

Fig. 81: The functions leftPart and rightPart.

The following code block provides a high-level overview of the Rectangle class (without
defining any of the functions).

Anwering the Range Query: In order to answer range counting queries, let us first assume that
each node p of the tree has been augmented with a member p.size, indicating the number of
points lying within the subtree rooted at p. This can easily be updated as points are inserted
to and deleted from the tree. The counting function, rangeCount(r, p, cell) operates

Processing Queries with kd-trees 98 CMSC 420

A skelton of a simple Rectangle class
public class Rectangle {

Point low; // lower left corner

Point high; // upper right corner

public Rectangle(Point low, Point high) // constructor

public boolean contains(Point q) // do we contain q?

public boolean contains(Rectangle c) // do we contain rectangle c?

public boolean isDisjointFrom(Rectangle c) // disjoint from rectangle c?

public float distanceTo(Point q) // minimum distance to point q

public Rectangle leftPart(int cd, Point s) // left part from s

public Rectangle rightPart(int cd, Point s) // right part from s

}

recursively. The first argument r is the range itself, the second argument p is the node
currently visited, and cell is its associated cell. It returns a count of the number of points
within p’s subtree that lie within r. The initial call is rangeCount(r, root, boundingBox),
where boundingBox is the bounding box of the entire kd-tree.

The function operates recursively, working from the root down to the leaves. First, if we fall
out of the tree then there is nothing to count. Second, if the current node’s cell is completely
disjoint from the query range, we may return 0, because none of this node’s points lie within
the range (see Fig. 82). Next, if the query range completely contains the current cell, we can
count all the points of p as lying within the range, and so we return p.size. Finally, the
range must partially overlap the cell. In this case, we apply the function recursively to each
of our two children. The function is presented in the code block below.

kd-tree Range Counting Query
int rangeCount(Rectangle r, KDNode p, Rectangle cell) {

if (p == null) return 0; // empty subtree

else if (r.isDisjointFrom(cell)) // no overlap with range

return 0;

else if (r.contains(cell)) // range contains our entire cell?

return p.size; // include all points in the count

else { // range partially overlaps cell

int count = 0;

if (r.contains(p.point)) // consider this point

count++;

// apply recursively to children

count += rangeCount(r, p.left, cell.leftPart(p.cutDim, p.point));

count += rangeCount(r, p.right, cell.rightPart(p.cutDim, p.point));

return count;

}

}

An Example: Fig. 83 shows an example of a range search. Next to each node we store the size of
the associated subtree in blue. We say that a node is visited if a call to rangeCount() is made
on this node. We say that a node is processed if both of its children are visited. Observe that
for a node to be processed, its cell must overlap the range without being contained within the
range. In the example, the shaded nodes are those that are not processed. For example the
subtree rooted at h is entirely contained within the range, and any points in the subtree can be

Processing Queries with kd-trees 99 CMSC 420

(a) (b) (c)

rcell

cell is disjoint from range

r

cell is contained within range

cell r

cell partially overlaps range

cell

Fig. 82: Cases arising in orthogonal range searching.

safely included in the count. (In this case, this includes the two points p and h.) The subtrees
rooted at k and g are entirely disjoint from the query, and the subtrees rooted at these nodes
can be completely ignored. The nodes with red squares surrounding them those whose points
have been added individually to the count (by the condition r.contains(p.point)). There
are four such nodes d, f , l, and q. Combined with the two points of h’s subtree, the total
count returned is 6.

p
1

r

a

b
c

d

e

f

g

h
i

j
k

l

m

n

p q

b

a

c

d e f g

h i j k l m n

18

89

5 3 4 3

3 1 1 1 2 1 1

q
1

s

s
1

t

t
1

Fig. 83: Range search in kd-trees. The subtree rooted at h is counted entirely. The subtrees rooted
at k and g are excluded entirely. The other points are checked individually.

Analysis of query time: How many nodes does this method visit altogether? We claim that
the total number of nodes is O(

√
n) assuming a balanced kd-tree (which is a reasonable

assumption in the average case).

Theorem: Given a balanced kd-tree with n points, range counting queries can be answered
in O(

√
n) time.

Recall from the discussion above that a node is processed (both children visited) if and only if
the cell overlaps the range without being contained within the range. We say that such a cell
is stabbed by the query. To bound the total number of nodes that are processed in the search,
it suffices to count the total number of nodes whose cells are stabbed by the query rectangle.
Rather than prove the above theorem directly, we will prove a simpler result, which illustrates
the essential ideas behind the proof. Rather than using a 4-sided rectangle, we consider an
orthogonal range having a only one side, that is, an orthogonal halfplane. In this case, the

Processing Queries with kd-trees 100 CMSC 420

query stabs a cell if the vertical or horizontal line that defines the halfplane intersects the
cell.

Lemma: Given a balanced kd-tree with n points, any vertical or horizontal line stabs O(
√
n)

cells of the tree.

Proof: Since the tree is balanced, its height is O(log n). Since the constant factor will not
really matter, it will simplify matters to assume that the height is exactly lg n. Let us
consider the case of a vertical line x = x0. The horizontal case is symmetrical.

Consider a processed node which has a cutting dimension along x. The vertical line
x = x0 either stabs the left child or the right child but not both. If it fails to stab one
of the children, then it cannot stab any of the cells belonging to the descendents of this
child either. If the cutting dimension is along the y-axis (or generally any other axis in
higher dimensions), then the line x = x0 stabs both children’s cells.

Since we alternate splitting on left and right, this means that after descending two levels
in the tree, we may stab at most two of the possible four grandchildren of each node.
(This is illustrated in Fig. 84.) In general each time we descend two more levels we
double the number of nodes being stabbed. Thus, we stab the root node, at most 2
nodes at level 2 of the tree, at most 4 nodes at level 4, 8 nodes at level 6, and generally
at most 2i nodes at level 2i.

NW, SW

NW NE

SW SE

NW NE

SW SE

NE, SE

NW, NE

SW, NE

SW, SE

Fig. 84: An axis-parallel line in 2D can stab at most two out of four cells in two levels of the kd-tree
decomposition. In general, it stabs 2i cells at level 2i.

Because we have an exponentially increasing number, the total sum is dominated by its
last term. Thus, it suffices to count the number of nodes stabbed at the lowest level of
the tree. If we assume that the kd-tree is balanced, then the tree has height of h ≈ lg n
(up to constant factors). The number of leaf nodes processed at the bottommost level is

2h/2 ≈ 2(lgn)/2 = (2lgn)1/2 = n1/2 =
√
n.

This completes the proof.

We have shown that any vertical or horizontal line can stab only O(
√
n) cells of the tree.

Thus, if we were to extend the four sides of Q into lines, the total number of cells stabbed by
all these lines is at most O(4

√
n) = O(

√
n). Thus the total number of cells stabbed by the

query range is O(
√
n), and hence the total query time is O(

√
n). Again, this assumes that

the kd-tree is balanced (having O(log n) depth). If the points were inserted in random order,
this will be true on average.

Nearest-Neighbor Queries: Next we consider how to perform an important retrieval query on
a kd-tree. Nearest neighbor queries are among the most important queries. We are given a

Processing Queries with kd-trees 101 CMSC 420

set of points P stored in a kd-tree, and a query point q, and we want to return the point of P
that is closest to q. Let’s assume that distances are measured using Euclidean distances. In
particular, given two points p = (p1, . . . , pd) and q = (q1, . . . , qd), their Euclidean distance is

dist(p, q) =
√

(p1 − q1)2 + · · ·+ (pd − qd)2.

Generalizations to other sorts of distance functions (e.g., the Manhattan or taxicab distance)
is also possible. An example is shown in Fig. 85. Observe that the circle centered at q and
passing through its nearest neighbor p contains no other points. However, every leaf cell of
the kd-tree whose cell overlaps the interior of this circle (shaded in the figure) may need to
be visited in the search, since each might contribute a point that could be closer to q than p
is. What makes the search efficient is that the number of such nodes is usually much smaller
than the total number of nodes in the tree. Of course, finding these nodes is the key issue in
answering nearest neighbor queries.

q q
p

Fig. 85: Nearest-neighbor searching using a kd-tree.

An intuitively appealing approach to nearest neighbor queries would be to find the leaf node
of the kd-tree that contains q and then search this and the neighboring cells of the kd-tree.
The problem is that the nearest neighbor may actually be very far away, in the sense of the
tree’s structure. For example, in Fig. 86, many of the points are at nearly the same distance
from the query point q. It would be necessary to visit almost all the nodes of the tree to
determine which of these points is the actual nearest neighbor.

We will need a more systematic approach to finding nearest neighbors. Nearest neighbor
queries illustrate three important elements of range and nearest neighbor processing.

Partial results: Store the intermediate results of the query and update these results as the
query proceeds.

Traversal order: Visit the subtree first that is more likely to be relevant to the final results.

Pruning: Do not visit any subtree that be judged to be irrelevant to the final results.

Nearest-neighbor Utilities: Before presenting the code for nearest-neighbor searching, we in-
troduce a few helpful utilities. First, recall that every cell of the kd-tree is associated with
an axis-parallel rectangle, called its cell. (For d ≥ 3 the generalization of a rectangle is called
a hyperrectangle, but we will just use the term “rectangle” for simplicity.) A convenient way
to represent a rectangle in any d-dimensional space is to give two points low and high. In
2D, these represent the lower-left and upper-right corners of the rectangle, respectively. In

Processing Queries with kd-trees 102 CMSC 420

q

p

q

Fig. 86: A (nearly) worst-case scenario for nearest-neighbor searching. Almost all the nodes of the
tree need to be visited, since any might be the nearest neighbor.

general, the rectangle consists of all points q such that lowi ≤ qi ≤ highi (see Fig. 80(a)). A
possible implementation, without any details, is outlined in the code block below. (We make
use of the Point object, which was introduced in the previous lecture.)

Nearest-neighbor Code: Our procedure for returning the nearest neighbor actually only returns
the distance to the nearest neighbor, but it is an easy matter to modify the code to produce
both the distance and the point achieving this distance. (Think about how you would do
this.) As usual, we employ a recursive utility function that works on an individual node p of
the tree. The function nearNeighbor(q, p, cell, bestDist) is given four parameters:

• the query point q

• the current node p of the tree

• the rectangular cell associated with this node, cell, and

• the smallest distance, bestDist, between q and any point seen so far in the search.

The procedure works as follows:

• First, if p is null, we must have fallen out of the tree, and we just return the current
smallest distance, bestDist as the answer.

• Otherwise, we compute the distance from the point p.point to q, and update the
bestDist value if this point is closer than the previous.

• Next, we need to search the subtrees for possibly closer points:

– We invoke leftPart and rightPart to determine the cells of the left and right
subtrees, respectively (see Fig. 87(a)).

– Next, we check which side p.point the query point lies. The closer child of p is the
one that lies on the same side of the splitter as q does.

– We visit the closer subtree first (see Fig. 87(b)), since it is more likely to yield the
nearest neighbor. The value of bestDist will be updated to the closest point seen
so far.

– After returning from this call, we compute q’s distance to the right subtree cell.
Observe that if this distance is greater than bestDist, there is no chance that
the other subtree contains the nearest neighbor, and so there is no need to visit

Processing Queries with kd-trees 103 CMSC 420

(a) (b) (c)

leftPart

qbestDist

rightPart leftPart

q
bestDist

visit

closer

q

visit

farther

rightPart

bestDist

(b)(a)

Fig. 87: Nearest-neighbor searching.

this subtree. Otherwise, we apply the search recursively to the right subtree (see
Fig. 87(c)) and update bestDist accordingly.

Given a query point q, the initial call is nearNeigh(q, root, rootCell, Float.MAX VALUE),
where rootCell is the rectangle that encloses the entire tree contents, and Float.MAX VALUE

is the maximum possible float value. The code is presented below.

Compute distance to nearest neighbor in kd-tree
float nearNeighbor(Point q, KDNode p, Rectangle cell, float bestDist) {

if (p != null) {

float thisDist = q.distanceTo(p.point); // distance to p’s point

bestDist = Math.min(thisDist, bestDist); // keep smaller distance

int cd = p.cutDim; // cutting dimension

Rectangle leftCell = cell.leftPart(cd, p.point); // left child’s cell

Rectangle rightCell = cell.rightPart(cd, p.point); // right child’s cell

if (q[cd] < p.point[cd]) { // q is closer to left

bestDist = nearNeighbor(q, p.left, leftCell, bestDist);

if (rightCell.distanceTo(q) < bestDist) { // worth visiting right?

bestDist = nearNeighbor(q, p.right, rightCell, bestDist);

}

} else { // q is closer to right

bestDist = nearNeighbor(q, p.right, rightCell, bestDist);

if (leftCell.distanceTo(q) < bestDist) { // worth visiting left?

bestDist = nearNeighbor(q, p.left, leftCell, bestDist);

}

}

}

return bestDist;

}

An example of the algorithm in action is shown in Fig. 88. The algorithm starts by descending
to the leaf node (the upper child of (70, 30)), computing distances to all the points seen along
the way. At this point (70, 30) is the closest, and its distance to q defines bestDist. Because
the lower child of (70, 30) overlaps the ball of radius bestDist, we need to inspect this
subtree. When we visit (50, 25), we discover that it is even closer. We visit both its children.
However, observe that when we arrive at (60, 10), we visit the closer of its two children (the
empty subtree lying above this point), but there is no need to visit its lower child, because

Processing Queries with kd-trees 104 CMSC 420

it lies entirely outside of the ball of radius bestDist. We then return from the recursion.
On returning to (80, 40) and (70, 80), we see that the cells of their other children lie entirely
outside the ball of radius bestDist, and so we do not need to visit them. On returning to
the root at (35, 90) we see that its left subtree does overlap the bestDist ball, and so we
recurse on that subtree as well. We continue until arriving at the closest leaf to the query
point, namely the right child of (25, 10). We compute distances too all the points associated
with the nodes visited, and we discover along the way that (25, 50) is even closer to the query
point, and thus bestDist is again reduced. After this, all the remaining cells (shaded in
white in the figure) lie outside the nearest-neighbor ball, and so we can terminate the search.

Analysis: How efficient is this procedure? It is quite difficult to analyze from the perspective of
its worst-case performance, because as seen in Fig. 86, there are cases where we may need
to visit almost every node of the tree, because almost all the points are equidistant from
the query point. However, this is really a very pathological example. In most instances, the
typical running time is much closer to O(2d + log n), where d is the dimension of the space.
Generally, you expect to visit some set of nodes that are in the neighborhood of the query
point (giving rise to the 2d term) and require O(log n) time to descend the tree to find these
nodes.

Lecture 15: Memory Management

Memory Management: One of the major systems issues that arises when dealing with data
structures is how storage is allocated and deallocated as objects are created and destroyed.
Although memory management is really a operating systems issue, we will discuss this topic
over the next couple of lectures because there are a number interesting data structures issues
that arise. In addition, sometimes for the sake of efficiency, it is desirable to design a special-
purpose memory management system for your data structure application, rather than using
the system’s memory manager.

