
CMSC 420 Dave Mount

CMSC 420: Lecture 4
Binary Search Trees

Searching: Searching is among the most fundamental problems in data structure design. We are
storing a set of entries {e1, . . . , en}, where each ei is a pair (xi, vi), where xi is a key value
drawn from some totally ordered domain (e.g., integers or strings) and vi is an associated data
value. The data value is not used in the search itself, but is needed by whatever application
is using our data structure.

We assume that each key value occurs at most once in the data structure, and given an
arbitrary search key x, the basic search problem is determining whether there exists an entry
matching this key value. To implement this, we will assume that we are given two types,
Key and Value. (In a Java implementation, this can be handled by defining a class with
two generic types, one for the key and one for the value.) We will also assume that key
values can be compared using the usual comparison operators, such as <, ==, >=. In actual
implementation, it is assumed that the Key class supports a function for comparing keys.
For example, in Java’s various map classes, it is assumed that the Key class implements the
Comparator interface. This means that there is a function compare(x1, x2), which returns a
negative integer, zero, or a positive integer depending on whether the x1 is less than, equal
to, or greater than x2, respectively.

The Dictionary ADT: Perhaps the most basic example of a search data structure is the dictio-
nary. A dictionary is an ADT that supports the operations of insertion, deletion, and finding.
There are a number of additional operations that one may like to have supported, but these
are the core operations.

void insert(Key x, Value v): Stores an entry with the key-value pair (x, v). We assume
that keys are unique, and so if this key already exists, an error condition will be signaled
(e.g., an exception will be thrown).

void delete(Key x): Delete the entry with x’s key from the dictionary. If this key does not
appear in the dictionary, then an error conditioned is signaled.

Value find(Key x): Determine whether there is an entry matching x’s key in the dictionary?
If so, it returns a reference to associated value. Otherwise, it returns a null reference.

Other operations that might like to see in a dictionary include iterating the entries, answering
range queries (that is, reporting or counting all objects between some minimum and maximum
key values), returning the kth smallest key value, and computing set operations such as union
and intersection.

There are three common methods for storing dictionaries: sorted arrays, hash tables, and
binary search trees. We discuss two of these below. Hash tables will be presented later this
semester.

Sequential Allocation: The most naive approach for implementing a dictionary data structure
is to simply store the entries in a linear array without any sorting. To find a key value, we
simply run sequentially through the list until we find the desired key. Although this is simple,
it is not efficient. Searching and deletion each take O(n) time in the worst case, which is very
bad if n (the number of items in the dictionary) is large. Although insertion only involves
O(1) to insert a new item at the end of the array (assuming we don’t overflow), it would
require O(n) to check that we haven’t inserted a duplicate element.

Lecture 4 1 Fall 2019

CMSC 420 Dave Mount

An alternative is to sort the entries by key value. Now, binary search can be used to locate
a key in O(log n) time, which is much more efficient. (For example, if n = 1, 000, 000, log2 n
is only around 20.) While searches are fast, updates are slow. Insertion and deletion require
O(n) time, since the elements of the array must be moved around to make space.

Binary Search Trees: In order to provide the type of rapid access that binary search offers, but
at the same time allows efficient insertion and deletion of keys, the simplest generalization
is called a binary search tree. The idea is to store the records in the nodes of a binary tree,
such that an inorder traversal visits the nodes in increasing key order. In particular, if x is
the key stored in the root node, then the left subtree contains all keys that are less than x,
and the right subtree stores all keys that are greater than x (see Fig. 1(a)). (Recall that we
assume that keys are distinct, so no other key can be equal to x.)

13

7 16

84

51 11

9

15 22

18

21172

13

7 16

84

51 11

9

15 22

18

21172

8

11

9

8

11

9

Binary Search Tree Extended Binary Search Tree

(a) (b)

find(5) find(14)

(successful) (unsuccessful)

Fig. 1: Binary Search Tree.

