CMSC 420 Dave Mount

CMSC 420: Lecture 5
AVL Trees

Balanced Binary Trees: The binary search trees described in the previous lecture are easy to
implement, but they suffer from the fact that if nodes are inserted in a poor order (e.g.,
increasing or decreasing) then the height of the tree can be much higher than the ideal height
of O(logn). This raises the question of whether we can design a binary search tree that is
guaranteed to have O(logn) height, irrespective of the order of insertions and deletions.

Today we will consider the oldest, and perhaps best known example of such a data structure
is the famous AVL tree, which was discovered in 1962 by G. Adelson-Velskii and E. Landis
(and hence the name “AVL”).

AVL Trees: AVL tree’s are height-balanced binary search trees. In an absolutely ideal height-
balanced tree, the two children of any internal node would have equal heights, but it is
not generally possible to achieve this goal. The most natural relaxation of this condition is
expressed in the following invariant:

AVL balance condition: For every node in the tree, the absolute difference in the heights
of its left and right subtrees is at most 1.

For any node v of the tree, let height(v) denote the height of the subtree rooted at v (shown
in blue in Fig. 1(a)). It will be convenient to define the height of an empty tree (that is, a
null pointer) to be —1. Define the balance factor of v, denoted balance(v) to be

balance(v) = height(v.right) — height(v.left)

(see Fig. 1(b)). The AVL balance condition is equivalent to the requirement that balance(v) €
{—1,0,+1} for all nodes v of the tree. (Thus, Fig. 1(b) is an AVL tree, but the tree of Fig. 1(c)
is not because node 10 has a balance factor of +2.)

Subtree heights Balance factors Not an AVL tree
-1

Fig. 1: AVL-tree balance condition.

Worst-case Height: Before discussing how we maintain this balance condition we should consider
the question of whether this condition is strong enough to guarantee that the height of an
AVL tree with n nodes is O(logn). Interestingly, the famous Fibonacci numbers will arise in
the analysis. Recall that for h > 0, the hth Fibonacci number, denoted Fj, is defined by the

Lecture 5 1 Fall 2019

CMSC 420 Dave Mount

following recurrence:

Fhb =0
Fr =1
Fy, = Fp 1+ Fh_o, for h > 2.

An important and well-known property of the Fibonacci numbers is that they grow expo-
nentially. In particular, F}, ~ ¢"/v/5, where ¢ = (1 ++/5)/2 ~ 1.618 is the famous Golden
Ratio.

Lemma: An AVL tree of height A > 0 has Q(¢") nodes, where ¢ = (1 +/5)/2.

Proof: Let N(h) denote the minimum number of nodes in any AVL tree of height h. We

will generate a recurrence for N(h) as follows. First, observe that a tree of height zero
consists of a single root node, so N(0) = 1. Also, the smallest possible AVL tree of
height one consists of a root and a single child, so N(1) = 2.
For n > 2, let hy and hr denote the heights of the left and right subtrees, respectively.
Since the tree has height h, one of the two subtrees must have height h — 1, say, hr.
To minimize the overall number of nodes, we should make the other subtree as short as
possible. By the AVL balance condition, this implies that hg = h—2. Counting the root
node plus the numbers of nodes in the left and right subtrees we obtain the following
recurrence for the total number of nodes:

N(©) =1
N(1) = 2
N(h) = 1+ N(hy)+ N(hg) = 1+ N(h—1)+ N(h—-2).

The resulting trees are shown in Fig. 2. Observe that while the number of nodes does not
follow the Fibonacci sequence exactly, the number of leaves does follow the Fibonacci

sequence.

Height: 0 2 3 4 5
Nodes: 1 4 7 12 20
Leaves 1 2 3

O

L g o

Fig. 2: Most imbalanced AVL trees of various heights.

While N(h) is not quite the same as the Fibonacci sequence, by an induction argument'

'Here is a sketch of a proof. Let us conjecture that N(h) = " for some constant . Since we are proving a lower
bound, there is no harm in ignoring the +1 in the recurrence for N(h). Substituting our conjectured value for N(h)
into the above recurrence, we find the ¢ satisfies " = "~ + ©"~2. Removing the common factor of "2
©? = p+ 1, that is, ¢*> — ¢ — 1 = 0. By applying the quadratic formula, we conclude that ¢ = (1 +v/5)/2.

, we have

Lecture 5 2 Fall 2019

CMSC 420 Dave Mount

we can show that for large h, there is a constant ¢ such that

1+x/5>h

N(h) > el Wherecp:< 5

Theorem: An AVL tree with n nodes has height O(logn).

Proof: Let lg denote logarithm base 2. From the above lemma, up to constant factors we
have n > ¢", which implies that h < log,n =lg n/lge. Since ¢ > 1 is a constant, so
is log . Therefore, h is O(logn). (If you work through the math, the actual bound on
the height is roughly 1.441gn.)

