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CMSC 420: Lecture 1
Course Introduction and Background

Algorithms and Data Structures: The study of data structures and the algorithms that ma-
nipulate them is among the most fundamental topics in computer science. Most of what
computer systems spend their time doing is storing, accessing, and manipulating data in one
form or another. Some examples from computer science include:

Information Retrieval: List the 10 most informative Web pages on the subject of “how to
treat high blood pressure?” Identify possible suspects of a crime based on fingerprints or
DNA evidence. Find movies that a Netflix subscriber may like based on the movies that
this person has already viewed. Find images on the Internet containing both kangaroos
and horses.

Geographic Information Systems: How many people in the USA live within 25 miles of
the Mississippi River? List the 10 movie theaters that are closest to my current location.
If sea levels rise 10 meters, what fraction of Florida will be under water?

Compilers: You need to store a set of variable names along with their associated types.
Given an assignment between two variables we need to look them up in a symbol table,
determine their types, and determine whether it is possible to cast from one type to the
other).

Networking: Suppose you need to multicast a message from one source node to many other
machines on the network. Along what paths should the message be sent, and how can
this set of paths be determined from the network’s structure?

Computer Graphics: Given a virtual reality system for an architectural building walk-
through, what portions of the building are visible to a viewer at a particular location?
(Visibility culling)

In many areas of computer science, much of the content deals with the questions of how to
store, access, and manipulate the data of importance for that area. In this course we will
deal with the first two tasks of storage and access at a very general level. (The last issue of
manipulation is further subdivided into two areas, manipulation of numeric or floating point
data, which is the subject of numerical analysis, and the manipulation of discrete data, which
is the subject of discrete algorithm design.) An good understanding of data structures is
fundamental to all of these areas.

What is a data structure? Whenever we deal with the representation of real world objects in
a computer program we must first consider a number of issues:

Modeling: the manner in which objects in the real world are modeled as abstract mathe-
matical entities and basic data types,

Operations: the operations that are used to store, access, and manipulate these entities and
the formal meaning of these operations,

Representation: the manner in which these entities are represented concretely in a com-
puter’s memory, and

Algorithms: the algorithms that are used to perform these operations.
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Note that the first two items above are essentially mathematical in nature, and deal with
the “what” of a data structure, whereas the last two items involve the implementation issues
and the “how” of the data structure. The first two essentially encapsulate the essence of
an abstract data type (or ADT). In contrast the second two items, the concrete issues of
implementation, will be the focus of this course.

For example, you are all familiar with the concept of a stack from basic programming classes.
This a sequence of objects (of unspecified type). Objects can be inserted into the stack
by pushing and removed from the stack by popping. The pop operation removes the last
unremoved object that was pushed. Stacks may be implemented in many ways, for example
using arrays or using linked lists. Which representation is the fastest? Which is the most
space efficient? Which is the most flexible? What are the tradeoffs involved with the use of
one representation over another? In the case of a stack, the answers are all rather mundane.
However, as data structures grow in complexity and sophistication, the answers are far from
obvious.

In this course we will explore a number of different data structures, study their implemen-
tations, and analyze their efficiency (both in time and space). One of our goals will be to
provide you with the tools and design principles that will help you to design and implement
your own data structures to solve your own data storage and retrieval problems efficiently.

Course Overview: In this course we will consider many different abstract data types and various
data structures for implementing each of them. There is not always a single “best” data
structure for a given task. For example, there are many common sorting algorithms: Bubble-
Sort is easy to code but slow, Quick-Sort is very fast but not stable, Merge-Sort is stable but
needs additional memory, and Heap-Sort needs no additional memory but is hard to code
(relative to Quick-Sort). It will be important for you, as a designer of the data structure, to
understand each structure well enough to know the circumstances where one data structure
is to be preferred over another.

How important is the choice of a data structure? There are numerous examples from all areas
of computer science where a relatively simple application of good data structure techniques
resulted in massive savings in computation time and, hence, money.