Defining such an object in an object-oriented language like Java typically involves two class
definitions. The main class is for the dictionary itself, and the other is for the individual
nodes of the tree. We will call these BinarySearchTree and BinaryNode, respectively. The
BinarySearchTree class has all the public functions and stores a reference to the root node of
the tree. But most of the hard work is done by the methods associated with the BinaryNode

class.

A node in the binary search tree would typically store the key, the value, and left and right
pointers. It may also store additional information, such as parent pointers. When presenting
our code examples, we will not be concerned with the value component, and will just focus
on the key and the other pointers.

Search in Binary Search Trees: The search for a key x proceeds as follows. We start by as-
signing a pointer p to the root of the tree. We compare x to p’s key, that is, p.key. If they
are equal, we are done. Otherwise, if x is smaller, we recursively search p’s left subtree, and
if x is larger, we recursively visit p’s right subtree. The search proceeds until we either find
the key (see Fig. 1(b)) or we fall out of the tree (see Fig. 1(b)).

Note that if we think of the tree as an extended tree, then an unsuccessful search terminates
at an external node. Each external node represents the unsuccessful searches for keys that

Lecture 4 2 Fall 2019

CMSC 420 Dave Mount

lie between its inorder predecessor and inorder successor. (For example, in Fig. 1(b), the
external node where the search for 14 ends represents all the searches for keys that are larger
than 13 and smaller than 15.) One argument in favor of using extended trees is that the
external node provides this additional information (as opposed to a simple null pointer).

A natural way to handle this would be to make the search procedure a recursive member
function of the BinaryNode class. The initial call is made from the find() method associated
with the BinarySearchTree class, which invokes find(x, root), where root is the root of
the tree.

Recursive Binary Tree Search
Value find(Key x, BinaryNode p) {

if (p == null) return null; // unsuccessful search

else if (x < p.key) // x is smaller?

return find(x, p.left); // ... search left

else if (x > p.key) // x is larger?

return find(x, p.right); // ... search right

else return p.value; // successful search

}

It is easy to see based on the definition of a binary tree why this is correct. While most
tree-based algorithms are best expressed recursively, this one is easy enough to do iteratively,
and shown in the following code block. If you really wanted the best in performance, you
would likely prefer this iterative form.

Iterative Binary Tree Search
Value find(Key x) {

BinaryNode p = root; // start at the root

while (p != null) { // proceed until we fall out of the tree

if (x < p.key) p = p.left; // x is smaller? ...search left

else if (x > p.key) p = p.right; // x is larger? ...search right

else return p.value; // successful search

}

return null; // unsuccessful search

}

7 9

8

13 16

15

22 26

24

1 4

2

5 19

11 1

2

4

5

7

8

Balanced: Height = O(log n) Degenerate: Height = O(n)

Fig. 2: Balanced and degenerate binary trees.

What is the running time of the search algorithm? Well, it depends on the key you are
searching for. In the worst case, the search time is proportional to the height of the tree. The

Lecture 4 3 Fall 2019

CMSC 420 Dave Mount

height of a binary search tree with n entries can be as low as O(log n) for the case of balanced
tree (see Fig. 2 right) or as large as O(n) for the case of a degenerate tree (see Fig. 2 left).
However, we shall see that if the keys are inserted in random order, the expected height of
the tree is just O(log n).

Insertion: To insert a new key-value entry (x, v) in a binary search tree, we first try to locate the
key in the tree. If we find it, then the attempt to insert a duplicate key is an error. If not,
we effectively “fall out” of the tree at some node p. We insert a new leaf node containing
the desired entry as a child of p. It turns out that this is always the right place to put the
new node. (For example, in Fig. 3, we fall out of the tree at the left child of node 15, and we
insert the new node with key 14 here.)

146

13

7 19

104

61 17

15 22

20 6 6

13

7 19

104

61 17

15 22

20 6

insert(14)

Fig. 3: Binary tree insertion.