We will not discuss the issue of how the runtime system maintains memory in great detail.
Basically what you need to know is that there are two principal components of dynamic
memory allocation. The first is the stack. When procedures are called, arguments and local
variables are pushed onto the stack, and when a procedure returns these variables are popped.
The stacks grows and shrinks in a very predictable way. Variables allocated through new are
stored in a different section of memory called the heap. (In spite of the similarity of names,
this heap has nothing to do with the binary heap data structure, which is used for priority
queues.) As elements are allocated and deallocated, the heap storage becomes fragmented
into pieces. How to maintain the heap efficiently is the main issue that we will consider.

Approaches: There are two basic aproaches of doing memory management. This has to do with
whether storage deallocation is done explicitly or implicitly. Explicit deallocation is used
in languages like C (resp., C++). Memory is allocated through malloc (resp., new), and
is explicitly released to the system by invoking free (resp., delete). While these systems
provide the user a high degree of control, they also impose a strong burden on the programmer.
Blocks of memory may be leaked in the sense that the memory is inaccessible, and has not been
deallocated. A more significant programming bug is the result of aliasing, where (unknown
to the programmer) two pointers reference the same block of memory. (This often happens
when a shallow copy results in a pointer being copied, rather than making a copy of the

Memory Management 105 CMSC 420

(35, 90)

(10, 75)

(25, 10)

(20, 50)
(70, 30)

(70, 80)

(80, 40)

(90, 60)

(10, 75)

(35, 90)

(70, 80)

(25, 10)

(20, 50)

(80, 40)

(70, 30) (90, 60)

(50, 25)

(60, 10)

(50, 90)

(60, 10)(50, 25)

q
bestDist

(50, 90)

closest so far

(35, 90)

(10, 75)

(25, 10)

(20, 50)
(70, 30)

(70, 80)

(80, 40)

(90, 60)

(10, 75)

(35, 90)

(70, 80)

(25, 10)

(20, 50)

(80, 40)

(70, 30) (90, 60)

(50, 25)

(60, 10)

(50, 90)

(60, 10)(50, 25)

q
(50, 90)

closest so far

(35, 90)

(10, 75)

(25, 10)

(20, 50)
(70, 30)

(70, 80)

(80, 40)

(90, 60)

(10, 75)

(35, 90)

(70, 80)

(25, 10)

(20, 50)

(80, 40)

(70, 30) (90, 60)

(50, 25)

(60, 10)

(50, 90)

(60, 10)(50, 25)

q
(50, 90)

closest so far

(35, 90)

(10, 75)

(25, 10)

(20, 50)
(70, 30)

(70, 80)

(80, 40)

(90, 60)

(10, 75)

(35, 90)

(70, 80)

(25, 10)

(20, 50)

(80, 40)

(70, 30) (90, 60)

(50, 25)

(60, 10)

(50, 90)

(60, 10)(50, 25)

q
(50, 90)

final closest

Fig. 88: Nearest-neighbor search.

Memory Management 106 CMSC 420

underlying object.) Now, when one of these pointers is used to release the block, the other
pointer still references this chunk of released memory.

In contrast languages like Java uses implicit deallocation. It is up to the system to determine
which objects are no longer accessible and reclaim their storage. This process is called garbage
collection. In both cases there are a number of choices that can be made, and these choices can
have significant impacts on the performance of the memory allocation system. Unfortunately,
there is not one system that is best for all circumstances. We begin by discussing explicit
deallocation systems.

Explicit Allocation/Deallocation: There is one case in which explicit deallocation is very easy
to handle. This is when all the objects being allocated are of the same size. A large contiguous
portion of memory is used for the heap, and we partition this into blocks of size b, where b is
the size of each object. For each unallocated block, we use one word of the block to act as
a next pointer, and simply link these blocks together in linked list, called the available space
list. For each alloc request, we extract a block from the available space list and for each
dealloc we return the block to the list.

avail:

Allocated

Fig. 89: Dynamic memory allocation block structure.

If the records are of different sizes then things become much trickier. We will partition
memory into blocks of varying sizes. Each block (allocated or available) contains information
indicating how large it is. Available blocks are linked together to form an available space list.
The main questions are: (1) what is the best way to allocate blocks for each alloc request,
and (2) what is the fastest way to deallocate blocks for each dealloc request.

The biggest problem in such systems is the fact that after a series of allocation and deallo-
cation requests the memory space tends to become fragmented into small blocks of memory.
This is called external fragmentation, and is inherent to all dynamic memory allocators. Frag-
mentation increases the memory allocation system’s running time by increasing the size of
the available space list, and when a request comes for a large block, it may not be possible to
satisfy this request, even though there is enough total memory available in these small blocks.
Observe that it is not usually feasible to compact memory by moving fragments around. This
is because there may be pointers stored in local variables that point into the heap. Moving
blocks around would require finding these pointers and updating them, which is a very ex-
pensive proposition. We will consider it later in the context of garbage collection. A good
memory manager is one that does a good job of controlling external fragmentation.

Overview: When allocating a block we must search through the list of available blocks of memory
for one that is large enough to satisfy the request. The first question is, assuming that there
does exist a block that is large enough to satisfy the request, what is the best block to select?
There are two common but conflicting strategies:

First-fit: Search the available blocks sequentially until finding the first one that is large
enough to satisfy the request.

Memory Management 107 CMSC 420

Best-fit: Search all available blocks and select the smallest block that is large enough to
fulfill the request.

Both methods work well in some instances and poorly in others. Remarkably, in spite of its
name, Best-fit often performs worse in practice than First-fit. The reasons are twofold. First,
First-fit is faster to execute, since the search can stop at the first block of sufficiently large
size, rather than having to search the entire available list. Second, best-fit tends to produce a
good deal of fragmentation by selecting blocks that are just barely larger than the requested
size, but this results in a small residual block, or sliver, left over, and there may not be any
future requests that are small enough that this small block can be used.

One method which is commonly used to reduce fragmentation is when a request is just barely
filled by an available block that is slightly larger than the request, we allocate the entire
block (more than the request) to avoid the creation of the sliver. This keeps the list of
available blocks free of large numbers of tiny fragments which increase the search time. The
additional waste of space that results because we allocate a larger block of memory than the
user requested is called internal fragmentation (since the waste is inside the allocated block).

When deallocating a block, it is important that if there is available storage we should merge
the newly deallocated block with any neighboring available blocks to create large blocks of
free space. This process is called merging. Merging is trickier than one might first imagine.
For example, we want to know whether the preceding or following block is available. How
would we do this? We could walk along the available space list and see whether we find it,
but this would be very slow. We might store a special bit pattern at the end and start of each
block to indicate whether it is available or not, but what if the block is allocated that the data
contents happen to match this bit pattern by accident? Let us consider the implementation
of this scheme in greater detail.

Notation and Assumptions: Memory is usually allocated in bytes, but it is common to align all
allocated blocks to a word (typically 32-bits) or a double-word (typically 64 bits) boundary.
This way, we don’t need to know what the data is being used for (bytes, ints, floats, doubles,
etc.). In our examples, we will make the simplifying assumption that requests for memory
allocation are given in terms of a number of words, and the block of memory that we return
will be aligned at a word boundary. Given a pointer p to memory, we will use *p to refer
to the contents of the word of memory at this address. Given a pointer p and integer i, we
will use p + i to refer to the memory location that is i words beyond p. We will use the
expression void* to indicate the “type” of a pointer to a location of physical memory.

Block Structure: The main issues are how to we store the available blocks so we can search them
quickly (skipping over used blocks), and how do we determine whether we can merge with
neighboring blocks or not. We want the operations to be efficient, but we do not want to use
up excessive pointer space (especially in used blocks). Here is a sketch of a solution (one of
many possible).

Allocated blocks: For each block of used memory we record the following information. It
can all fit in the first word of the block.

size: The size of the block of storage (including space for the following fields).

inUse: A single bit that is set to 1 (true) to indicate that this block is in use.

prevInUse: A single bit that is set to 1 (true) if the previous block is in use and 0
(false) otherwise. (Later we will see why this is useful.)

Memory Management 108 CMSC 420

inUse

prevInUse

1? size

inUse

prevInUse

01 size

(always 1 for available block)

size2

prev
next

AvailableAllocated

size size

Fig. 90: Block structure for dynamic storage allocation.

Available blocks: For an available block we store more information, which is okay because
the user is not using this space. These blocks are stored in a doubly-linked circular list,
called avail. Note that the available space list need not sorted by physical memory
addresses. For example, it might be ordered by some other criteria, such as the sizes of
the blocks.

size: The size of the block of storage (including space for the following fields).

inUse: A bit that is set to 0 (false) to indicate that this block is not in use.

prevInUse: A bit that is set to 1 (true) if the immediately preceding block (not the
same as prev) is in use (which should always be true, since we should never have
two consecutive unused blocks).

prev: A pointer to the previous block on the available space list. (It need not be the
block immediately preceding in memory.)

next: A pointer to the next block on the available space list. (It need not be the block
immediately following in memory.)

size2: Contains the same value as size at the head of the block. This field is stored in
the last word of the block. For block p it can be accessed as *(p + p.size - 1).

Note that available blocks require more space for all this extra information. The system
will never allow the creation of a fragment that is so small that it cannot contain all this
information.

You will observe that the run-time system trusts that the user’s program will not overwrite
any of the block header fields or previous/next pointers. What is to keep this from happening?
The answer (at least with C and C++) is nothing ! If the program accidentally overwrites a
memory location outside of the allocated block, it can destroy the memory system’s integrity,
and very soon everything fails. Usually, the result is an abort with just a cryptic message,
such as “Segmentation fault.” Failure to check for these faults can result in undetected
buffer-overflow writes, a common technique for hacking into software systems.

Allocation: To allocate a block we search through the linked list of available blocks until finding
one of sufficient size (see Fig. 91). If the request is about the same size (or perhaps slightly
smaller) as the block, we remove the block from the list of available blocks (performing the
necessary relinkings) and return a pointer to it. We also may need to update the prevInUse

bit of the next block since this block is no longer available. Otherwise we split the block into
two smaller blocks, return one to the user, and leave the other on the available space list.

Memory Management 109 CMSC 420

0
1

5
0

5
0

0
1

2
0

0
1

1
0
0

1
0
0

0
1

3
0

0
1

5
0

5
0

0
1

5
0

5
0

0
1

2
0

0
1

4
0

4
0

1
1

3
0

0
1

5
0

5
0

0
1

6
0

Initial:

alloc(59)

returned

50 20 100 5030

50 20 60 503040

Fig. 91: An example of block allocation.

The following code block presents an algorithm for allocating a new block of memory. Note
that we make use of pointer arithmetic here. The argument b is the desired size of the
allocation. Because we reserve one word of storage for our own use we increment this value on
entry to the procedure. We keep a constant TOO SMALL, which indicates the smallest allowable
fragment size. If the allocation would result in a fragment of size less than this value, we
return the entire block. The procedure returns a generic pointer to the newly allocated block.
The utility function avail.unlink(p) simply unlinks block p from the doubly-linked available
space list. An example is provided in Fig. 91. Shaded blocks are available.

Allocate a block of storage
(void*) alloc(int b) { // allocate block with b words

b += 1; // extra space for system overhead

p = search available space list for block of size at least b;

if (p == null) { ...Error! Insufficient memory...}

if (p.size - b < TOO_SMALL) { // remaining fragment too small?

avail.unlink(p); // remove entire block from avail list

q = p; // this is block to return

}

else { // split the block

p.size -= b; // decrease size by b

*(p + p.size - 1) = p.size; // set new block’s size2 field

q = p + p.size; // offset of start of new block

q.size = b; // size of new block

q.prevInUse = 0; // previous block is unused

}

q.inUse = 1; // new block is used

(q + q.size).prevInUse = 1; // adjust prevInUse for following block

return q + 1; // offset the link (to avoid header)

}

Deallocation: To deallocate a block, we check whether the next block or the preceding blocks are
available. For the next block we can find its first word and check its inUse field. For the
preceding block we use our own prevInUse field. (This is why this field is present). If the
previous block is not in use, then we use the size value stored in the last word to find the
block’s header. If either of these blocks is available, we merge the two blocks and update the
header values appropriately. If both the preceding and next blocks are available, then this

Memory Management 110 CMSC 420

result in one of these blocks being deleting from the available space list (since we do not want
to have two consecutive available blocks). If both the preceding and next blocks are in-use,
we simply link this block into the list of available blocks (e.g. at the head of the list).

The deletion function is shown in the following code block. Let avail denote the head of
the available space list. There are four different cases depending on whether the blocks that
immediate precede or follow p are allocated or available.

• If the following block q is available, then we merge it with p. (See Fig. 92, upper
half.) To do this we update p’s size, and move q’s record in the available space list to
p, using a utility function move(q, p). This copies q’s previous and next fields to p
and appropriately update the entries in the available space list that point to q. (E.g.,
q.prev.next = p.) Otherwise we add p to the available space list, which we assume
will set its previous and next pointers. Now we may assume that p is on the available
space list.

0
1

5
0

5
0

0
1

2
0

0
1

4
0

4
0

1
1

3
0

0
1

5
0

5
0

0
1

6
0

0
1

1
1
0

1
1
0

1
1

3
0

0
1

5
0

5
0

0
1

6
0

Initial:

dealloc

50 20 60 5030

110 5030

40

0
1

5
0

5
0

0
0

6
0

4
0

1
1

3
0

0
1

5
0

5
0

0
1

6
0

50 60 503060

Merge with

trailing block

Merge with

previous block

60

Fig. 92: An example of block deallocation and merging.

• If the preceding block is not in use, we merge this block with p (see Fig. 92, lower half),
and unlink p from the available space list. Note that we do need to alter p.prevInUse.
If the previous block was available, then we merged p with it and p has gone away, and
otherwise p’s original value was correct.

Analysis: There is not much theoretical analysis of this method of dynamic storage allocation.
Because the system has no knowledge of the future sequence of allocation and deallocation
requests, it is possible to contrive situations in which either first fit or best fit (or virtually any
other method you can imagine) will perform poorly. Empirical studies based on simulations
have shown that this method achieves utilizations of around 2/3 of the total available storage
before failing to satisfy a request. Even higher utilizations can be achieved if the blocks are
small on average and block sizes are similar (since this limits fragmentation). A rule of thumb
is to allocate a heap that is at least 10 times larger than the largest block to be allocated.