Since the height of the AVL tree is O(logn), it follows that the find operation takes this
much time. All that remains is to show how to perform insertions and deletions in AVL trees,
and how to restore the AVL balance condition efficiently after each insertion or deletion.

Rotation: In order to maintain the tree’s balance, we will employ a simple operation that locally
modifies the relationship between two nodes, while preserving the tree’s inorder properties.
This operation is called rotation. It comes in two symmetrical forms, called a right rotation
and a left rotation (see Fig. 3(a) and (b)).

Right rotation Left rotation

Fig. 3: (Single) Rotations. (Triangles denote subtrees, which may be null.)

We have intentionally labeled the elements of Fig. 3 to emphasize the fact that the inorder
properties of the tree are preserved. That is subtree A comes before node b comes before
subtree C, and so on. The code fragment below shows how to apply a right and left rotations
to a node p. As has been our practice, we return a pointer to the modified subtree (in order
to modify the child link pointing into this subtree).

Binary-Tree Rotations
BinaryNode rotateRight(BinaryNode p) { // right rotation at p

BinaryNode q = p.left;

p.left = q.right;

q.right = p;
return q;
}
BinaryNode rotateLeft(BinaryNode p) { ... symmetrical ... }

Lecture 5 3 Fall 2019

CMSC 420 Dave Mount

Unfortunately, a single rotation is not always be sufficient to rectify a node that is out of
balance. To see why, observe that the single rotation does not alter the height of subtree C.
If it is too heavy, we need to do something else to fix matters. This is done by combining
two rotations, called a double rotation. They come in two forms, left-right rotation and right-
left rotation (Fig. 4). To help remember the name, note that the left-right rotation, called
rotateLeftRight (p), is equivalent to performing a left rotation to the p.left (labeled b in
Fig. 4(a)) followed by a right rotation to p (labeled d in Fig. 4(a)). The right-left rotation is
symmetrical (see Fig. 4(b)).

Left-Right rotation Right-Left rotation

Fig. 4: Double rotations (rotateLeftRight (p) and RotateRightLeft(p)).

Insertion: The insertion routine for AVL trees starts exactly the same as the insertion routine for
standard (unbalanced) binary search trees. In particular, we search for the key and insert a
new node at the point that we fall out of the tree. After the insertion of the node, we must
update the subtree heights, and if the AVL balance condition is violated at any node, we then
apply rotations as needed to restore the balance.

The manner in which rotations are applied depends on the nature of the imbalance. An
insertion results in the addition of a new leaf node, and so the balance factors of the ancestors
can be altered by at most +1. Suppose that after the insertion, we find that some node has a
balance factor of —2. For concreteness, let us consider the naming of the nodes and subtrees
shown in Fig. 5, and let the node in equation be d. Note that this node must be along the
search path for the inserted node, since these are the only nodes whose subtree heights may
have changed. Clearly, d’s left subtree, is too deep relative to d’s right subtree E. Let b
denote the root of d’s left subtree.

At this point there are two cases to consider. Either b’s left child is deeper or its right child
is deeper. (The subtree that is deeper will be the one into which the insertion took place.)

Let’s first consider the case where the insertion took place in the the subtree A (see Fig. 5(b)).
In this case, we can restore balance by performing a right rotation at node d. This operation
pulls the deep subtree A up by one level, and it pushes the shallow subtree F down by one
level (see Fig. 5(c)). Observe that the depth of subtree C' is unaffected by the operation. It
follows that the balance factors of the resulting subtrees rooted at b and d are now both zero.
The AVL balance condition is satisfies by all nodes, and we are in good shape.

Next, us consider the case where the insertion occurs within subtree C' (see Fig. 6(b)). As
observed earlier, the rotation at d does not alter C"’s depth, so we will need to do something

Lecture 5 4 Fall 2019

CMSC 420 Dave Mount

rotate

new insertion

(b) (c)

Fig. 5: Restoring balance after insertion through a single rotation.

else to fix this case. Let ¢ be the root of the subtree C, and let C’ and C” be its two subtrees
(either of these might be null). The insertion took place into either C” or C”. (We don’t care
which, but the “?” in the figure indicate our uncertainty.) We restore balance by performing
two rotations, first a left rotation at b and then a right rotation at d (see Fig. 6(c)). This double
rotation has the effect of moving the subtree £ down one level, leaving A’s level unchanged,
and pulling both C’ and C” up by one level.

double

rotate

Oor-1 0 or +1

B = e

insert into C’ or C" —’@ 7 e

(a) (b) (c)

Fig. 6: Restoring balance after insertion through a double rotation.

The balance factors at nodes b and d will depend on whether the insertion took place into C”
or C”, but irrespective of which, they will be in the range from —1 to +1. The balance factor
at the new root node ¢ is now 0. So, again we are all good with respect to the AVL balance
condition.

