
CMSC 420 Dave Mount

CMSC 420: Lecture 4
Some Basic Data Structures

Read: Chapt. 3 in Weiss.

Basic Data Structures: Before we go into our coverage of complex data structures, it is good to
remember that in many applications, simple data structures are sufficient. This is true, for
example, if the number of data objects is small enough that efficiency is not so much an issue,
and hence a complex data structure is not called for. In many instances where you need a
data structure for the purposes of prototyping an application, these simple data structures
are quick and easy to implement.

Abstract Data Types: An important element to good data structure design is to distinguish
between the functional definition of a data structure and its implementation. By an abstract
data structure (ADT) we mean a set of objects and a set of operations defined on these
objects. For example, a stack ADT is a structure which supports operations such as push
and pop (whose definition you are no doubt familiar with). A stack may be implemented in
a number of ways, for example using an array or using a linked list. An important aspect of
object-oriented languages, like Java, is the capability to present the user of a data structure
with an abstract view of its function without revealing the methods with which it operates.
Java’s interface/implements mechanism is an example. To a large extent, this course will be
concerned with the various approaches for implementing simple abstract data types and the
tradeoffs between these options.

Linear Lists: A linear list or simply list is perhaps the most basic of abstract data types. A list
is simply an ordered sequence of elements 〈a1, a2, . . . , an〉. We will not specify the actual type
of these elements here, since it is not relevant to our presentation. (In Java this would be
handled through generics.)

The size or length of such a list is n. Here is a very simple, minimalist specification of a list:

init(): Initialize an empty list

get(i): Returns element ai

set(i,x): Sets the ith element to x

length(): Returns the number of elements currently in the list

insert(i,x): Insert element x just prior to element ai (causing the index of all subsequent
items to be increased by one).

delete(i): Delete the ith element (causing the indices of all subsequent elements to be
decreased by 1).

I am sure that you can imagine many other useful operations, for example searching the list
for an item, splitting or concatenating lists, generating an iterator object for enumerating the
elements of the list.

There are a number of possible implementations of lists. The most basic question is whether
to use sequential allocation (meaning storing the elements sequentially in an array) or linked

Lecture 4 1 Fall 2019



CMSC 420 Dave Mount

allocation (meaning storing the elements in a linked list). (See Fig. 1.) With linked allocation
there are many other options to be considered. Is the list singly linked (each node pointing
to its successor in the list), doubly linked (each node pointing to both its successor and
predecessor), circularly linked (with the last node pointing back to the first)?

Sequential allocation

Singly linked list

Doubly linked list

a1
a2
a3
a4

a1 a2 a3 a4head

tail

a1

head

tail

a2 a3 a4

Fig. 1: Common types of list allocation.

Stacks, Queues, and Deques: There are a few very special types of lists. The most well known
are of course stacks and queues. We’ll also discuss an interesting generalization, called the
deque.

Stack: Supports insertion (push) and removal (pop) from only one end of the list, called the
stack’s top. Stacks are among the most widely used of all data structures, and we will
see many applications of them throughout the semester.

Queue: Supports insertion (called enqueue) and removal (called dequeue), each from opposite
ends of the list. The end where insertion takes place is called the tail, and the end where
removals occur is called the head.

Deque: This data structure is a combination of stacks and queues, called a double-ended
queue or deque for short. It supports insertions and removals from either end of the list.

The name is actually a play on words. It is written like “d-e-que” for a “double-ended
queue”, but it is pronounced like deck, because it behaves like a deck of cards, since you
can deal off the top or the bottom.

Both stacks and queues can be implemented efficiently as arrays or as linked lists. Note
that when a queue is implemented using sequential allocation (as an array) the head and tail
pointers chase each other around the array. When each reaches the end of the array it wraps
back around to the beginning of the array.

Dynamic Storage Reallocation: When sequential allocation is used for stacks and queues, an
important issue is what to do when an attempt is made to insert an element into an array
that is full. When this occurs, the usual practice is the allocate a new array of twice the
size as the existing array, and then copy the elements of the old array into the new one. For
example, if the initial stack or queue has 8 elements, then when an attempt is made to insert
a 9th element, we allocate an array of size 16, copy the existing 8 elements to this new array,
and then add the new element. When we fill this up, we then allocate an array of size 32,
and when it is filled an array of size 64, and so on.