Memory Management 111 CMSC 420

Deallocating a block of storage
void dealloc(void* p) { // deallocate block at p

p--; // back up to the header

q = p + p.size; // the following block

if (!q.inUse) { // is following available?

p.size += q.size; // merge q into p

avail.move(q, p); // move q to p in avail space list

}

else avail.insert(p); // insert p into avail space list

// p is now in avail space list

p.inUse = 0; // p is now available

*(p + p.size - 1) = p.size; // set our size2 value

if (!p.prevInUse) { // previous is available?

q = p - *(p-1); // get previous block using size2

q.size += p.size; // merge p into q

*(q + q.size - 1) = q.size; // store new size2 value

avail.unlink(p); // unlink p from avail space list

(q + q.size).prevInUse = 0; // notify next that we are avail

}

}

Buddy System: The dynamic storage allocation method described last time suffers from the
problem that long sequences of allocations and deallocations of objects of various sizes tends
to result in a highly fragmented space. The buddy system is an alternative allocation system
which limits the possible sizes of blocks and their positions, and so tends to produce a more
well-structured allocation. Because it limits block sizes, internal fragmentation (the waste
caused when an allocation request is mapped to a larger block size) becomes an issue.

The buddy system works by starting with a block of memory whose size is a power of 2 and
then hierarchically subdivides each block into blocks of equal sizes (see Fig. 94). To make
this intuition more formal, we introduce the two key elements of the buddy system:

(i) The sizes of all blocks (both allocated and available) are powers of 2. When a request
comes for an allocation, the request (including the overhead space needed for storing
block size information) is artificially rounded up to the next higher power of 2. Note
that the allocated size is never more than twice the size of the request.

(ii) Blocks of size 2k start at memory addresses that are multiples of 2k. (We assume that
addressing starts at 0, but it is easy to update this scheme to start at any arbitrary
address by simply shifting addresses by an appropriate offset.)

Note that the above requirements limits the ways in which blocks may be merged. For
example Fig. 94 below illustrates a buddy system allocation of blocks, where the blocks of
size 2k are shown at the same level. Available blocks are shown in white and allocated blocks
are shaded. The two available blocks at addresses 5 and 6 (the two white blocks between 4
and 8) cannot be merged because the result would be a block of length 2, starting at address
5, which is not a multiple of 2. For each size group, there is a separate available space list.

For every block there is exactly one other block with which this block can be merged with.
This is called its buddy. In general, if a block b is of size 2k, and is located at address x, then

Memory Management 112 CMSC 420

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4

Level

Fig. 93: Buddy system block structure.

0 4 8 12 16 20 24 28 32 36 40 44 48

avail

0

1

2

3

4
allocated available

Fig. 94: Buddy system example. Allocated blocks are shaded. Available blocks are shown in white
and are linked into the available-block list of the appropriate size.

its buddy is the block of size 2k located at address

buddyk(x) =

{
x+ 2k if 2k+1 divides x
x− 2k otherwise.

This is easy to compute via bit manipulation. Basically the buddy’s address is formed by
complementing bit k in the binary representation of x (where the lowest order bit is bit 0). In
Java, this can be expressed as buddy(k,x) = (1<<k)^x. For example, for k = 3 the blocks
of length 8 at addresses 208 and 216 are buddies. If we look at their binary representations
we see that they differ in bit position 3 (four bits from the right). Because they must be
multiples of 8, bits 0–2 are zero.

80 = 10100002
88 = 10110002.

So, buddy3(80) = 88 and vice versa.

Putting the Pieces Together: As we mentioned earlier, one principle advantage of the buddy
system is that we can exploit the regular sizes of blocks to search efficiently for available
blocks. We maintain an array of linked lists, one for the available block list for each size
group. In particular, avail[k] is the header pointer to a doubly linked list of available
blocks of size 2k.

Here is how the basic operations work. We assume that each block has the same structure
as described in the dynamic storage allocation example from last time. The prevInUse bit
and the size field at the end of each available block are not needed given the extra structure

Memory Management 113 CMSC 420

provided in the buddy system. Each block stores its size (actually the log base 2 of its size is
sufficient) and a bit indicating whether it is allocated or not. Also each available block has
links to the previous and next entries on the available space list. There is not just one available
space, but rather there are multiple lists, one for each level of the hierarchy (something like
a skip list). This makes it possible to search quickly for a block of a given size.

Buddy System Allocation: We will give a high level description of allocation and dealloction.
To allocate a block of size b, let k = dlg(b+ 1)e. (Recall that we need to include one extra
word for the block size. However, to simplify our figures we will ignore this extra word.)
We will allocate a block of size 2k. In general there may not be a block of exactly this size
available, so find the smallest j ≥ k such that there is an available block of size 2j . If j > k,
repeatedly split this block until we create a block of size 2k. In the process we will create one
or more new blocks, which are added to the appropriate available space lists.

For example, in Fig. 95 we request a block of length 2. There are no available blocks of this
size, so we use the smallest available block of the next larger size, that is, the block of length
16 at address 32. We remove it from its available space list. We recursively split it into
subblocks of sizes 8, 4, 2, 2, until we get to a block of the desired size. We return one of the
blocks of size 2, and we insert the remaining blocks (of sizes 2, 4, and 8) into the available
space lists of the appropriate sizes.

0 4 8 12 16 20 24 28 32 36 40 44 48

avail

0 4 8 12 16 20 24 28 32 36 40 44 48

avail
alloc(2)

returned split

0

1

2

3

4

0

1

2

3

4

Fig. 95: Example of allocating a block in the buddy system.

Deallocation: To deallocate a block, we first mark this block as being available. We then check
to see whether its buddy is available. This can be done in constant time. If so, we remove
the buddy from its available space list, and merge them together into a single free block of
twice the size. This process is repeated until we find that the buddy is allocated.

Fig. 96 shows the deallocation of the block of size 1 at address 21. It is merged with its buddy
of size 1 at address 20, thus forming a block of size 2 at 20. This is then merged with its size-2
buddy at 22, forming a block of size 4 at 20. Finally, this is merged with its size-4 buddy at
16, forming a block of size 8 at 16. This block’s buddy (the block of size 8 starting at 0) is
not available, so the merging process stops. We insert this final block into the appropriate
level of the available space list.

Memory Management 114 CMSC 420

0 4 8 12 16 20 24 28 32 36 40 44 48

avail

dealloc(21)

0 4 8 12 16 20 24 28 32 36 40 44 48

avail

merge

dealloc

0

1

2

3

4

0

1

2

3

4

Fig. 96: Example of deallocating a block in the buddy system.

Fibonacci Buddy System: An interesting variant of the buddy system is designed to reduce
fragmentation by using a hierarchy that is “denser” with respect to the sizes available. The
Fibonacci Buddy System uses Fibonacci numbers, rather than powers of 2.

Recall that F (0) = 0, F (1) = 1, and generally F (i) = F (i − 1) + F (i − 2). The first few
Fibonacci numbers are: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, In this system avail[k] stores available
blocks of size F (k). Each allocation request (after adding +1 for the header) is rounded up
to the next larger Fibonacci number, say F (k). If no block of size F (k) is available, we find
next larger available size, say F (j). We then repeatedly split F (j) using Fibonacci numbers
to obtain a block of the desired size. For example, if F (k) = F (3) = 2 is the desired size and
F (j) = F (9) = 34 is the smallest available, we split the F (j) block up as:

F (9) = 34 = F (7)+F (8) = F (5)+F (6)+F (8) = F (3)+F (4)+F (6)+F (8) = 2+3+8+21.

We remove the block of size 34 from avail[9], and split it up as described above. We return
the block of size 2, and insert the blocks of sizes 3, 8, and 21 into avail[4], avail[6],
avail[8], respectively.

Memory Management 115 CMSC 420

Suuplemental Lectures

Memory Management 116 CMSC 420

Supplemental Lecture 1: Mathematical Prelimaries

Mathematics: In this lecture we will present a brief overview of the mathematical tools that will
be needed to reason about the data structures and algorithms we will be working with. A
good understanding of mathematics helps greatly in the ability to design good data structures,
since through mathematics it is possible to get a clearer understanding of the nature of the
data structures, and a general feeling for their efficiency in time and space. Last time we
gave a brief introduction to asymptotic (big-“Oh” notation), and later this semester we will
see how to apply that. Today we consider a few other preliminary notions: summations and
proofs by induction.

Summations: Summations are important in the analysis of programs that operate iteratively. For
example, in the following code fragment

for (i = 0; i < n; i++) { ... }

Where the loop body (the “...”) takes f(i) time to run the total running time is given by
the summation

T (n) =
n−1∑
i=0

f(i).

Observe that nested loops naturally lead to nested sums. Solving summations breaks down
into two basic steps. First simplify the summation as much as possible by removing constant
terms (note that a constant here means anything that is independent of the loop variable,
i) and separating individual terms into separate summations. Then each of the remaining
simplified sums can be solved. Some important sums to know are

n∑
i=1

1 = n (The constant series)

n∑
i=1

i =
n(n+ 1)

2
(The arithmetic series)

n∑
i=1

1

i
= lnn+O(1) (The harmonic series)

n∑
i=0

ci =
cn+1 − 1

c− 1
c 6= 1 (The geometric series)

Note that complex sums can often be broken down into simpler terms, which can then be
solved. For example

T (n) =

2n−1∑
i=n

(3 + 4i) =

2n−1∑
i=0

(3 + 4i)−
n−1∑
i=0

(3 + 4i)

=

(
3
2n−1∑
i=0

1 + 4
2n−1∑
i=0

i

)
−

(
3
n−1∑
i=0

1 + 4
n−1∑
i=0

i

)

=

(
3(2n) + 4

2n(2n− 1)

2

)
−
(

3(n) + 4
n(n− 1)

2

)
= n+ 6n2.

Mathematical Prelimaries 117 CMSC 420

The last summation is probably the most important one for data structures. For example,
suppose you want to know how many nodes are in a complete 3-ary tree of height h. The
height of a tree is the maximum number of edges from the root to a leaf.) One way to break
this computation down is to look at the tree level by level. At the top level (level 0) there
is 1 node, at level 1 there are 3 nodes, at level 2, 9 nodes, and in general at level i there 3i

nodes. To find the total number of nodes we sum over all levels, 0 through h. Plugging into
the above equation with h = n we have:

h∑
i=0

3i =
3h+1 − 1

2
∈ O(3h).

Conversely, if someone told you that he had a 3-ary tree with n nodes, you could determine
the height by inverting this. Since n = (3(h+1) − 1)/2 then we have

3(h+1) = (2n+ 1)

implying that
h = (log3(2n+ 1))− 1 ∈ O(log n).

Another important fact to keep in mind about summations is that they can be approximated
using integrals.

b∑
i=a

f(i) ≈
∫ b

x=a
f(x)dx.

Given an obscure summation, it is often possible to find it in a book on integrals, and use
the formula to approximate the sum.

Recurrences: A second mathematical construct that arises when studying recursive programs (as
are many described in this class) is that of a recurrence. A recurrence is a mathematical
formula that is defined recursively. For example, let’s go back to our example of a 3-ary tree
of height h. There is another way to describe the number of nodes in a complete 3-ary tree.
If h = 0 then the tree consists of a single node. Otherwise that the tree consists of a root
node and 3 copies of a 3-ary tree of height h−1. This suggests the following recurrence which
defines the number of nodes N(h) in a 3-ary tree of height h:

N(0) = 1

N(h) = 3N(h− 1) + 1 if h ≥ 1.

Although the definition appears circular, it is well grounded since we eventually reduce to
N(0).

N(1) = 3N(0) + 1 = 3 · 1 + 1 = 4

N(2) = 3N(1) + 1 = 3 · 4 + 1 = 13

N(3) = 3N(2) + 1 = 3 · 13 + 1 = 40,

and so on.

There are two common methods for solving recurrences. One (which works well for simple
regular recurrences) is to repeatedly expand the recurrence definition, eventually reducing

Mathematical Prelimaries 118 CMSC 420

it to a summation, and the other is to just guess an answer and use induction. Here is an
example of the former technique.

N(h) = 3N(h− 1) + 1

= 3(3N(h− 2) + 1) + 1 = 9N(h− 2) + 3 + 1

= 9(3N(h− 3) + 1) + 3 + 1 = 27N(h− 3) + 9 + 3 + 1

...

= 3kN(h− k) + (3k−1 + . . .+ 9 + 3 + 1)

When does this all end? We know that N(0) = 1, so let’s set k = h implying that

N(h) = 3hN(0) + (3h−1 + . . .+ 3 + 1) = 3h + 3h−1 + . . .+ 3 + 1 =
h∑

i=0

3i.

This is the same thing we saw before, just derived in a different way.

Proofs by Induction: The last mathematical technique of importance is that of proofs by induc-
tion. Induction proofs are critical to all aspects of computer science and data structures, not
just efficiency proofs. In particular, virtually all correctness arguments are based on induc-
tion. From courses on discrete mathematics you have probably learned about the standard
approach to induction. You have some theorem that you want to prove that is of the form,
“For all integers n ≥ 1, blah, blah, blah”, where the statement of the theorem involves n in
some way. The idea is to prove the theorem for some basis set of n-values (e.g. n = 1 in this
case), and then show that if the theorem holds when you plug in a specific value n − 1 into
the theorem then it holds when you plug in n itself. (You may be more familiar with going
from n to n+ 1 but obviously the two are equivalent.)

In data structures, and especially when dealing with trees, this type of induction is not
particularly helpful. Instead a slight variant called strong induction seems to be more relevant.
The idea is to assume that if the theorem holds for all values of n that are strictly less than n
then it is true for n. As the semester goes on we will see examples of strong induction proofs.

Let’s go back to our previous example problem. Suppose we want to prove the following
theorem.

Theorem: Let T be a complete 3-ary tree with n ≥ 1 nodes. Let H(n) denote the height of
this tree. Then

H(n) = (log3(2n+ 1))− 1.

Basis Case: (Take the smallest legal value of n, n = 1 in this case.) A tree with a single
node has height 0, so H(1) = 0. Plugging n = 1 into the formula gives (log3(2 ·1+1))−1
which is equal to (log3 3)− 1 or 0, as desired.

Induction Step: We want to prove the theorem for the specific value n > 1. Note that we
cannot apply standard induction here, because there is no complete 3-ary tree with 2
nodes in it (the next larger one has 4 nodes).

We will assume the induction hypothesis, that for all smaller n′, 1 ≤ n′ < n, H(n′) is
given by the formula above. (This is sometimes called strong induction, and it is good
to learn since most induction proofs in data structures work this way.)

Mathematical Prelimaries 119 CMSC 420

Let’s consider a complete 3-ary tree with n > 1 nodes. Since n > 1, it must consist of
a root node plus 3 identical subtrees, each being a complete 3-ary tree of n′ < n nodes.
How many nodes are in these subtrees? Since they are identical, if we exclude the root
node, each subtree has one third of the remaining number nodes, so n′ = (n − 1)/3.
Since n′ < n we can apply the induction hypothesis. This tells us that

H(n′) = (log3(2n
′ + 1))− 1 = (log3(2(n− 1)/3 + 1))− 1

= (log3(2(n− 1) + 3)/3)− 1 = (log3(2n+ 1)/3)− 1

= log3(2n+ 1)− log3 3− 1 = log3(2n+ 1)− 2.

Note that the height of the entire tree is one more than the heights of the subtrees so
H(n) = H(n′) + 1. Thus we have:

H(n) = log3(2n+ 1)− 2 + 1 = log3(2n+ 1)− 1,

as desired.