The insertion procedure is shown in the code fragment below. There is one technical difficulty
with implementing this in Java (or generally, any language that uses pass-by-value in function
calls). When we create the new node, we want to “reach up” and modify one of the pointer
fields in the parent’s node. Unfortunately, this is not easy to do in our recursive formulation,
since the parent node is not a local variable. There are a number of ways to fix this issue
(including coding the procedure iteratively or explicitly passing in a reference to the parent
node). Instead, we will employ a coding trick to get around this. In particular, the insertion
function will return a reference to the modified subtree after insertion, and we store this value
in the appropriate child pointer for the parent.

The initial call from the BinarySearchTree class is root = insert(x, v, root). We as-
sume that there is a constructor for the BinaryNode, which is given the key, value, and the
initial values of the left and right child pointers.

Recursive Binary Tree Insertion
BinaryNode insert(Key x, Value v, BinaryNode p) {

if (p == null) // fell out of the tree?

p = new BinaryNode(x, v, null, null); // ... create a new leaf node here

else if (x < p.key) // x is smaller?

p.left = insert(x, v, p.left); // ...insert left

else if (x > p.key) // x is larger?

p.right = insert(x, v, p.right); // ...insert right

else throw DuplicateKeyException; // x is equal ...duplicate key!

return p // return ref to current node (sneaky!)

}

A Closer Look at the Trick: To better understand how our coding trick works, see Fig. 4 to

Lecture 4 4 Fall 2019

CMSC 420 Dave Mount

insert 14. We first search for 14 in the tree, falling out of the tree at the left child of node
15, that is, when the local variable p refers to node 15. Let’s call this local variable p2. We
generate a call p2.left = insert(14, v, p2.left).

14 6

13

7 19

104

61 17

15 22

20 6

p0

p1

p2

p3

Fig. 4: Child link update in insertion.

Since node 15 has no left child, the next recursive call discovers right away that its local
p (which has the value p2.left) value is null, and so we create the new node with key
value 14, and assign it to the current local variable p. Let’s call this p3. The last line of the
recursive procedure returns p3 to the calling procedure at node 15, at the statement p2.right
= insert(14, v, p2.right). Since the insert function returns the pointer p3 to the new
node, we effectively perform the action p2.right = p3, which links the new node into the
tree as desired. Voila!

Deletion: Next, let us consider how to delete an entry from the tree. Deletion is a more involed
than insertion. While insertion adds nodes at the leaves of the tree, but deletions can occur
at any place within the tree. Deleting a leaf node is relatively easy, since it effectively involves
“undoing” the insertion process (see Fig. 5(a)). Deleting an internal node requires that we
“fill the hole” left when this node goes away. The easiest case is when the node has just
a single child, since we can effectively slide this child up to replace the deleted node (see
Fig. 5(b)).

delete(7)
9

2 11

71

5

4

13

9

2 11

1 5

4

13

9

2 11

71

5

4

13

8

9

2 11

71

5

4

13

delete(8)

Leaf deletion Single-child case

(a) (b)

(remove) (slide up)

Fig. 5: Deletion: (a) Leaf and (b) single-child case.

The hardest case is when the deleted node that has two children. Let p denote the node to
be deleted (see Fig. 6(a)):

• Find the node r that is p’s inorder successor in the tree (see Fig. 6(b)). Note that because

Lecture 4 5 Fall 2019

CMSC 420 Dave Mount

p has two children, its inorder successor is the “leftmost” node of p’s right subtree. Call
r the replacement node.

• Copy the contents of r to p (see Fig. 6(c)).

• Delete node r (see Fig. 6(d)). (Because r’s key immediately follows p’s key, this replace-
ment maintains the sorted order of keys.)

13

3 14

92

4

6

16

11

delete(3) Two-Child Case

1

7

13

3 14

92

4

6

16

111

75 5

replacement

13

4 14

92 16

111

13

4 14

92

6

16

111

75

4

6

75

copy

p

r

p p p

r

(a) (b) (c) (d)

delete(4)

Fig. 6: Deletion: Two-child case.