Lecture 4 2 Fall 2019



CMSC 420 Dave Mount

You might wonder, why do we double the array size? Why not, instead, just allocate an array
with 100 additional elements? Why not be more aggressive and square the size of the array
(jumping from 8 to 64 elements)?

If you have no additional knowledge regarding the access sequence, there is a good reason
why increasing the size by a constant factor is the “right” thing to do. (Doubling itself is not
essential. You could increase the size by another factor, such as 1.5 or 3.0, but the increase
should be by a constant factor.)

This reason is related to the notion of amortization, which we introduced in the previous
lecture. Remember that amortization means that the cost of accessing a data structure is
summed over a long sequence of operations, and rather than reporting the cost of single
operation, we instead report the average cost over all the operations.

Theorem: When doubling reallocation is used for stack/queue/deque operations, the amor-
tized cost of each operation is O(1).

Proof: Let us do the proof for stacks, since the generalization to the other structures is
straightforward. Let us also assume that the initial allocation is of constant size (e.g.,
we always start with capacity for 8 elements). The initialization takes O(1) time.

We will use a charging argument to show that the amortized cost is constant per opera-
tion. In particular, we will “amortize” the cost of reallocation among the push operations
that came just before it.

Each time we do a push operation, we perform the operation and put 4 work tokens in
a bank account. The operation itself takes only a constant time, and the 4 work tokens
will be saved up for later. Now, suppose that the push operation requires that we run
out of space. Suppose that the current array size is n. We we allocate a new array of
size 2n, which must be initialized and elements copied to it. Thus, the actual cost of
performing this work is 2n. We want to pay for this work from our bank account. Have
we accumulated enough funds to do so? Well, the last time we reallocated we went from
an array of size n/2 to an array of size n. In order to overflow this array, we must have
performed at least n/2 additional pushes. Since each push allows us to place 4 tokens
in our bank account, we have accumulated at least 4(n/2) = 2n tokens. Thus, we have
enough to pay for the cost of reallocation.

Would this work if instead we had added 100 additional elements? The answer is no. If
this list was really large (thousands), we would not accumulate enough tokens to pay for
the reallocation. What if we increased by a much larger amount, say squaring the current
array size. The good news is that provide us with enough tokens to pay for the reallocation,
but if we were to stop the process right after the last reallocation, we would have a huge
bank account (with O(n2) tokens), which would go to waste. So, doubling (and in general,
increasing by a constant factor) is the perfect solution.

Multilists and Sparse Matrices: Although lists are very basic structures, they can be combined
in numerous nontrivial ways. A multilist is a structure in which a number of lists are combined
to form a single aggregate structure. Java’s ArrayList is a simple example, in which a
sequence of lists are combined into an array structure. A more interesting example of this
concept is its use to represent a sparse matrix.

Lecture 4 3 Fall 2019



CMSC 420 Dave Mount

Recall from linear algebra that a matrix is a structure consisting of n rows and m columns,
whose entries are drawn from some numeric field, say the real numbers. In practice, n and m
can be very large, say on the order of tens to hundred of thousands. For example, a physicist
who wants to study the dynamics of a galaxy might model the n stars of the galaxy using an
n × n matrix, where entry A[i, j] stores the gravitational force that star i exerts on star j.
The number of entries of such a matrix is n2 (and generally nm for an n×m matrix). This
may be impractical if n is very large.

The physicist knows that most stars are so far apart from each other that (due to the inverse
square law of gravity), only a small number of matrices are significant, and all the others could
be set to zero. For example, n = 10, 000 but a star typically exerts a significant gravitational
pull on only its 20 nearest stellar neighbors, then only 20/10, 000 = 0.02% of the matrix
entries are nonzero. Such a matrix in which only a small fraction of the entries are nonzero
is called sparse.

We can use a multilist representation to store sparse matrices. The idea is to create 2n linked
lists, one for each row and one for each column. Each entry of each list stores five things, its
row and column index, its numeric value, and links to the next items in the current row and
current column (see Fig. 2). We will not discuss the technical details, but all the standard
matrix operations (such as matrix multiplication, vector-matrix multiplication, transposition)
can be performed efficiently using this representation.

Matrix contents

0

15

0

77

85

0

22

0

0

0

0

39

67

99

0

0

0

1

2

3

Row

0 1 2 3

Column

1501

7703

2212

3923

8510 6730

9931

row col val

next in col
next in row

Node structure

0

1

2

3

0 1 2 3

Fig. 2: Sparse matrix representation using a multilist structure.

Lecture 4 4 Fall 2019