This may seem like an awfully long-winded way of proving such a simple fact. But induction
is a very powerful technique for proving many more complex facts that arise in data structure
analyses.

You need to be careful when attempting proofs by induction that involve O(n) notation. Here
is an example of a common error.

(False) Theorem: For n ≥ 1, let T (n) be given by the following summation

T (n) =
n∑

i=0

i,

then T (n) ∈ O(n). (We know from the formula for the linear series above that T (n) =
n(n + 1)/2 ∈ O(n2). So this must be false. Can you spot the error in the following
“proof”?)

Basis Case: For n = 1 we have T (1) = 1, and 1 is O(1).

Induction Step: We want to prove the theorem for the specific value n > 1. Suppose that
for any n′ < n, T (n′) ∈ O(n′). Now, for the case n, we have (by definition)

T (n) =

n∑
i=0

i =

(
n−1∑
i=0

i

)
+ n = T (n− 1) + n.

Now, since n−1 < n, we can apply the induction hypothesis, giving T (n−1) ∈ O(n−1).
Plugging this back in we have

T (n) ∈ O(n− 1) + n.

But (n− 1) + n ≤ 2n− 1 ∈ O(n), so we have T (n) ∈ O(n).

What is the error? Recall asymptotic notation applies to arbitrarily large n (for n in the
limit). However induction proofs by their very nature only apply to specific values of n. The
proper way to prove this by induction would be to come up with a concrete expression, which
does not involve O-notation. For example, try to prove that for all n ≥ 1, T (n) ≤ 50n. If you
attempt to prove this by induction (try it!) you will see that it fails.

Leftist and Skew Heaps 120 CMSC 420

Supplemental Lecture 2: Leftist and Skew Heaps

Leftist Heaps: The standard binary heap data structure is an simple and efficient data structure
for the basic priority queue operations insert(x) and x = extractMin(). It is often the
case in data structure design that the user of the data structure wants to add additional
capabilities to the abstract data structure. When this happens, it may be necessary to
redesign components of the data structure to achieve efficient performance.

For example, consider an application in which in addition to insert and extractMin, we want
to be able to merge the contents of two different queues into one queue. As an application,
suppose that a set of jobs in a computer system are separate queues waiting for the use of
two resources. If one of the resources fails, we need to merge these two queues into a single
queue.

We introduce a new operation Q = merge(Q1, Q2), which takes two existing priority queues
Q1 and Q2, and merges them into a new priority queue, Q. (Duplicate keys are allowed.)
This operation is destructive, which means that the priority queues Q1 and Q2 are destroyed
in order to form Q. (Destructiveness is quite common for operations that map two data
structures into a single combined data structure, since we can simply reuse the same nodes
without having to create duplicate copies.)

We would like to be able to implement merge() in O(log n) time, where n is the total number
of keys in priority queues Q1 and Q2. Unfortunately, it does not seem to be possible to do
this with the standard binary heap data structure (because of its highly rigid structure and
the fact that it is stored in an array, without the use of pointers).

We introduce a new data structure called a leftist heap, which is fairly simple, and can provide
the operations insert(x), extractMin(), and merge(Q1,Q2). This data structure has many
of similar features to binary heaps. It is a binary tree which is partially ordered, which means
that the key value in each parent node is less than or equal to the key values in its children’s
nodes. However, unlike a binary heap, we will not require that the tree is complete, or even
balanced. In fact, it is entirely possible that the tree may be quite unbalanced.

Leftist Heap Property: Define the null path length, npl(v), of any node v to be the length of
the shortest path to a descendent has either 0 or 1 child. The value of npl(v) can be defined
recursively as follows.

npl(v) =

{
−1 if v = null,
1 + min(npl(v.left),npl(v.right)) otherwise.

We will assume that each node has an extra field, v.npl that contains the node’s npl value.
The leftist property states that for every node v in the tree, the npl of its left child is at least
as large as the npl of its right child. We say that the keys of a tree are partially ordered if
each node’s key is greater than or equal to its parent’s key.

Leftist heap: Is a binary tree whose keys are partially ordered (parent is less than or equal
to child) and which satisfies the leftist property (npl(left) ≥ npl(right)). An example is
shown in the figure below, where the npl values are shown next to each node.

Note that any tree that does not satisfy leftist property can always be made to do so by
swapping left and right subtrees at any nodes that violate the property. Observe that this

Leftist and Skew Heaps 121 CMSC 420

0

0 0

0

0 0

0

0

0

01

1

1

12

2

26

17

8

18

18

12

24

33

6

7

37

3

10

21

23

14

Fig. 97: Leftist heap structure (with npl values shown).

does not affect the partial ordering property. Also observe that satisfying the leftist heap
property does not imply that the tree is balanced. Indeed, a degenerate binary tree in which
is formed from a chain of nodes each attached as the left child of its parent does satisfy this
property.

The key to the efficiency of leftist heap operations is that there exists a short (O(log n) length)
path in every leftist heap (namely the rightmost path). We prove the following lemma, which
implies that the rightmost path in the tree cannot be of length greater than O(log n).

Lemma: A leftist heap with r ≥ 1 nodes on its rightmost path has has at least 2r− 1 nodes.

Proof: The proof is by induction on the size of the rightmost path. Before beginning the
proof, we begin with two observations, which are easy to see: (1) the shortest path in
any leftist heap is the rightmost path in the heap, and (2) any subtree of a leftist heap
is a leftist heap. For the basis case, if there is only one node on the rightmost path, then
the tree has at least one node. Since 1 ≥ 21 − 1, the basis case is satisfied.

For the induction step, let us suppose that the lemma is true for any leftist heap with
strictly fewer than r nodes on its rightmost path, and we will prove it for a binary tree
with exactly r nodes on its rightmost path. Remove the root of the tree, resulting in
two subtrees. The right subtree has exactly r− 1 nodes on its rightmost path (since we
have eliminated only the root), and the left subtree must have a at least r − 1 nodes
on its rightmost path (since otherwise the rightmost path in the original tree would not
be the shortest, violating (1)). Thus, by applying the induction hypothesis, it follows
that the right and left subtrees have at least 2r−1 − 1 nodes each, and summing them,
together with the root node we get a total of at least

2(2r−1 − 1) + 1 = 2r − 1

nodes in the entire tree.

Leftist Heap Operations: The basic operation upon which leftist heaps are based is the merge
operation. Observe, for example, that both the operations insert() and extractMin() can
be implemented by using the operation merge(). (Note the similarity with splay trees, in
which all operations were centered around the splay operation.)

The basic node of the leftist heap is a LeftHeapNode. Each such node contains an data
field of type Element (upon which comparisons can be made) a left and right child, and an

Leftist and Skew Heaps 122 CMSC 420

npl value. The constructor is given each of these values. The leftist heap class consists of
a single root, which points to the root node of the heap. Later we will describe the main
procedure merge(LeftHeapNode h1, LeftHeapNode h2), which merges the two (sub)heaps
rooted at h1 and h2. For now, assuming that we have this operation we define the main heap
operations. Recall that merge is a destructive operation.

Leftist Operations
void insert(Element x) {

root = merge(root, new LeftHeapNode(x, null, null, 0))

}

Element extractMin() {

if (root == null) return null // empty heap

Element minItem = root.data // minItem is root’s element

root = merge(root.left, root.right)

return minItem

}

void merge(LeftistHeap Q1, LeftistHeap Q2) {

root = merge(Q1.root, Q2.root)

}

Leftist Heap Merge: All that remains, is to show how merge(h1, h2) is implemented. The
formal description of the procedure is recursive. However it is somewhat easier to understand
in its nonrecursive form. Let h1 and h2 be the two leftist heaps to be merged. Consider
the rightmost paths of both heaps. The keys along each of these paths form an increasing
sequence. We could merge these paths into a single sorted path (as in merging two lists of
sorted keys in the merge-sort algorithm). However the resulting tree might not satisfy the
leftist property. Thus we update the npl values, and swap left and right children at each
node along this path where the leftist property is violated. A recursive implementation of
the algorithm is given below. It is essentially the same as the one given in Weiss, with some
minor coding changes.

For the analysis, observe that because the recursive algorithm spends O(1) time for each node
on the rightmost path of either h1 or h2, the total running time is O(log n), where n is the
total number of nodes in both heaps.

This recursive procedure is a bit hard to understand. A somewhat easier 2-step interpretation
is as follows. First, merge the two right paths, and update the npl values as you do so. Second,
walk back up along this path and swap children whenever the leftist condition is violated.
The figure below illustrates this way of thinking about the algorithm. The recursive algorithm
just combines these two steps, rather than making the separate.

Skew Heaps: Recall that a splay tree is a self-adjusting balanced binary tree. Unlike the AVL
tree, which maintains balance information at each node and performs rotations to maintain
balance, the splay tree performs a series of rotations to continuously “mix-up” the tree’s
structure, and hence achieve a sort of balance from an amortized perspective.

A skew heap is a self-organizing heap, and applies this same idea as in splay trees, but to the
leftist heaps instead. As with splay trees we store no balance information with each node (no
npl values). We perform the merge operation as described above, but we swap the left and

Leftist and Skew Heaps 123 CMSC 420

Merge two leftist heaps
LeftHeapNode merge(LeftHeapNode h1, LeftHeapNode h2) {

if (h1 == null) return h2 // if one is empty, return the other

if (h2 == null) return h1

if (h1.data > h2.data) // swap so h1 has the smaller root

swap(h1, h2)

if (h1.left == null) // h1 must be a leaf in this case

h1.left = h2

else { // merge h2 on right and swap if needed

h1.right = merge(h1.right, h2)

if (h1.left.npl < h1.right.npl) {

swap(h1.left, h1.right) // swap children to make leftist

}

h1.npl = h1.right.npl + 1 // update npl value

}

return h1

}

0

left.npl < right.npl

2

0

0

0

0

0

0

1 1

1 2

0

0 0

0

10

0

0 0

0

0 0

0

0

0

01

1

1

12

2

Swap subtrees if

Merge right paths and update npl

1

0

0

0

0

1

0

0

0

0

0

1 1

2

0 0
18

3

10

21

23

14

18

12

24

33

6

7

37

26

17

8

18

26

17

8

18

18

12

24

33

6

7

37

3

10

21

23

14

3

10

21

23

14

26

17

8

18

12

24

33

6

7

37

Fig. 98: Example of merging two leftist heaps (2-step interpretation.

Leftist and Skew Heaps 124 CMSC 420

right children from every node along the rightmost path. (Note that in the process the old
rightmost path gets flipped over to become the leftmost path. An example is given in Weiss’s
book, Section 6.7.)

It can be shown that if the heap contains at most n elements, then a sequence of m heap
operations (insert, extractMin, merge) starting from empty heaps takes O(m log n) time.
Thus the average time per operation is O(log n). Because no balance information is needed,
the code is quite simple.

Supplemental Lecture 3: Disjoint Set Union-Find

Equivalence relations: An equivalence relation over some set S is a relation that satisfies the
following properties for all elements of a, b, c ∈ S.

Reflexive: a ≡ a.

Symmetric: a ≡ b then b ≡ a
Transitive: a ≡ b and b ≡ c then a ≡ c.

Equivalence relations arise in numerous applications. An example includes any sort of “group-
ing” operation, where every object belongs to some group (perhaps in a group by itself) and
no object belongs to more than one group. More formally these groups are called equivalent
classes and the subdivision of the set into such classes is called a partition. For example,
suppose we are maintaining a bidirectional communication network. The ability to commu-
nicate is an equivalence relation, since if machine a can communicate with machine b, and
machine b can communicate with machine c, then machine a can communicate with machine
c (e.g. by sending messages through b). Now suppose that a new link is created between two
groups, which previously were unable to communicate. This has the effect of merging two
equivalence classes into one class.

We discuss a data structure that can be used for maintaining equivalence partitions with
two operations: (1) union, merging to groups together, and (2) find, determining which
group an element belongs to. This data structure should not be thought of as a general
purpose data structure for storing sets. In particular, it cannot perform many important set
operations, such as splitting two sets, or computing set operations such as intersection and
complementation. And its structure is tailored to handle just these two operations. However,
there are many applications for which this structure is useful. As we shall see, the data
structure is simple and amazingly efficient.

Union-Find ADT: We assume that we have an underlying finite set of elements S. We want to
maintain a partition of the set. In addition to the constructor, the (abstract) data structure
supports the following operations.

Set s = find(Element x): Return an set identifier of the set s that contains the element
x. A set identifier is simply a special value (of unspecified type) with the property that
find(x) == find(y) if and only if x and y are in the same set.

Set r = union(Set s, Set t): Merge two sets named s and t into a single set r containing
their union. We assume that s, t and r are given as set identifiers. This operations
destroys the sets s and t.

Disjoint Set Union-Find 125 CMSC 420

Note that there are no key values used here. The arguments to the find and union operations
are pointers to objects stored in the data structure. The constructor for the data structure
is given the elements in the set S and produces a structure in which every element x ∈ S is
in a singleton set {x} containing just x.

Inverted Tree Implementation: We will derive our implementation of a data structure for the
union-find ADT by starting with a simple structure based on a forest of inverted trees. You
think of an inverted tree as a multiway tree in which we only store parent links (no child or
sibling links). The root’s parent pointer is null. There is no limit on how many children a
node can have. The sets are represented by storing the elements of each set in separate tree.

In this implementation a set identifier is simply a pointer to the root of an inverted tree.
Thus the type Set is just an alias for the type Element (which is perhaps not very good
practice, but is very convenient). We will assume that each element x of the set has a pointer
x.parent, which points to its parent in this tree. To perform the operation find(x), we walk
along parent links and return the root of the tree. This root element is set identifier for the
set containing x. Notice that this satisfies the above requirement, since two elements are in
the same set if and only if they have the same root. We call this find1(). Later we will
propose an improvement.

The Find Operation (First version)
Set find1(Element x) {

while (x.parent != null) x = x.parent; // follow chain to root

return x; // return the root

}

For example, suppose that S = {a, b, c, . . . ,m} and the current partition is:

{a, f, g, h, k, l}, {b}, {c, d, e,m}, {i, j}.

This might be stored in an inverted tree as shown in the following figure. The operation
find(k) would return a pointer to node g.

d

m c

e

i

j

g

a l f

k h

b

Fig. 99: Union-find Tree Example.

Note that there is no particular order to how the individual trees are structured, as long as
they contain the proper elements. (Again recall that unlike existing data structures that we
have discussed in which there are key values, here the arguments are pointers to the nodes
of the inverted tree. Thus, there is never a question of “what” is in the data structure, the
issue is “which” tree are you in.) Initially each element is in its own set. To do this we just
set all parent pointers to null.

A union is straightforward to implement. To perform the union of two sets, e.g. to take the
union of the set containing {b} with the set {i, j} we just link the root of one tree into the

Disjoint Set Union-Find 126 CMSC 420

root of the other tree. But here is where it pays to be smart. If we link the root of {i, j} into
{b}, the height of the resulting tree is 2, whereas if we do it the other way the height of the
tree is only 1. (Recall that height of a tree is the maximum number of edges from any leaf to
the root.) It is best to keep the tree’s height small, because in doing so we make the find’s
run faster.