Insertion Implementation: The entire insertion procedure for AVL trees is shown in the follow-
ing code fragment. It starts with a few utilities. We assume that we store the height of each
node in a field p.height, which contains the height of the subtree rooted at this node. We
define a utility function height (p), which returns p.height if p is non-null and —1 otherwise.
Based on this we provide a utility function updateHeight, which is used for updating the
height’s of nodes (assuming that their children’s heights are properly computed). We also
provide a utility for computing balance factors and the rotation functions. We omit half of
the rotation functions since they are symmetrical, just with left and right swapped.

An interesting feature of the insertion algorithm (which is not at all obvious) is that whenever
rebalancing is required, the height of the modified subtree is the same as it was before the
insertion. This implies that no further rotations are required. (This is not the case for
deletion, however.)

Lecture 5 5 Fall 2019

CMSC 420 Dave Mount

AVL Tree Utilities and Insertion
int height(AvlNode p) { return p == null ? -1 : p.height; }

void updateHeight (AvlNode p) { p.height = 1 + max(height(p.left), height(p.right));?}
int balanceFactor(AvlNode p) { return height(p.right) - height(p.left); }

AvlNode rotateRight (AvlNode p) // right single rotation
{
AvlNode q = p.left;
p.left = q.right; // swap inner child
q.right = p; // bring q above p
updateHeight (p) ; // update subtree heights
updateHeight (q) ;
return q; // q replaces p
}
AvlNode rotateLeft(AvlNode p) { ... symmetrical to rotateRight ... }
AvlNode rotateLeftRight (AvlNode p) // left-right double rotation
{
p-left = rotatelLeft(p.left);
return rotateRight(p);
}
AvlNode rotateRightLeft(AvlNode p) { ... symmetrical to rotateLeftRight ... }

AvlNode insert(Key x, Value v, AvlNode p) {
if (p == null) { // fell out of tree; create new node
p = new AvlNode(x, v, null, null);

¥
else if (x < p.key) { // x is smaller - insert left
p-left = insert(x, p.left); // ... insert left
else if (x > p.key) { // x is larger - insert right
p.right = insert(x, p.right); // ... insert right
3
else throw DuplicateKeyException; // key already in the tree?
return rebalance(p); // rebalance if needed
}
AvlNode rebalance(AvlNode p) {
if (p == null) return p; // null - nothing to do
if (balanceFactor(p) < -1) { // too heavy on the left?
if (height(p.left.left) >= height(p.left.right)) { // left-left heavy?
p = rotateRight(p); // fix with single rotation
else // left-right heavy?
p = rotateLeftRight(p); // fix with double rotation

} else if (balanceFactor(p) > +1) { // too heavy on the right?
if (height(p.right.right) >= height(p.right.left)) { // right-right heavy?

p = rotateLeft(p); // fix with single rotation
else // right-left heavy?
p = rotateRightLeft(p); // fix with double rotation
}
updateHeight (p) ; // update p’s height
return p; // return link to updated subtree

Lecture 5 6 Fall 2019

CMSC 420 Dave Mount

Deletion: After having put all the infrastructure together for rebalancing trees, deletion is actually
relatively easy to implement. As with insertion, deletion starts by applying the deletion
algorithm for standard (unbalanced) binary search trees. Recall that this breaks into three
cases, leaf, single child, and two children. This part of the deletion process is identical to the
standard case. The only change is that (as in insertion) we restore balance to the tree by
invoking the function rebalance(p) just prior to returning from each node. Even though we
design this piece of code to work in the case of insertion, it can be shown that it works just
as well for deletion.

In Fig. 7, we illustrate a deletion of a node (from the subtree E) which can be remedied by a
single rotation. This happens because the left subtree (rooted at b) is too heavy following the
deletion, and the left child of the left subtree (A) is at least as heavy as the right child (C).
(The “?” in our figures illustrate places where the subtree’s height is not fully determined.
For this reason, some of the balance factors are listed as “x or y” to indicate the possible
options.)

-2 0or+1

delete rotate

-1lor0

Fig. 7: Restoring balance after deletion with single rotation.

In Fig. 8, we illustrate an instance where a double-rotation is needed. In this case, the left
subtree (rooted at b) is too heavy following the deletion, but the right child of the left subtree
(C) is strictly heavier than the left child (A).

double

— |
21 rotate

Oor-1 0 or +1

Fig. 8: Restoring balance after deletion with double rotation.

Note that in the case of the double rotation, the height of the entire tree rooted at d has de-
creased by 1. This means that further ancestors need to be checked for the balance condition.
Unlike insertion, where at most one rebalancing operation is needed, insertion could result in
a cascade of O(logn) rebalancing operations.

Lecture 5 7 Fall 2019