Perhaps a more important aspect of this course is a sense of how to design new data structures,
how to implement these designs, and how to evaluate how good your design is. The data
structures we will cover in this course have grown out of the standard applications of computer
science. But new applications will demand the creation of new domains of objects (which we
cannot foresee at this time) and this will demand the creation of new data structures. It will
fall on the students of today to create these data structures of the future. We will see that
there are a few important elements which are shared by all good data structures. We will
also discuss how one can apply simple mathematics and common sense to quickly ascertain
the weaknesses or strengths of one data structure relative to another.

Our Approach: We will consider the design of data structures from two different perspectives:
theoretical and practical. Our theoretical analysis of data structures will be similar in style
to the approach taken in algorithms courses (such as CMSC 351). The emphasis will be
on deriving asymptotic (so called, “big-O”) bounds on the space, query time, and cost of
operations for a given data structure. On the practical side, you will be writing programs
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to implement a number of classical data structures. This will acquaint you with the skills
needed to develop clean designs and debug them.

The remainder of the lecture will review some material from your earlier algorithms course,
which hopefully you still remember.

Algorithmics: Review material. Please be sure you are familiar with this.

It is easy to see that the topics of algorithms and data structures cannot be separated since
the two are inextricably intertwined. So before we begin talking about data structures, we
must begin with a quick review of the basics of algorithms, and in particular, how to measure
the relative efficiency of algorithms. The main issue in studying the efficiency of algorithms
is the amount of resources they use, usually measured in either the space or time used. There
are usually two ways of measuring these quantities. One is a mathematical analysis of the
general algorithm being used, called an asymptotic analysis, which can capture gross aspects
of efficiency for all possible inputs but not exact execution times. The second is an empirical
analysis of an actual implementation to determine exact running times for a sample of specific
inputs, but it cannot predict the performance of the algorithm on all inputs. In class we will
deal mostly with the former, but the latter is important also.1

For now let us concentrate on running time. (What we are saying can also be applied to
space, but space is somewhat easier to deal with than time.) Given a program, its running
time is not a fixed number, but rather a function. For each input (or instance of the data
structure), there may be a different running time. Presumably as input size increases so does
running time, so we often describe running time as a function of input/data structure size
n, denoted T (n). We want our notion of time to be largely machine-independent, so rather
than measuring CPU seconds, it is more common to measure basic “steps” that the algorithm
makes (e.g. the number of statements executed or the number of memory accesses). This will
not exactly predict the true running time, since some compilers do a better job of optimization
than others, but its will get us within a small constant factor of the true running time most
of the time.

Even measuring running time as a function of input size is not really well defined, because,
for example, it may be possible to sort a list that is already sorted, than it is to sort a list that
is randomly permuted. For this reason, we usually talk about worst case running time. Over
all possible inputs of size n, what is the maximum running time. It is often more reasonable
to consider expected case running time where we average over all inputs of size n. When
dealing with randomized algorithms (where the execution depends on random choices), it is
common to focus on the worst case over all inputs (of a given size) and expected case over
all random choices. Another example that is often used in data structure design is called
amortized analysis, where the average is taken over a series of operation. Any one operation
might be costly, but the overall average in any long sequence cannot be. We will usually do
worst-case analysis, except where it is clear that the worst case is significantly different from
the expected case.

Review of Asymptotics: There are particular bag of tricks that most algorithm analyzers use
to study the running time of algorithms. For this class we will try to stick to the basics. The

1Of course, there is another aspect of complexity, that we will not discuss at length (but needs to be considered)
and that is the software-engineering issues regarding the complexity of programming a correct implementation.
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first element is the notion of asymptotic notation. Suppose that we have already performed
an analysis of an algorithm and we have discovered through our worst-case analysis that

T (n) = 13n3 + 42n2 + 2n log n+ 3
√
n.

(This function was just made up as an illustration.) Unless we say otherwise, assume that
logarithms are taken base 2. When the value n is small, we do not worry too much about
this function since it will not be too large, but as n increases in size, we will have to worry
about the running time. Observe that as n grows larger, the size of n3 is much larger than n2,
which is much larger than n log n (note that 0 < log n < n whenever n > 1) which is much
larger than

√
n. Thus the n3 term dominates for large n. Also note that the leading factor 13

is a constant. Such constant factors can be affected by the machine speed, or compiler, so we
may ignore it (as long as it is relatively small). We could summarize this function succinctly
by saying that the running time grows “roughly on the order of n3”, and this is written
notationally as T (n) = O(n3). Informally, the statement T (n) = O(n3) means, “when you
ignore constant multiplicative factors, and consider the leading (i.e. fastest growing) term,
you get n3”. This intuition can be made more formal, however. We refer you back to your
algorithms course for how to do this.