In order to perform union’s intelligently, we maintain an extra piece of information, which
records the height of each tree. For historic reasons we call this height the rank of the tree.
We assume that the rank is stored as a field in each element. The intelligent rule for doing
unions is to link the root of the set of smaller rank as a child of the root of the set of larger
rank.

Observe will only need the rank information for each tree root, and each tree root has no need
for a parent pointer. So in a really tricky implementation, the ranks and parent pointers can
share the same storage field, provided that you have some way of distinguishing them. For
example, in our text, parent pointers (actually indices) are stored with positive integers and
ranks are stored as negative integers. We will not worry about being so clever.

0 2 12 3 1
union(g,d)
union(b,i)

g

a l f

k h

b d

m c

e

i

j

d

m c

el f

k h

a

g b

i

j

Fig. 100: Union-find with ranks.

The code for union operation is shown in the following figure. When updating the ranks there
are two cases. If the trees have the same ranks, then the rank of the result is one larger than
this value. If not, then the rank of the result is the same as the rank of the higher ranked
tree. (You should convince yourself of this.)

Union operation
Set union(Set s, Set t) {

if (s.rank > t.rank) { // s has strictly higher rank

t.parent = s // make s the root (rank does not change)

return s

}

else { // t has equal or higher rank

if (s.rank == t.rank) t.rank++

s.parent = t // make t the root

return t

}

}

Analysis of Running Time: Consider a sequence of m union-find operations, performed on a
domain with n total elements. Observe that the running time of the initialization is propor-
tional to n, the number of elements in the set, but this is done only once. Each union takes
only constant time, O(1).

Disjoint Set Union-Find 127 CMSC 420

In the worst case, find takes time proportional to the height of the tree. The key to the
efficiency of this procedure is the following observation, which implies that the tree height is
never greater than lgm. (Recall that lgm denotes the logarithm base 2 of m.)

Lemma: Using the union-find procedures described above any tree with height h has at least
2h elements.

Proof: Given a union-find tree T , let h denote the height of T , let n denote the number of
elements in T , and let u denote the number of unions needed to build T . We prove the
lemma by strong induction on the number of unions performed to build the tree. For
the basis (no unions) we have a tree with 1 element of height 0. Since 20 = 1, the basis
case is established.

For the induction step, assume that the hypothesis is true for all trees built with strictly
fewer than u union operations, and we want to prove the lemma for a union-find tree
built with exactly u union operations. Let T be such a tree. Let T ′ and T ′′ be the two
subtrees that were joined as part of the final union. Let h′ and h′′ be the heights of T ′

and T ′′, respectively, and define n′ and n′′ similarly. Each of T ′ and T ′′ were built with
strictly fewer than u union operations. By the induction hypothesis we have

n′ ≥ 2h
′

and n′′ ≥ 2h
′′
.

Let us assume that T ′ was made the child of T ′′ (the other case is symmetrical). This
implies that h′ ≤ h′′, and h = max(h′ + 1, h′′). There are two cases. First, if h′ = h′′

then h = h′ + 1 and we have

n = n′ + n′′ ≥ 2h
′
+ 2h

′′
= 2h

′+1 = 2h.

Second, if h′ < h′′ then h = h′′ and we have

n = n′ + n′′ ≥ n′′ ≥ 2h
′′

= 2h.

In either case we get the desired result.

Since the unions’s take O(1) time each, we have the following.

Theorem: After initialization, any sequence of m union’s and find’s can be performed in
time O(m logm).

Path Compression: It is possible to apply a very simple heuristic improvement to this data
structure which provides a significant improvement in the running time. Here is the intuition.
If the user of your data structure repeatedly performs find’s on a leaf at a very low level in
the tree then each such find takes as much as O(log n) time. Can we improve on this?

Once we know the result of the find, we can go back and “short-cut” each pointer along the
path to point directly to the root of the tree. This only increases the time needed to perform
the find by a constant factor, but any subsequent find on this node (or any of its ancestors)
will take only O(1) time. The operation of short-cutting the pointers so they all point directly
to the root is called path-compression and an example is shown below. Notice that only the
pointers along the path to the root are altered. We present a slick recursive version below as
well. Trace it to see how it works.

Disjoint Set Union-Find 128 CMSC 420

find(a) f

e

c

b

a

f

e

c

b

a

Fig. 101: Find using path compression.

Find Operation using Path Compression
Set find2(Element x) {

if (x.parent == null) return x // return root

else return x.parent = find2(x.parent) // find root and update parent

}

The running time of find2 is still proportional to the depth of node being found, but observe
that each time you spend a lot of time in a find, you flatten the search path. Thus the work
you do provides a benefit for later find operations. (This is the sort of thing that we observed
in earlier amortized analyses.)

Does the savings really amount to anything? The answer is yes. It was actually believed at
one time that if path compression is used, then (after initialization) the running time of the
algorithm for a sequence of m union and finds was O(m), and hence the amortized cost of
each operation is O(1). However, this turned out to be false, but the amortized time is much
less than O(logm).

Analyzing this algorithm is quite tricky. (Our text gives the full analysis if you are interested.)
In order to create a bad situation you need to do lots of unions to build up a tree with some
real depth. But as soon as you start doing finds on this tree, it very quickly becomes very
flat again. In the worst case we need to an immense number of unions to get high costs for
the finds.

To give the analysis (which we won’t prove) we introduce two new functions, A(m,n) and
α(n). The function A(m,n) is called Ackerman’s function. It is famous for being just about
the fastest growing function imaginable.

A(1, j) = 2j for j ≥ 1,

A(i, 1) = A(i− 1, 2) for i ≥ 2,

A(i, j) = A(i− 1, A(i, j − 1)) for i, j ≥ 2.

In spite of its innocuous appearance, this function is a real monster. To get a feeling for how
fast this function grows, observe that

A(2, j) = 22
··
·2

,

Disjoint Set Union-Find 129 CMSC 420

where the tower of powers of 2 is j high. (Try expanding the recurrence to prove this.) Hence,

A(4, 1) = A(3, 2) = A(2, A(3, 1)) = A(2, A(2, 2)) = A(2, 22
2
) = A(2, 16) ≈ 1080,

which is already greater than the estimated number of atoms in the observable universe.

Since Ackerman’s function grows so fast, its inverse, called α grows incredibly slowly. Define

α(m,n) = min{i ≥ 1 | A(i, bm/nc) > lg n}.

This definition is somewhat hard to interpret, but the important bottom line is that assuming
bm/nc ≥ 1, we have α(m,n) ≤ 4 as long as m is less than the number of atoms in the universe
(which is certainly true for most input sets!) The following result (which we present without
proof) shows that an sequence of union-find operations take amortized time O(α(m,n)), and
so each operation (for all practical purposes) takes amortized constant time.

Theorem: After initialization, any sequence ofm union’s and find’s (using path compression)
on an initial set of n elements can be performed in time O(mα(m,n)) time. Thus the
amortized cost of each union-find operation is O(α(m,n)).

Supplemental Lecture 4: Geometric Preliminaries

Geometric Information: A large number of modern data structures and algorithms problems
involve geometric data. The reason is that rapidly growing fields such as computer graphics,
robotics, computer vision, computer-aided design, visualization, human-computer interaction,
virtual reality, and others deal primarily with geometric data. Geometric applications give
rise to new data structures problems, which we will be studying for a number of lectures.

Before discussing geometric data structures, we need to provide some background on what
geometric data is, and how we compute with it. With nongeometric data we stated that
we are storing records, and each record is associated with an identifying key value. These
key values served a number of functions for us. They served a function of identification the
the objects of the data structure. Because of the underlying ordering relationship, they also
provided a means for searching for objects in the data structure, by giving us a way to direct
the search by subdividing the space of keys into subsets that are greater than or less than the
key.

In geometric data structures we will need to generalize the notion of a key. A geometric point
object in the plane can be identified by its (x, y) coordinates, which can be thought of as
a type of key value. However, if we are storing more complex objects, such as rectangles,
line segments, spheres, and polygons, the notion of a identifying key is not as appropriate.
As with one-dimensional data, we also have associated application data. For example, in a
graphics system, the geometric description of an object is augmented with information about
the object’s color, texture, and its surface reflectivity properties. Since our interest will be in
storing and retrieving objects based on their geometric properties, we will not discuss these
associated data values.

Primitive Objects: Before we start discussing geometric data structures, we will digress to dis-
cuss a bit about geometric objects, their representation, and manipulation. Here is a list of
common geometric objects and possible representations. The list is far from complete. Let
Rd denote d-dimensional space with real coordinates.

Geometric Preliminaries 130 CMSC 420

Scalar: This is a single (1-dimensional) real number. It is represented as float or double.

Point: Points are locations in space. A typical representation is as a d-tuple of scalars, e.g.
P = (p0, p1, . . . , pd−1) ∈ Rd. Is it better to represent a point as an array of scalars, or
as an object with data members labeled x, y, and z? The array representation is more
general and often more convenient, since it is easier to generalized to higher dimensions
and coordinates can be parameterized. You can define “names” for the coordinates. If
the dimension might vary then the array representation is necessary.
For example, in Java we might represent a point in 3-space using something like the
following. (Note that “static final” essentially means “constant” in this context.)

class Point {

public static final int DIM = 3;

protected float coord[DIM];

...

}

Vector: Vectors are used to denote direction and magnitude in space. Vectors and points
are represented in essentially the same way, as a d-tuple of scalars, ~v = (v0, v1, . . . , vd−1).
It is often convenient to think of vectors as free vectors, meaning that they are not tied
down to a particular origin, but instead are free to roam around space. The reason for
distinguishing vectors from points is that they often serve significantly different functions.
For example, velocities are frequently described as vectors, but locations are usually
described as points. This provides the reader of your program a bit more insight into
your intent.

Line Segment: A line segment can be represented by giving its two endpoints (p1, p2). In
some applications it is important to distinguish between the line segments # »p1p2 and # »p2p1.
In this case they would be called directed line segments.

Ray: Directed lines in 3- and higher dimensions are not usually represented by equations but
as rays. A ray can be represented by storing an origin point P and a nonzero directional
vector ~v.

Q
v

u

P

vectors line segment ray line

P

v

points

Fig. 102: Basic geometric objects.

Line: A line in the plane can be represented by a line equation

y = ax+ b or ax+ by = c.

The former definition is the familiar slope-intercept representation, and the latter takes
an extra coefficient but is more general since it can easily represent a vertical line. The
representation consists of just storing the pair (a, b) or (a, b, c).

Another way to represent a line is by giving two points through which the line passes, or
by giving a point and a directional vector. These latter two methods have the advantage
that they generalize to higher dimensions.

Geometric Preliminaries 131 CMSC 420

Hyperplanes and halfspaces: In general, in dimension d, a linear equation of the form

a0p0 + a1p1 + . . .+ ad−1pd−1 = c

defines a d−1 dimensional hyperplane. It can be represented by the d-tuple (a0, a1, . . . , ad−1)
together with c. Note that the vector (a0, a1, . . . , ad−1) is orthogonal to the hyperplane.

The set of points that lie on one side or the other of a hyperplane is called a halfspace.
The formula is the same as above, but the “=” is replaced with an inequality such as
“<” or “≥”.

x

y
(2,1)

y

x

cutDim = x

cutVal = 1.5

2x + y > 1/2

Halfspace Orthogonal halfspace

Fig. 103: Planes and Halfspaces.

Orthogonal Hyperplane: In many data structures it is common to use hyperplanes that
are orthogonal to one of the coordinate axes, called orthogonal hyperplanes. In this case
it is much easier to store such a hyperplane by storing (1) an integer cutDim from the
set {0, 1, . . . , d− 1}, which indicates which axis the plane is perpendicular to and (2) a
scalar cutVal, which indicates where the plane cuts this axis.

Simple Polygon: Solid objects can be represented as polygons (in dimension 2) and poly-
hedra (in higher dimensions). A polygon is a cycle of line segments joined end-to-end.
It is said to be simple if its boundary does not self-intersect. It is convex if it is simple
and no internal angle is greater than π.

simple convexnonsimple

Polygons Rectangle

r P

Circle

Fig. 104: Polygons, rectangles and spheres.

The standard representation of a simple polygon is just a list of points (stored either in
an array or a circularly linked list). In general representing solids in higher dimensions
involves more complex structures, which we will discuss later.

Orthogonal Rectangle: Rectangles can be represented as polygons, but rectangles whose
sides are parallel to the coordinate axes are common. A couple of representations are
often used. One is to store the two points of opposite corners (e.g. lower left and upper
right).

Circle/Sphere: A d-dimensional sphere, can be represented by point P indicating the center
of the sphere, and a positive scalar r representing its radius. A points X lies within the

Geometric Preliminaries 132 CMSC 420

sphere if
(x0 − p0)2 + (x1 − p1)2 + . . .+ (xd−1 − pd−1)2 ≤ r2.

Topological Notions: When discussing geometric objects such as circles and polygons, it is often
important to distinguish between what is inside, what is outside and what is on the boundary.
For example, given a triangle T in the plane we can talk about the points that are in the
interior (extitint(T)) of the triangle, the points that lie on the boundary (extitbnd(T)) of the
triangle, and the points that lie on the exterior (extitext(T)) of the triangle. A set is closed
if it includes its boundary, and open if it does not. Sometimes it is convenient to define a set
as being semi-open, meaning that some parts of the boundary are included and some are not.
Making these notions precise is tricky, so we will just leave this on an intuitive level.

int(T) bnd(T) ext(T) open closed semi−open

Fig. 105: Topological notation.

Operations on Primitive Objects: When dealing with simple numeric objects in 1-dimensional
data structures, the set of possible operations needed to be performed on each primitive object
was quite simple, e.g. compare one key with another, add or subtract keys, print keys, etc.
With geometric objects, there are many more operations that one can imagine.

Basic point/vector operators: Let α be any scalar, let P and Q be points, and ~u,~v, ~w be
vectors. We think of vectors as being free to roam about the space whereas points are
tied down to a particular location. We can do all the standard operations on vectors you
learned in linear algebra (adding, subtracting, etc.) The difference of two points P −Q
results in the vector directed from Q to P . The sum of a point P and vector ~u is the
point lying on the head of the vector when its tail is placed on P .

vector addition

vu

u+v
Q

P−Q

point subtraction

P

point−vector addition

P

P+v

v

Fig. 106: Point-vector operators.

As a programming note, observe that C++ has a very nice mechanism for handling
these operations on Points and Vectors using operator overloading. Java does not allow
overloading of operators.

Affine combinations: Given two points P and Q, the point (1− α)P + αQ is point on the
line joining P and Q. We can think of this as a weighted average, so that as α approaches
0 the point is closer to P and as α approaches 1 the point is closer to Q. This is called

Geometric Preliminaries 133 CMSC 420

2
3

1
3Q+ P

P

Q Q

P
α < 0

α > 1

0 < α < 1

Fig. 107: Affine combinations.

an affine combination of P and Q. If 0 ≤ α ≤ 1, then the point lies on the line segment
PQ.