It may seem that we have made no progress, because we have just replaced one deletion
problem (for p) with another (for r). However, the task of deleting r is much simpler. The
reason is, since r is p’s inorder successor, r is the leftmost node of p’s right subtree. It follows
that r has no left child. Therefore, r is either a leaf or it has a single child, implying that it
is one of the two “easy” deletion cases that we discussed earlier.

Deletion Implementation: Before giving the code for deletion, we first present a utility function,
findReplacement(), which returns a pointer to the node that will replace p in the two-child
case. As mentioned above, this is the inorder successor of p, that is, the leftmost node in
p’s right subtree. As with the insertion method, the initial call is made to the root of the
tree, delete(x, root). Again, we will employ the sneaky trick of returning a pointer to the
revised subtree after deletion, and store this value in the child link. See the code fragment
below.

Replacement Node for the Two-child Case
BinaryNode findReplacement(BinaryNode p) { // find p’s replacement node

BinaryNode r = p.right; // start in p’s right subtree

while (r.left != null) r = r.left; // go to the leftmost node

return r;

}

The full deletion code is given in the following code fragment. As with insertion, the code
is quite tricky. For example, can you see where the leaf and single-child cases are handled
in the code? We do not have a conditional that distinguishes between these cases. How can
that be correct. (But it is!)

Lecture 4 6 Fall 2019

CMSC 420 Dave Mount

Binary Tree Deletion
BinaryNode delete(Key x, BinaryNode p) {

if (p == null) // fell out of tree?

throw KeyNotFoundException; // ...error - no such key

else {

if (x < p.data) // look in left subtree

p.left = delete(x, p.left);

else if (x > p.data) // look in right subtree

p.right = delete(x, p.right);

// found it!

else if (p.left == null || p.right == null) { // either child empty?

if (p.left == null) return p.right; // return replacement node

else return p.left;

}

else { // both children present

r = findReplacement(p); // find replacement node

copy r’s contents to p; // copy its contents to p

p.right = delete(r.key, p.right); // delete the replacement

}

}

return p;

}

Analysis of Binary Search Trees: It is not hard to see that all of the procedures find(),
insert(), and delete() run in time that is proportional to the height of the tree being
considered. (The delete() procedure is the only one for which this is not obvious. Because
the replacement node is the inorder successor of the deleted node, it is the leftmost node of
the right subtree. This implies that the replacement node has no left child, and so it will fall
into one of the easy cases, which do not require a recursive call.)

The question is, given a binary search tree T containing n keys, what can be said about the
height of the tree? It is not hard to see that in the worst case, if we insert keys in either strictly
increasing or strictly decreasing order, then the resulting tree will be completely degenerate,
and have height n − 1. We will show that, if keys are inserted in random order, then the
expected depth of any node is O(log n). (We emphasize that this assumes insertions only.
See below for a discussion of the situation when insertions and deletions are combined.)

Proving that the expected depth is O(log n) is not an trivial exercise. The proof involves
setting up a fairly complicated recurrence and solving it. (If you have ever seen the complete
analysis of QuickSort, the two recurrences are very similar.) Instead, we will produce a “quick
and dirty” proof, which hopefully will convince you that the assertion is reasonable, if not
fully convincing. In particular, rather than proving that every node of the tree is at expected
depth O(log n), we will prove that the leftmost node of the tree (that is, the node associated
with the smallest key value) will be at expected depth O(log n).

Theorem: Given a set of n keys x1 < x2 < . . . < xn, let D(n) denote the expected depth
of node x1 after inserting all these keys in a binary search tree, under the assumption
that all n! insertion orders are equally likely. Then D(n) ≤ 1 + lnn, where ln denotes
the natural logarithm.

Proof: We will track the depth of the leftmost node of the tree through the sequence of
insertions. Suppose that we have already inserted i− 1 keys from the sequence, and we

Lecture 4 7 Fall 2019

CMSC 420 Dave Mount

are in the process of inserting the ith key. The only way that the leftmost node changes
is when the ith key is the lowest key value that has been seen so far in the sequence.
That is, the i element to be inserted in the new minimum value among all the keys in
the tree.