Digression about Notation: Let us pause for a moment to explain the “=” in the assertion
that “T (n) = O(n3)”. It is not being used in the usual mathematical sense. By definition,
“a = b” implies “b = a”. The use of “=” in asymptotic notation just a lazy way of saying
T (n) “is” on the order of n3. It would not make sense to express this as O(n3) = T (n).
A more proper way of writing this expression would be “T (n) ∈ O(n3)”, that is T (n)
is a member of the set of functions whose asymptotic growth rate is at most n3. But,
most of the world simply uses the “=” notation, and so shall we.

Common Complexity Classes: To get a feeling what various growth rates mean here is a sum-
mary. In data structures, our objective is usually to answer a query in time that is less than
the size of the data set n, so in this class we will be primarily interested in the following
complexity classes, which are collectively called sublinear.

T (n) = O(1) : Great. This means your algorithm takes only constant time. You can’t beat
this. (Example: Popping a stack.)

T (n) = O(α(n)) : The function α is the inverse of the famous Ackerman’s function. Acker-
man’s function grows insanely rapidly, and hence its inverse grows insanely slowly. How
slowly? If n is less than the number of atoms in the visible universe, then α(n) ≤ 5.
Thus, α(n) is a constant “for all practical purposes”. However, formally it is not a con-
stant. In the limit, as n tends to infinity, α(n) also tends to infinity. It just gets there
extremely slowly! Believe or not, there are actually a number of data structures whose
running times are O(α(n)), but they are not O(1). (Example: Disjoint set union-find.)

T (n) = O(log log n) : Super fast! For most practical purposes, this is as fast as a constant
time. (Example: Van Emde Boas trees.)

T (n) = O(log n) : Very good. This is called logarithmic time, and is the “gold standard”
for data structures based on making binary comparisons. It is the running time of
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binary search and the height of a balanced binary tree. This is about the best that
can be achieved for data structures based on binary trees. Note that log 1000 ≈ 10 and
log 1, 000, 000 ≈ 20 (log’s base 2). (Example: Binary search.)

T (n) = O((log n)k) : (where k is a constant). This is called polylogarithmic time. Not bad,
when simple logarithmic time is not achievable. We will often write this as O(logk n).
(Example: Orthogonal range searching, that is, counting the number of points in a
d-dimensional axis-parallel rectangle.)

q

(a) (b) (c)

Fig. 1: (a) A point set, (b) orthogonal range search query, and (c) nearest-neighbor query.

T (n) = O(np) : (where 0 < p < 1 is a constant). An example is O(
√
n). This is slower than

polylogarithmic (no matter how big k is or how small p), but is still faster than linear
time, which is acceptable for data structure use. (Example: Nearest neighbor searching
in d-dimensional space.)

In an algorithms course, it is more common to focus on running times that grow at least
linearly. These are described below.

T (n) = O(n) : This is called linear time. It is about the best that one can hope for if your
algorithm has to look at all the data. (Example: Enumerating the elements of a linked
list.)

T (n) = O(n log n) : This one is famous, because this is the time needed to sort a list of
numbers by means of comparisons. It arises in a number of other problems as well.
(Example: Sorting, of course.)

T (n) = O(n2) : Quadratic time. Okay if n is in the thousands, but rough when n gets into
the millions. (Example: 3Sum: Given a list of n numbers (positive and negative), do
any three sum to zero?)

T (n) = O(nk) : (where k is a constant). This is called polynomial time. Practical if k is not
too large. (Example: Matrix multiplication.)

T (n) = O(2n), O(nn), O(n!) : Exponential time. Algorithms taking this much time are only
practical for the smallest values of n (e.g. n ≤ 10 or maybe n ≤ 20). (Example: Your
favorite NP-complete problem. . . as far as anyone knows!)
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