Length and distance: The length of a vector v is defined to be

‖~v‖ =
√
v20 + v21 + . . .+ v2d−1.

The distance between two points P and Q is the length of the vector between them, that
is

extitdist(P,Q) = ‖P −Q‖.

Computing distances between other geometric objects is also important. For example,
what is the distance between two triangles? When discussing complex objects, distance
usually means the closest distance between objects.

Orientation and Membership: There are a number of geometric operations that deal with
the relationship between geometric objects. Some are easy to solve. (E.g., does a point
P lie within a rectangle R?) Some are harder. (E.g., given points A, B, C, and D, does
D lie within the unique circle defined by the other three points?) We will discuss these
as the need arises.

Intersections: The other sort of question that is important is whether two geometric objects
intersect each other. Again, some of these are easy to answer, and others can be quite
complex.

Example: Circle/Rectangle Intersection: As an example of a typical problem involving ge-
ometric primitives, let us consider the question of whether a circle in the plane intersects a
rectangle. Let us represent the circle by its center point C and radius r and represent the
rectangle R by its lower left and upper right corner points, Rlo and Rhi (for low and high).

Problems involving circles are often more easily recast as problems involving distances. So,
instead, let us consider the problem of determining the distance d from C to its closest point
on the rectangle R. If d > r then the circle does not intersect the rectangle, and otherwise it
does.

In order to determine the distance from C to the rectangle, we first observe that if C lies inside
R, then the distance is 0. Otherwise we need to determine which point of the boundary of R
is closest to C. Observe that we can subdivide the exterior of the rectangle into 8 regions, as
shown in the figure below. If C lies in one of the four corner regions, then C is closest to the
corresponding vertex of R and otherwise C is closest to one of the four sides of R. Thus, all
we need to do is to classify which region C lies is, and compute the corresponding distance.
This would usually lead a lengthy collection of if-then-else statements, involving 9 different
cases.

Geometric Preliminaries 134 CMSC 420

(lo − c)2
x x

(lo − c)2
x x

(lo − c)2
y y (lo − c)2

y y

2
y(c − hi)y

2
y(c − hi)y

2
y(c − hi)y

(lo − c)2
x x

2
x(c − hi)x

2
x(c − hi)x

2
x(c − hi)x

(lo − c)2
y ylo hi

lo

hi

x x

y

y

C

Fig. 108: Distance from a point to a rectangle, and squared distance contributions for each region.

We will take a different approach. Sometimes things are actually to code if you consider
the problem in its general d-dimensional form. Rather than computing the distance, let us
first concentrate on computing the squared distance instead. The distance is the sum of the
squares of the distance along the x-axis and distance along the y-axis. Consider just the
x-coordinates, if C lies to are to the left of the rectangle then the contribution is (Rlo,x−cx)2,
if C lies to the right then the contribution is (cx − Rhi,x)2, and otherwise there is no x-
contribution to the distance. A similar analysis applies for y. This suggests the following
code, which works in all dimensions.

Distance from Point C to Rectangle R
float distance(Point C, Rectangle R) {

sumSq = 0 // sum of squares

for (int i = 0; i < Point.DIM; i++) {

if (C[i] < R.lo[i]) // left of rectangle

sumSq += square(R.lo[i] - C[i])

else if (C[i] > R.hi[i]) // right of rectangle

sumSq += square(C[i] - R.hi[i])

}

return sqrt(sumSq)

}

Finally, once the distance has been computed, we test whether it is less than the radius r. If
so the circle intersects the rectangle and otherwise it does not.

Supplemental Lecture 5: Range Trees

Range Queries: The objective of range searching is to count or report the set of points of some
point set that lie within a given shape. The most well-known instance of range searching
is orthogonal range searching, where the shape is an axis-aligned rectangle. In this lecture
we present a data structure for orthogonal range-reporting queries, in which the objective
is to report the subset of points of some data set that lie within a query rectangle. We
will consider the problem in 2-dimensional space, but generalizations to higher dimensions
are straightforward. In an earlier lecture, we discussed the use of kd-trees for answering
orthogonal range queries. We showed that if the tree is balanced, then the running time is
close to O(

√
n) to count the points in the range, and if there are k points in the range, then

Range Trees 135 CMSC 420

we can report them in total time O(k+
√
n). In this lecture we will present a faster solution.

We will present a data structure called a range tree which can answer orthogonal counting
range queries in O(log2 n). (Recall that log2 n means (log n)2). If there are k points in the
range it can also report these points in O(k + log2 n) time. It uses O(n log n) space, which
is somewhat larger than the O(n) space used by kd-trees. (There are actually two versions
of range trees. We will present the simpler version. There is a significantly more complex
version that can answer queries in O(k + log n) time, thus shaving off a log factor in the
running time.) The data structure can be generalized to higher dimensions. In dimension d
it answers range queries in O(logd n) time.

Range Trees (Basics): The range tree data structure works by reducing an orthogonal range
query in 2-dimensions to a collection of O(log n) range queries in 1-dimension, then it solves
each of these in O(log n) time, for a combined time of O(log2 n). (In higher dimensions, it
reduces a range query in dimension d to O(log n) range queries in dimension d− 1.) It works
by a technique called a multi-level tree, which involves cascading multiple data structures
together in a clever way. Throughout we assume that a range is given by a pair of points
[lo, hi], and we wish to report all points p such that

lox ≤ px ≤ hix and loy ≤ py ≤ hiy.

1-dimensional Range Tree: Before discussing 2-dimensional range trees, let us first consider
what a 1-dimensional range tree would look like. Given a set of points S, we want to preprocess
these points so that given a 1-dimensional interval Q = [lo, hi] along the x-axis, we can count
all the points that lie in this interval. There are a number of simple solutions to this, but we
will consider a particular method that generalizes to higher dimensions.

Let us begin by storing all the points of our data set in the external nodes (leaves) of a
balanced binary tree sorted by x-coordinates (e.g., an AVL tree). The data values in the
internal nodes will just be used for searching purposes. They may or may not correspond to
actual data values stored in the leaves. We assume that if an internal node contains a value x0
then the leaves in the left subtree are strictly less than x0, and the leaves in the right subtree
are greater than or equal to x0. Each node t in this tree is implicitly associated with a subset
S(t) ⊆ S of elements of S that are in the leaves descended from t. (For example S(root) = S.)
We assume that for each node t, we store the number of leaves that are descended from t,
denoted t.size. Thus t.size is equal to the number of elements in S(t).

Let us introduce a few definitions before continuing. Given the interval Q = [lo, hi], we say
that a node t is relevant to the query if S(t) ⊆ Q. That is, all the descendents of t lie within
the interval. If t is relevant then clearly all of the nodes descended from t are also relevant.
A relevant node t is canonical if t is relevant, but its parent it not. The canonical nodes are
the roots of the maximal subtrees that are contained within Q. For each canonical node t,
the subset S(t) is called a canonical subset. Because of the hierarchical structure of the tree,
it is easy to see that the canonical subsets are disjoint from each other, and they cover the
interval Q. In other words, the subset of points of S lying within the interval Q is equal to
the disjoint union of the canonical subsets. Thus, solving a range counting query reduces to
finding the canonical nodes for the query range, and returning the sum of their sizes.

We claim that the canonical subsets corresponding to any range can be identified in O(log n)
time from this structure. Intuitively, given any interval [lo, hi], we search the tree to find
the leftmost leaf u whose key is greater than or equal to lo and the rightmost leaf v whose

Range Trees 136 CMSC 420

key is less than or equal to hi . Clearly all the leaves between u and v (including u and v)
constitute the points that lie within the range. Since these two paths are of length at most
O(log n), there are at most O(2 log n) such trees possible, which is O(log n). To form the
canonical subsets, we take the subsets of all the maximal subtrees lying between u and v.
This is illustrated in the following figure.

u v
1 7 9 15 17 24 25 29 314 12 14 20 223 27

{4,7}

{9,12,14,15}

17

14

7 15 20

22

259

24 27 31

29

3

4 {17,20}

{22}{3}

x =2 x =23lo hi

12

Fig. 109: Canonical sets for interval queries.

There are a few different ways to map this intuition into an algorithm. Our approach will be
modeled after the approach used for range searching in kd-trees. We will maintain for each
node a cell C, which in this 1-dimensional case is just an interval [Clo , Chi]. As with kd-trees,
the cell for node t contains all the points in S(T).

The arguments to the procedure are the current node, the range Q, and the current cell. Let
C0 = [−∞,+∞] be the initial cell for the root node. The initial call is range1D(root, Q,

C0). Let t.x denote the key associated with t. If C = [x0, x1] denotes the current interval for
node t, then when we recurse on the left subtree we trim this to the interval [x0, t.x] and when
we recurse on the right subtree we trim the interval to [t.x, x1]. We assume that given two
ranges A and B, we have utility functions A.contains(B) which determined whether interval
A contains interval B, and there is a similar function A.contains(x) that determines whether
point x is contained within A.

Since the data are only stored in the leaf nodes, when we encounter such a node we consider
whether it lies in the range and count it if so. Otherwise, observe that if t.x ≤ Q.lo then
all the points in the left subtree are less than the interval, and hence it does not need to be
visited. Similarly if t.x > Q.hi then the right subtree does not need to be visited. Otherwise,
we need to visit these subtrees recursively.

The external nodes counted in the second line and the internal nodes for which we return
t.size are the canonical nodes. The above procedure answers range counting queries. To
extend this to range reporting queries, we simply replace the step that counts the points in
the subtree with a procedure that traverses the subtree and prints the data in the leaves.
Each tree can be traversed in time proportional to the number of leaves in each subtree.
Combining the observations of this section we have the following results.

Lemma: Given a 1-dimensional range tree and any query range Q, in O(log n) time we can
compute a set of O(log n) canonical nodes t, such that the answer to the query is the
disjoint union of the associated canonical subsets S(t).

Range Trees 137 CMSC 420

1-Dimensional Range Counting Query
int range1Dx(Node t, Range Q, Interval C=[x0,x1]) {

if (t.isExternal) // hit the leaf level?

return (Q.contains(t.point) ? 1 : 0) // count if point in range

if (Q.contains(C)) // Q contains entire cell?

return t.size // return entire subtree size

int count = 0

if (t.x > Q.lo) // overlap left subtree?

count += range1Dx(t.left, Q, [x0, t.x]) // count left subtree

if (t.x <= Q.hi) // overlap right subtree?

count += range1Dx(t.right, Q, [t.x, x1])// count right subtree

return count

}

x0 x1 x0 x1 x0 x1

t.x t.x t.x

Q.hi

C C C

Q Q.lo

Fig. 110: Range search cases.

Theorem: 1-dimensional range counting queries can be answered in O(log n) time and range
reporting queries can be answered in O(k+ log n) time, where k is the number of values
reported.

Range Trees: Now let us consider how to answer range queries in 2-dimensional space. We first
create 1-dimensional tree T as described in the previous section sorted by the x-coordinate.
For each internal node t of T , recall that S(t) denotes the points associated with the leaves
descended from t. For each node t of this tree we build a 1-dimensional range tree for the
points of S(t), but sorted on y-coordinates. This called the auxiliary tree associated with t.
Thus, there are O(n) auxiliary trees, one for each internal node of T . An example of such a
structure is shown in the following figure.

Notice that there is duplication here, because a given point in a leaf occurs in the point sets
associated with each of its ancestors. We claim that the total sizes of all the auxiliary trees is
O(n log n). To see why, observe that each point in a leaf of T has O(log n) ancestors, and so
each point appears in O(log n) auxiliary trees. The total number of nodes in each auxiliary
tree is proportional to the number of leaves in this tree. (Recall that the number of internal
nodes in an extended tree one less than the number of leaves.) Since each of the n points
appears as a leaf in at most O(log n) auxiliary trees, the sum of the number of leaves in all the
auxiliary trees is at most O(n log n). Since T has O(n) nodes, the overall total is O(n log n).

Now, when a 2-dimensional range is presented we do the following. First, we invoke a variant
of the 1-dimensional range search algorithm to identify the O(log n) canonical nodes. For each
such node t, we know that all the points of the set lie within the x portion of the range, but
not necessarily in the y part of the range. So we search the 1-dimensional auxiliary range and
return a count of the resulting points. The algorithm below is almost identical the previous
one, except that we make explicit reference to the x-coordinates in the search, and rather than

Range Trees 138 CMSC 420

adding t.size to the count, we invoke a 1-dimensional version of the above procedure using
the y-coordinate instead. Let Q.x denote the x-part of Q’s range, consisting of the interval
[Q.lo.x,Q.hi.x]. The call Q.contains(t.point) is applied on both coordinates, but the
call Q.x.contains(C) only checks the x-part of Q’s range. The algorithm is given below.
The procedure range1Dy() is the same procedure described above, except that it searches on
y rather than x.

2-Dimensional Range Counting Query
int range2D(Node t, Range2D Q, Range1D C=[x0,x1]) {

if (t.isExternal) // hit the leaf level?

return (Q.contains(t.point) ? 1 : 0) // count if point in range

if (Q.x.contains(C)) { // Q’s x-range contains C

[y0,y1] = [-infinity, +infinity] // initial y-cell

return range1Dy(t.aux.root, Q, [y0, y1])// search auxiliary tree

}

int count = 0

if (t.x > Q.lo.x) // overlap left subtree?

count += range2D(t.left, Q, [x0, t.x]) // count left subtree

if (t.x <= Q.hi.x) // overlap right subtree?

count += range2D(t.right, Q, [t.x, x1]) // count right subtree

return count

}

Q.lo.y

Q.hi.y

Q.lo.y

Q.hi.y

Q.lo.x Q.hi.x

x−range tree

t
t.aux

y−range tree

S(t)

S(t)

Fig. 111: Range tree.

Analysis: It takes O(log n) time to identify the canonical nodes along the x-coordinates. For
each of these O(log n) nodes we make a call to a 1-dimensional range tree which contains
no more than n points. As we argued above, this takes O(log n) time for each. Thus the
total running time is O(log2 n). As above, we can replace the counting code with code in
range1Dy() with code that traverses the tree and reports the points. This results in a total
time of O(k + log2 n), assuming k points are reported.

Thus, each node of the 2-dimensional range tree has a pointer to a auxiliary 1-dimensional

Range Trees 139 CMSC 420

range tree. We can extend this to any number of dimensions. At the highest level the d-
dimensional range tree consists of a 1-dimensional tree based on the first coordinate. Each
of these trees has an auxiliary tree which is a (d − 1)-dimensional range tree, based on the
remaining coordinates. A straightforward generalization of the arguments presented here
show that the resulting data structure requires O(n logd n) space and can answer queries in
O(logd n) time.

Theorem: d-dimensional range counting queries can be answered in O(logd n) time, and
range reporting queries can be answered in O(k + logd n) time, where k is the number
of values reported.