For example, consider the insertion sequence S = 〈9, 5, 10, 6, 3, 4, 2〉. Observe that the
minimum value changes three times, when 5, 3, and 2 are inserted. If we look at the
binary tree that results from this insertion sequence we see that the depth of the leftmost
node also increases by one with each of these insertions.

Insertion order: 〈9, 5, 10, 6, 3, 4, 2〉

9

5

9

5

9

10 5

9

10

6

5

9

10

63

5

9

10

63

4

5

9

10

63

42

insert(5) insert(2)insert(4)insert(3)insert(6)insert(10)

insert(9)

Fig. 7: Length of the leftmost chain.

To complete the analysis, it suffices to determine (in expectation) the number of times
that the minimum in a sequence of n random values changes. To make this formal, for
2 ≤ i ≤ n, let Xi denote the random variable that is 1 if the ith element of the random
sequence is the minimum among the first i elements, and 0 otherwise. (In our sequence
S above, X2 = X5 = X7 = 1, because the minimum changed when the second, fifth, and
seventh elements were added. The remaining Xi’s are zero.)

To analyze Xi, let’s just focus on the first i elements and ignore the rest. Since every
permutation of the numbers is equally likely, the minimum among the first i is equally
likely to come at any of the positions first, second, . . . , up to ith. The minimum changes
only if comes last out of the first i. Thus, Pr(Xi = 1) = 1

i and Pr(Xi = 0) = 1 − 1
i .

Whenever this random event occurs (Xi = 1), the minimum has changed one more time.
Therefore, to obtain the expected number of times that the minimum changes, we just
need to sum the probabilities that Xi = 1, for i = 2, . . . , n. Thus we have

D(n) =
n∑

i=2

1

i
=

(
n∑

i=1

1

i

)
− 1.

This summation is among the most famous in mathematics. It is called the Harmonic
Series. Unlike the geometric series (1/2i), the Harmonic Series does not converge. But
it is known that when n is large, its value is very close to lnn, the natural log of n. (In
fact, it is not more than 1 + lnn.)

Therefore, we conclude that the expected depth of the leftmost node in a binary search
tree under n random insertions is at most 1 + lnn = O(log n), as desired.

Random Insertions and Deletions: Interestingly, this analysis breaks down if we are doing
both insertions and deletions. Suppose that we consider a very long sequence of insertions

Lecture 4 8 Fall 2019

CMSC 420 Dave Mount

and deletions, which occur at roughly the same rate so that, in steady state, the tree has
roughly n nodes. Let us also assume that insertions are random (drawn say from some large
domain of candidate elements) and deletions are random in the sense that a random element
from the tree is deleted each time.

It is natural to suppose that the O(log n) bound should apply, but remarkably it does not! It
can be shown that over a long sequence, the height of the tree will converge to a significantly
larger value of O(

√
n).1

The reason has to do with the fact that the replacement element was chosen in a biased
manner, always taking the inorder successor. Over the course of many deletions, this repeated
bias causes the tree’s structure to skew away from the ideal. This bias can be eliminated by
selecting the replacement node (randomly) as the inorder successor or inorder predecessor. It
has been shown experimentally that this resolves the issue, but (to the best of my knowledge)
it is not known whether the expected height of this balanced version of deletion matches the
expected height for the insertion-only case (see Culberson and Munro, Algorithmica, 1990).

1There is an interesting history regarding this question. It was believed for a number of years that random
deletions did not alter the structure of the tree. A theorem by T. N. Hibbard in 1962 proved that the tree structure
was probabilistically unaffected by deletions. The first edition of D. E. Knuth’s famous book on data structures, quotes
this result. In the mid 1970’s, Gary Knott, a Ph.D. student of Knuth and later a professor at UMD, discovered a
subtle flaw in Hibbard’s result. While the structure of the tree is probabilistically the same, the distribution of keys
is not. However, Knott could not resolve the asymptotic running time. The analysis showing that O(

√
n) bound was

due to Culberson and Munro in the mid 1980’s.

Lecture 4 9 Fall 2019