Supplemental Lecture 6: Interval Trees

Segment Data: So far we have considered geometric data structures for storing points. However,
there are many others types of geometric data that we may want to store in a data structure.
Today we consider how to store orthogonal (horizontal and vertical) line segments in the
plane. We assume that a line segment is represented by giving its pair of endpoints. The
segments are allowed to intersect one another.

As a basic motivating query, we consider the following window query. Given a set of orthogonal
line segments S, which have been preprocessed, and given an orthogonal query rectangle W ,
count or report all the line segments of S that intersect W . We will assume that W is closed
and solid rectangle, so that even if a line segment lies entirely inside of W or intersects only
the boundary of W , it is still reported. For example, given the window below, the query
would report the segments that are shown with solid lines, and segments with broken lines
would not be reported.

W

Fig. 112: Window Query.

Window Queries for Orthogonal Segments: We will present a data structure, called the in-
terval tree, which (combined with a range tree) can answer window counting queries for
orthogonal line segments in O(log2 n) time, where n is the number line segments. It can
report these segments in O(k + log2 n) time, where and k is the total number of segments
reported. The interval tree uses O(n log n) storage and can be built in O(n log n) time.

We will consider the case of range reporting queries. (There are some subtleties in making
this work for counting queries.) We will derive our solution in steps, starting with easier
subproblems and working up to the final solution. To begin with, observe that the set of
segments that intersect the window can be partitioned into three types: those that have no
endpoint in W , those that have one endpoint in W , and those that have two endpoints in W .

Interval Trees 140 CMSC 420

We already have a way to report segments of the second and third types. In particular, we
may build a range tree just for the 2n endpoints of the segments. We assume that each
endpoint has a cross-link indicating the line segment with which it is associated. Now, by
applying a range reporting query to W we can report all these endpoints, and follow the cross-
links to report the associated segments. Note that segments that have both endpoints in the
window will be reported twice, which is somewhat unpleasant. We could fix this either by
sorting the segments in some manner and removing duplicates, or by marking each segment
as it is reported and ignoring segments that have already been marked. (If we use marking,
after the query is finished we will need to go back an “unmark” all the reported segments in
preparation for the next query.)

All that remains is how to report the segments that have no endpoint inside the rectangular
window. We will do this by building two separate data structures, one for horizontal and
one for vertical segments. A horizontal segment that intersects the window but neither of its
endpoints intersects the window must pass entirely through the window. Observe that such
a segment intersects any vertical line passing from the top of the window to the bottom. In
particular, we could simply ask to report all horizontal segments that intersect the left side
of W . This is called a vertical segment stabbing query. In summary, it suffices to solve the
following subproblems (and remove duplicates):

Endpoint inside: Report all the segments of S that have at least one endpoint inside W .
(This can be done using a range query.)

Horizontal through segments: Report all the horizontal segments of S that intersect the
left side of W . (This reduces to a vertical segment stabbing query.)

Vertical through segments: Report all the vertical segments of S that intersect the bot-
tom side of W . (This reduces to a horizontal segment stabbing query.)

We will present a solution to the problem of vertical segment stabbing queries. Before dealing
with this, we will first consider a somewhat simpler problem, and then modify this simple
solution to deal with the general problem.

Vertical Line Stabbing Queries: Let us consider how to answer the following query, which is
interesting in its own right. Suppose that we are given a collection of horizontal line segments
S in the plane and are given an (infinite) vertical query line `q : x = xq. We want to report
all the line segments of S that intersect `q. Notice that for the purposes of this query, the
y-coordinates are really irrelevant, and may be ignored. We can think of each horizontal line
segment as being a closed interval along the x-axis. We show an example in the figure below
on the left.

As is true for all our data structures, we want some balanced way to decompose the set of
intervals into subsets. Since it is difficult to define some notion of order on intervals, we instead
will order the endpoints. Sort the interval endpoints along the x-axis. Let 〈x1, x2, . . . , x2n〉
be the resulting sorted sequence. Let xmed be the median of these 2n endpoints. Split the
intervals into three groups, L, those that lie strictly to the left of xmed, R those that lie strictly
to the right of xmed, and M those that contain the point xmed. We can then define a binary
tree by putting the intervals of L in the left subtree and recursing, putting the intervals of R
in the right subtree and recursing. Note that if xq < xmed we can eliminate the right subtree
and if xq > xmed we can eliminate the left subtree. See the figure right.

Interval Trees 141 CMSC 420

xmed

a
b

c

d

e

g

i

k
l

m
nj

0 5 10 15 20 25 30

f
h

a
b

c

d

e

g

i

k
l

m
nj

0 5 10 15 20 25 30

f
h

stabs: b,c,d,eq

RL

M

x=x

Fig. 113: Line Stabbing Query.

But how do we handle the intervals of M that contain xmed? We want to know which of these
intervals intersects the vertical line `q. At first it may seem that we have made no progress,
since it appears that we are back to the same problem that we started with. However, we
have gained the information that all these intervals intersect the vertical line x = xmed. How
can we use this to our advantage?

Let us suppose for now that xq ≤ xmed. How can we store the intervals of M to make it easier
to report those that intersect `q. The simple trick is to sort these lines in increasing order of
their left endpoint. Let ML denote the resulting sorted list. Observe that if some interval in
ML does not intersect `q, then its left endpoint must be to the right of xq, and hence none of
the subsequent intervals intersects `q. Thus, to report all the segments of ML that intersect
`q, we simply traverse the sorted list and list elements until we find one that does not intersect
`q, that is, whose left endpoint lies to the right of xq. As soon as this happens we terminate.
If k′ denotes the total number of segments of M that intersect `q, then clearly this can be
done in O(k′ + 1) time.

On the other hand, what do we do if xq > xmed? This case is symmetrical. We simply sort
all the segments of M in a sequence, MR, which is sorted from right to left based on the right
endpoint of each segment. Thus each element of M is stored twice, but this will not affect the
size of the final data structure by more than a constant factor. The resulting data structure
is called an interval tree.

Interval Trees: The general structure of the interval tree was derived above. Each node of the
interval tree has a left child, right child, and itself contains the median x-value used to split
the set, xmed, and the two sorted sets ML and MR (represented either as arrays or as linked
lists) of intervals that overlap xmed. We assume that there is a constructor that builds a node
given these three entities. The following high-level pseudocode describes the basic recursive
step in the construction of the interval tree. The initial call is root = IntTree(S), where
S is the initial set of intervals. Unlike most of the data structures we have seen so far, this
one is not built by the successive insertion of intervals (although it would be possible to do
so). Rather we assume that a set of intervals S is given as part of the constructor, and the
entire structure is built all at once. We assume that each interval in S is represented as a
pair (xlo, xhi). An example is shown in the following figure.

We assert that the height of the tree is O(log n). To see this observe that there are 2n

Interval Trees 142 CMSC 420

Interval tree construction
IntTreeNode IntTree(IntervalSet S) {

if (|S| == 0) return null // no more

xMed = median endpoint of intervals in S // median endpoint

L = {[xlo, xhi] in S | xhi < xMed} // left of median

R = {[xlo, xhi] in S | xlo > xMed} // right of median

M = {[xlo, xhi] in S | xlo <= xMed <= xhi} // contains median

ML = sort M in increasing order of xlo // sort M

MR = sort M in decreasing order of xhi

t = new IntTreeNode(xMed, ML, MR) // this node

t.left = IntTree(L) // left subtree

t.right = IntTree(R) // right subtree

return t

}

(g) (g) (n) (n)

(i,f,d,h)(d,f,h,i)

(b,c,e) (c,e,b) (k,l.m) (m,l,k)

(j) (j)(a) (a)

(ML) (MR)

a
b

c

d

e

g

i

k
l

m
nj

0 5 10 15 20 25 30

f
h

11 25

14

6 22

182

medx

Fig. 114: Interval Tree.

Interval Trees 143 CMSC 420

endpoints. Each time through the recursion we split this into two subsets L and R of sizes
at most half the original size (minus the elements of M). Thus after at most lg(2n) levels we
will reduce the set sizes to 1, after which the recursion bottoms out. Thus the height of the
tree is O(log n).

Implementing this constructor efficiently is a bit subtle. We need to compute the median of
the set of all endpoints, and we also need to sort intervals by left endpoint and right endpoint.
The fastest way to do this is to presort all these values and store them in three separate lists.
Then as the sets L, R, and M are computed, we simply copy items from these sorted lists to
the appropriate sorted lists, maintaining their order as we go. If we do so, it can be shown
that this procedure builds the entire tree in O(n log n) time. The algorithm for answering a
stabbing query was derived above. We summarize this algorithm below. Let xq denote the
x-coordinate of the query line.

Line Stabbing Queries for an Interval Tree
stab(IntTreeNode t, Scalar xq) {

if (t == null) return // fell out of tree

if (xq < t.xMed) { // left of median?

for (i = 0; i < t.ML.length; i++) { // traverse ML

if (t.ML[i].lo <= xq) print(t.ML[i])// ..report if in range

else break // ..else done

}

stab(t.left, xq) // recurse on left

}

else { // right of median

for (i = 0; i < t.MR.length; i++) { // traverse MR

if (t.MR[i].hi >= xq) print(t.MR[i])// ..report if in range

else break // ..else done

}

stab(t.right, xq) // recurse on right

}

}

This procedure actually has one small source of inefficiency, which was intentionally included
to make code look more symmetric. Can you spot it? Suppose that xq = t.xmed? In this case
we will recursively search the right subtree. However this subtree contains only intervals that
are strictly to the right of xmed and so is a waste of effort. However it does not affect the
asymptotic running time.

As mentioned earlier, the time spent processing each node is O(1 + k′) where k′ is the total
number of points that were recorded at this node. Summing over all nodes, the total reporting
time is O(k+ v), where k is the total number of intervals reported, and v is the total number
of nodes visited. Since at each node we recurse on only one child or the other, the total
number of nodes visited v is O(log n), the height of the tree. Thus the total reporting time
is O(k + log n).

Vertical Segment Stabbing Queries: Now let us return to the question that brought us here.
Given a set of horizontal line segments in the plane, we want to know how many of these
segments intersect a vertical line segment. Our approach will be exactly the same as in
the interval tree, except for how the elements of M (those that intersect the splitting line
x = xmed) are handled.

Interval Trees 144 CMSC 420

Going back to our interval tree solution, let us consider the set M of horizontal line segments
that intersect the splitting line x = xmed and as before let us consider the case where the
query segment q with endpoints (xq, ylo) and (xq, yhi) lies to the left of the splitting line.
The simple trick of sorting the segments of M by their left endpoints is not sufficient here,
because we need to consider the y-coordinates as well. Observe that a segment of M stabs the
query segment q if and only if the left endpoint of a segment lies in the following semi-infinite
rectangular region.

{(x, y) | x ≤ xq and ylo ≤ y ≤ yhi}.

This is illustrated in the figure below. Observe that this is just an orthogonal range query.
(It is easy to generalize the procedure given last time to handle semi-infinite rectangles.) The
case where q lies to the right of xmed is symmetrical.

xmed

q

Fig. 115: The segments that stab q lie within the shaded semi-infinite rectangle.

So the solution is that rather than storing ML as a list sorted by the left endpoint, instead
we store the left endpoints in a 2-dimensional range tree (with cross-links to the associated
segments). Similarly, we create a range tree for the right endpoints and represent MR using
this structure.

The segment stabbing queries are answered exactly as above for line stabbing queries, except
that part that searches ML and MR (the for-loops) are replaced by searches to the appropriate
range tree, using the semi-infinite range given above.

We will not discuss construction time for the tree. (It can be done in O(n log n) time, but this
involves some thought as to how to build all the range trees efficiently). The space needed is
O(n log n), dominated primarily from the O(n log n) space needed for the range trees. The
query time is O(k + log3 n), since we need to answer O(log n) range queries and each takes
O(log2 n) time plus the time for reporting. If we use the spiffy version of range trees (which
we mentioned but never discussed) that can answer queries in O(k+ log n) time, then we can
reduce the total time to O(k + log2 n).

Supplemental Lecture 7: Garbage Collection

Garbage Collection: In contrast to the explicit deallocation methods discussed in the previous
lectures, in some memory management systems such as Java, there is no explicit deallocation
of memory. In such systems, when memory is exhausted it must perform garbage collection
to reclaim storage and sometimes to reorganize memory for better future performance. We
will consider some of the issues involved in the implementation of such systems.

Garbage Collection 145 CMSC 420

Any garbage collection system must do two basic things. First, it must detect which blocks
of memory are unreachable, and hence are “garbage”. Second, it must reclaim the space used
by these objects and make it available for future allocation requests. Garbage detection is
typically performed by defining a set of roots, e.g., local variables that point to objects in the
heap, and then finding everything that is reachable from these roots. An object is reachable
(or live) if there is some path of pointers or references from the roots by which the executing
program can access the object. The roots are always accessible to the program. Objects that
are not reachable are considered garbage, because they can no longer affect the future course
of program execution.

Reference counts: How do we know when a block of storage is able to be deleted? One simple
way to do this is to maintain a reference count for each block. This is a counter associated
with the block. It is set to one when the block is first allocated. Whenever the pointer to
this block is assigned to another variable, we increase the reference count. (For example, the
compiler can overload the assignment operation to achieve this.) When a variable containing
a pointer to the block is modified, deallocated or goes out of scope, we decrease the reference
count. If the reference count ever equals 0, then we know that no references to this object
remain, and the object can be deallocated.

Reference counts have two significant shortcomings. First, there is a considerable overhead
in maintaining reference counts, since each assignment needs to modify the reference counts.
Second, there are situations where the reference count method may fail to recognize unreach-
able objects. For example, if there is a circular list of objects, for example, X points to Y and
Y points to X, then the reference counts of these objects may never go to zero, even though
the entire list is unreachable.

Mark-and-sweep: A more complete alternative to reference counts involves waiting until space
runs out, and then scavenging memory for unreachable cells. Then these unreachable regions
of memory are returned to available storage. These available blocks can be stored in an
available space list using the same method described in the previous lectures for dynamic
storage allocation. This method works by finding all immediately accessible pointers, and
then traces them down and marks these blocks as being accessible. Then we sweep through
memory adding all unmarked blocks to the available space list. Hence this method is called
mark-and-sweep. An example is illustrated in the figure below.

How do we implement the marking phase? One way is by performing simple depth-first
traversal of the “directed graph” defined by all the pointers in the program. We start from
all the root pointers t (those that are immediately accessible from the program) and invoke
the following procedure for each. Let us assume that for each pointer t we know its type
and hence we know the number of pointers this object contains, denoted t.nChild and these
pointers are denoted t.child[i]. (Note that although we use the term “child” as if pointers
form a tree, this is not the case, since there may be cycles.) We assume that each block has
a bit value t.isMarked which indicates whether the object has been marked.

The recursive calls persist in visiting everything that is reachable, and only backing off when
we come to a null pointer or something that has already been marked. Note that we do not
need to store the t.nChild field in each object. It is function of t’s type, which presumably the
run-time system is aware of (especially in languages like Java that support dynamic casting).
However we definitely need to allocate an extra bit in each object to store the mark.

Marking using Link Redirection: There is a significant problem in the above marking algo-

Garbage Collection 146 CMSC 420

local1 local2

local2local1
sweep

mark

avail

Fig. 116: Mark-and-sweep garbage collection.

Recursive Marking Algorithm
mark(Pointer t) {

if (t == null || t.isMarked) return // null or already visited

t.isMarked = true // mark t visited

for (i = 0; i < t.nChild; i++) // consider t’s pointers

mark(t.child[i]) // recursively visit each one

}

rithm. This procedure is necessarily recursive, implying that we need a stack to keep track
of the recursive calls. However, we only invoke this procedure if we have run out of space.
So we do not have enough space to allocate a stack. This poses the problem of how can we
traverse space without the use of recursion or a stack. There is no method known that is
very efficient and does not use a stack. However there is a rather cute idea which allows us to
dispense with the stack, provided that we allocate a few extra bits of storage in each object.

The method is called link redirection or the Schorr-Deutsch-Waite method. Let us think of
our objects as being nodes in a multiway tree. (Recall that we have cycles, but because of we
never revisit marked nodes, so we can think of pointers to marked nodes as if they are null
pointers.) Normally the stack would hold the parent of the current node. Instead, when we
traverse the link to the ith child, we redirect this link so that it points to the parent. When
we return to a node and want to proceed to its next child, we fix the redirected child link and
redirect the next child.

Pseudocode for this procedure is given below. As before, in the initial call the argument t
is a root pointer. In general t is the current node. The variable p points to t’s parent. We
have a new field t.currChild which is the index of the current child of t that we are visiting.
Whenever the search ascends to t from one of its children, we increment t.currChild and
visit this next child. When t.currChild == t.nChild then we are done with t and ascend
to its parent. We include two utilities for pointer redirection. The call descend(p, t, t.c)

moves us from t to its child t.c and saves p in the pointer field containing t.c. The call
ascend(p, t, p.c) moves us from t to its parent p and restores the contents of the p’s child
p.c. Each are implemented by a performing a cyclic rotation of these three quantities. (Note
that the arguments are reference arguments.) An example is shown in the figure below, in

Garbage Collection 147 CMSC 420

which we print the state after each descend or ascend.

descend(p, t, t.c) :

 p
t
t.c

←−
 t

t.c
p

 ascend(p, t, p.c) :

 p
t
p.c

←−
 p.c

p
t

 .

Marking using Link Redirection
markByRedirect(Pointer t) {

p = null // parent pointer

while (true) {

if (t != null && !t.isMarked) { // first time at t?

t.isMarked = true // mark as visited

if (t.nChild > 0) { // t has children

t.currChild = 0 // start with child 0

descend(p, t, t.child[0]) // descend via child 0

}

}

else if (p != null) { // returning to t

j = p.currChild // parent’s current child

ascend(p, t, p.child[j]) // ascend via child j

j = ++t.currChild // next child

if (j < t.nChild) { // more children left

descend(p, t, t.child[j]) // descend via child j

}

}

else return // no parent? we’re done

}

}

As we have described it, this method requires that we reserve enough spare bits in each object
to be able to keep track of which child we are visiting in order to store the t.currChild value.
If an object has k children, then dlg ke bits would be needed (in addition to the mark bit).
Since most objects have a fairly small number of pointers, this is a small number of bits.
Since we only need to use these bits for the elements along the current search path, rather
than storing them in the object, they could instead be packed together in the form of a stack.
Because we only need a few bits per object, this stack would require much less storage than
the one needed for the recursive version of mark.

Stop-and-Copy: The alternative strategy to mark-and-sweep is called stop-and-copy. This method
achieves much lower memory allocation, but provides for very efficient allocation. Stop-and-
copy divides memory into two large banks of equal size. One of these banks is active and
contains all the allocated blocks, and the other is entirely unused, or dormant. Rather than
maintaining an available space list, the allocated cells are packed contiguously, one after the
other at the fron of the current bank. When the current bank is full, we stop and determine
which blocks in the current bank are reachable or alive. For each such live block we find, we
copy it from the active bank to the dormant bank (and mark it so it is not copied again).
The copying process packs these live blocks one after next, so that memory is compacted in
the process, and hence there is no fragmentation. Once all the reachable blocks have been
copied, the roles of the two banks are swapped, and then control is returned to the program.

Because storage is always compacted, there is no need to maintain an available space list.
Free space consists of one large contiguous chunk in the current bank. Another nice feature

Garbage Collection 148 CMSC 420

p
p

t

t

p

p

t

t

p

p
t p

t

p
t

p
t

t

p

t 0

0

0

0

0

1

0

2

0

1

2

2

1

2

1

2

0

descend ascenddescend descend

ascend

ascenddescendascend(done)

Fig. 117: Marking using link redirection.

of this method is that it only accesses reachable blocks, that is, it does not need to touch
the garbage. (In mark-and-sweep the sweeping process needs to run through all of memory.)
However, one shortcoming of the method is that only half of the available memory is usable
at any given time, and hence memory utilization cannot exceed one half.

The trickiest issue in stop-and-copy is how to deal with pointers. When a block is copied
from one bank to the other, there may be pointers to this object, which would need to be
redirected. In order to handle this, whenever a block is copied, we store a forwarding link in
the first word of the old block, which points to the new location of the block. Then, whenever
we detect a pointer in the current object that is pointing into the bank of memory that is
about to become dormant, we redirect this link by accessing the forwarding link. An example
is shown in the figure below. The forwarding links are shown as broken lines.

dormant

a b c d edormant

local1 local2

local1 local2

ba c d ea b c d e

local1 local2

cb d ea

copy

fix links

Fig. 118: Stop-and-copy and pointer redirection.

Which is better, mark-and-sweep or stop-and-copy? There is no consensus as to which is best

Garbage Collection 149 CMSC 420

in all circumstances. The stop-and-copy method seems to be popular in systems where it is
easy to determine which words are pointers and which are not (as in Java). In languages such
as C++ where a pointer can be cast to an integer and then back to a pointer, it may be very
hard to determine what really is a pointer and what is not, and so mark-and-sweep is more
popular here. Stop-and-copy suffers from lots of data movement. To save time needed for
copying long-lived objects (say those that have survived 3 or more garbage collections), we
may declare them to be immortal and assign them to a special area of memory that is never
garbage collected (unless we are really in dire need of space).

Supplemental Lecture 8: Tries and Digital Search Trees

Strings and Digital Data: Earlier this semester we studied data structures for storing and re-
trieving data from an ordered domain through the use of binary search trees, and related data
structures such as skip lists. Since these data structures can store any type of sorted data,
they can certainly be used for storing strings. However, this is not always the most efficient
way to access and retrieve string data. One reason for this is that unlike floating point or
integer values, which can be compared by performing a single machine-level operation (basi-
cally subtracting two numbers and comparing the sign bit of the result) strings are compared
lexicographically, that is, character by character. Strings also possess additional structure
that simple numeric keys do not have. It would be nice to have a data structure which takes
better advantage of the structural properties of strings.

Character strings arise in a number of important applications. These include language dic-
tionaries, computational linguistics, keyword retrieval systems for text databases and web
search, and computational biology and genetics (where the strings may be strands of DNA
encoded as sequences over the alphabet {C,G, T,A}).

Tries: As mentioned above, our goal in designing a search structure for strings is to avoid having
to look at every character of the query string at every node of the data structure. The basic
idea common to all string-based search structures is the notion of visiting the characters of the
search string from left to right as we descend the search structure. The most straightforward
implementation of this concept is a trie. The name is derived from the middle syllable of
“retrieval”, but is pronounced the same as “try”. Each internal node of a trie is k-way
rooted tree, which may be implemented as an array whose length is equal to the number of
characters k in the alphabet. It is common to assume that the alphabet includes a special
character, indicated by ‘.’ in our figures, which represents a special end of string character.
(In languages such as C++ and Java this would normally just be the null character.) Thus
each path starting at the root is associated with a sequence of characters. We store each
string along the associated path. The last pointer of the sequence (associated with the end
of string character) points to a leaf node which contains the complete data associated with
this string. An example is shown in the figure below.

The obvious disadvantage of this straightforward trie implementation is the amount of space
it uses. Many of the entries in each of the arrays is empty. In most languages the distribution
of characters is not uniform, and certain character sequences are highly unlikely. There are a
number of ways to improve upon this implementation.

For example, rather than allocating nodes using the system storage allocation (e.g., new) we
store nodes in a 2-dimensional array. The number of columns equals the size of the alphabet,

Tries and Digital Search Trees 150 CMSC 420

ete. set.

test. tete.stet.

t

.

sets.

e.

est.

este.

.

t

s t

e

.

t

e t

e s t

e

e

t

.

e

. .

s t

. s

Fig. 119: A trie containing the strings: est, este, ete, set, sets, stet, test and tete. Only the nonnull
entries are shown.

and the number of rows equals the total number of nodes. The entry T [i, j] contains the
index of the j-th pointer in node i. If there are m nodes in the trie, then dlgme bits suffice
to represent each index, which is much fewer than the number of bits needed for a pointer.

de la Brandais trees: Another idea for saving space is, rather than storing each node as an array
whose size equals the alphabet size, we only store the nonnull entries in a linked list. Each
entry of the list contains a character, a child link, and a link to the next entry in the linked
list for the node. Note that this is essentially just a first-child, next-sibling representation of
the trie structure. These are called de la Brandais trees. An example is shown in the figure
below.

e

.

s

s

e

.

s

est.

este.

ete. set.

sets. stet. test. tete.

t

.

e .

e

t

t

s

. .

t

e

t

t

e

t

et

. .

Fig. 120: A de la Brandais tree containing the strings: est, este, ete, set, sets, stet, test and tete.

Although de la Brandais trees have the nice feature that they only use twice as much pointer
space as there are characters in the strings, the search time at each level is potentially linear
in the number of characters in the alphabet. A hybrid method would be to use regular trie
nodes when the branching factor is high and then convert to de la Brandais trees when the
branching factor is low.

Patricia Tries: In many applications of strings there can be long sequences of repeated substrings.
As an extreme example, suppose that you are creating a trie with the words “demystifica-

Tries and Digital Search Trees 151 CMSC 420

tional” and “demystifications” but no other words that contain the prefix “demys”. In order
to stores these words in a trie, we would need to create 10 trie nodes for the common substring
“tification”, with each node having a branching factor of just one each. To avoid this, we
would like the tree to inform us that after reading the common prefix “demys” we should skip
over the next 10 characters, and check whether the 11th is either ‘a’ or ‘s’. This is the idea
behind patricia tries. (The word ‘patricia’ is an acronym for Practical Algorithm To Retrieve
Information Coded In Alphanumeric.)

A patricia trie uses the same node structure as the standard trie, but in addition each node
contains an index field, indicating which character is to be checked at this node. This index
field value increases as we descend the tree, thus we still process strings from left to right.
However, we may skip over any characters that provide no discriminating power between
keys. An example is shown below. Note that once only one matching word remains, we can
proceed immediately to a leaf node.

sublease

e i

subliminalsublimesublimate

e s
1

estimationestimateessentialessence

c t
6

s t
3

a e i

5

7
e i

8

Fig. 121: A patricia trie for the strings: essence, essential, estimate, estimation, sublease, sublime,
subliminal.

Observe that because we skip over characters in a patricia trie, it is generally necessary to
verify the correctness of the final result. For example, if we had attempted to search for the
word “survive” then we would match ‘s’ at position 1, ‘i’ at position 5, and ‘e’ at position
7, and so we arrive at the leaf node for “sublime”. This means that “sublime” is the only
possible match, but it does not necessarily match this word. Hence the need for verification.

Suffix trees: In some applications of string pattern matching we want to perform a number of
queries about a single long string. For example, this string might be a single DNA strand.
We would like to store this string in a data structure so that we are able to perform queries
on this string. For example, we might want to know how many occurrences there are of some
given substring within this long string.

One interesting application of tries and patricia tries is for this purpose. Consider a string
s = “a1a2 . . . an.”. We assume that the (n + 1)-st character is the unique string termina-
tion character. Such a string implicitly defines n + 1 suffixes. The i-th suffix is the string
“aiai+1 . . . an.”. For each position i there is a minimum length substring starting at position i
which uniquely identifies this substring. For example, consider the string “yabbadabbadoo”.
The substring “y” uniquely identifies the first position of the string. However the second
position is not uniquely identified by “a” or “ab” or even “abbad”, since all of these sub-
strings occur at least twice in the string. However, “abbada” uniquely identifies the second
position, because this substring occurs only once in the entire string. The substring identifier
for position i is the minimum length substring starting at position i of the string which occurs

Tries and Digital Search Trees 152 CMSC 420

Position Substring identifier

1 y
2 abbada
3 bbada
4 bada
5 ada
6 da
7 abbado
8 bbado
9 bado
10 ado
11 do
12 oo
13 o.
14 .

Fig. 122: Substring identifiers for the string “yabbadabbadoo.”.

uniquely in s. Note that because the end of string character is unique, every position has a
unique substring identifier. An example is shown in the following figure.

A suffix tree for a string s is a trie in which we store each of the n+ 1 substring identifiers for
s. An example is shown in the following figure. (Following standard suffix tree conventions,
we put labels on the edges rather than in the nodes, but this data structure is typically
implemented as a trie or a patricia trie.)

As an example of answering a query, suppose that we want to know how many times the
substring “abb” occurs within the string s. To do this we search for the string “abb” in the
suffix tree. If we fall out of the tree, then it does not occur. Otherwise the search ends at
some node u. The number of leaves descended from u is equal to the number of times “abb”
occurs within s. (In the example, this is 2.) By storing this information in each node of the
tree, we can answer these queries in time proportional to the length of the substring query
(irrespective of the length of s).

Since suffix trees are often used for storing very large texts upon which many queries are
to be performed (e.g. they were used for storing the entire contents of the Oxford English
Dictionary and have been used in computational biology) it is important that the space used
by the data structure be O(n) where n is the number of characters in the string. Using the
standard trie representation, this is not necessarily true. (You can try to generate your own
counterexample where the data structure uses O(n2) space, even if the alphabet is limited to
2 symbols.) However, if a patricia trie is used the resulting suffix tree has O(n) nodes. The
reason is that the number of leaves in the suffix tree is equal to n+ 1. We showed earlier in
the semester that if every internal node has two children (or generally at least two children)
then the number of internal nodes is not greater than n. Hence the total number of nodes is
O(n).

Tries and Digital Search Trees 153 CMSC 420

d a

d

a b

a o

a o

a o o.b

b

d

a o

a

d

a o

. d oa b y

116 13 12

1

10

14

5

72

3

94

8

Fig. 123: A suffix tree for the string “yabbadabbadoo.”.

Tries and Digital Search Trees 154 CMSC 420

