
CMSC 420 Dave Mount

CMSC 420: Lecture 7
Randomized Search Structures: Treaps and Skip Lists

Randomized Data Structures: A common design techlque in the field of algorithm design in-
volves the notion of using randomization. A randomized algorithm employs a pseudo-random
number generator to inform some of its decisions. Randomization has proved to be a re-
markably useful technique, and randomized algorithms are often the fastest and simplest
algorithms for a given application.

This may seem perplexing at first. Shouldn’t an intelligent, clever algorithm designer be
able to make better decisions than a simple random number generator? The issue is that a
deterministic decision-making process may be susceptible to systematic biases, which in turn
can result in unbalanced data structures. Randomness creates a layer of “independence,”
which can alleviate these systematic biases.

In this lecture, we will consider two famous randomized data structures, which were invented
at nearly the same time. The first is a randomized version of a binary tree, called a treap.
This data structure’s name is a portmanteau (combination) of “tree” and “heap.” It was
developed by Raimund Seidel and Cecilia Aragon in 1989. (Remarkably, this 1-dimensional
data structure is closely related to two 2-dimensional data structures, the Cartesian tree by
Jean Vuillemin and the priority search tree of Edward McCreight, both discovered in 1980.)

The other data structure is the skip list, which is a randomized version of a linked list where
links can point to entries that are separated by a significant distance. This was invented by
Bill Pugh (a professor at UMD!).

Because the treaps and skiplists are randomized data structure, running times depend on
the random choices made by the algorithm. We will see that all the standard dictionary
operations take O(log n) expected time. The expectation is taken over all possible random
choices that the algorithm may make. You might protest, since this allows for rare instances
where the performance is very bad. While this is always a possibility, a more refined analysis
shows that (assuming n is fairly large) the probability of poor performance is so insanely
small that it is not worth worrying about.

Treaps: The intuition behind the treap is easy to understand. Recall back when we discussed stan-
dard (unbalanced) binary search trees that if keys are inserted in random order, the expected
height of the tree is O(log n). The problem is that your user may not be so accommodating
to insert keys in this order. A treap is a binary search tree whose structure arises “as if” the
keys had been inserted in random order.

Let’s recall how standard binary tree insertion works. When a new key is inserted into such
a tree, it is inserted at the leaf level. If we were to label each node with a “timestamp”
indicating its insertion time, as we follow any path from the root to a leaf, the timestamp
values must increase monotonically (see Fig. 1(b)). From your earlier courses you should
know a data structure that has this very property—such a tree is generally called heap.

This suggests the following simple idea: When first inserted, each key is assigned a random
priority, call it p.priority. As in a standard binary tree, keys are sorted according to an
inorder traversal. But, the priorities are maintained according to heap order. Since the
priorities are random, it follows that the tree’s structure is consistent with a tree resulting
from a sequence of random insertions. Thus, we have the following:

Lecture 7 1 Fall 2019



CMSC 420 Dave Mount

k

e o

fb

ca h

m w

s

(a) (b)

1
k

Insertion order: k, e, b, o, f, h, w, m, c, a, s

2
e

4
o

8
m

5
f

6
h

3
b

10
a

9
c

7
w

11
s

Binary search tree With timestamps

Timestamp

Key

Fig. 1: (a) A binary search tree and (b) associating insertion timestamps with each node.

Theorem: A treap storing n nodes has height O(log n) in expectation (over all n! possible
orderings of the random priorities present in the tree).

Since priorities are random, you might wonder about possibility of two priorities being equal.
This might happen, but if the domain of random numbers if much larger than n (say at
least n2) then these events will be sufficiently rare that they cannot significantly affect the
tree’s structure. The next question is whether we can maintain this structure efficiently. The
answer is “yes”, and it is remarkably easy.

Treap Insertion: Insertion into the treap is remarkably simple. First, we apply the standard
binary-search-tree insertion procedure. When we “fall out” of the tree, we create a new node
p, and set its priority, p.priority, to a random integer. We then walk retrace the path
back up to the root (as we return from the recursive calls). Whenever we come to a node
p whose child’s priority is smaller than p’s, we apply an appropriate rotation (depending on
which child it is), thus reversing their parent-child relationship. We continue doing this until
the newly inserted key node is lifted up to its proper position in heap order. The code is so
simple, that we will leave as an exercise.

03
k

13
e

45
o

78
m

51
f

57
h

37
b

84
c

67
w

insert(“t”)
priority = 14

14
t

03
k

13
e

45
o

78
m

51
f

57
h

37
b

84
c

67
w

14
t

03
k

13
e

45
o

78
m

51
f

57
h

37
b

84
c

67
w

!!

!! 14
t

03
k

13
e

45
o

78
m

51
f

57
h

37
b

84
c

67
w

rotate w-t rotate o-t OK

Fig. 2: Treap insertion.

Treap Deletion: Deletion is also quite easy, but as usual it is a bit more involved than insertion.
If the deleted node is a leaf or has a single child, then we can remove it in the same manner
that we did for binary trees, since the removal of the node preserves the heap order. However,
if the node has two children, then normally we would have to find the replacement node, say
its inorder successor and copy its contents to this node. The newly copied node will then be
out of priority order, and rotations will be needed to restore it to its proper heap order.

Lecture 7 2 Fall 2019



CMSC 420 Dave Mount

There is, however, a cute trick for performing deletions. We first locate the node in the tree
and then set its priority to ∞ (see Fig. 3). We then apply rotations to sift it down the tree
to the leaf level, where we can easily unlink it from the tree.

14
t

03
k

45
o

67
w

14
t

03
k

45
o

67
w

14
t

03
k

45
o

67
w

57
h

57
h

57
h

89
a

89
a

89
a

14
t

03
k

13
e

45
o

51
f

37
b

67
w

delete(“e”)

∞
e

51
f

37
b

rotate e-b

!!

∞
e

51
f

37
b

!!

∞
e

51
f

57
h

37
b

89
a

rotate e-f

unlink e

Fig. 3: Treap deletion.

The treap is particularly easy to implement because we never have to worry about adjusting
the priority field. For this reason, treaps are among the fastest data tree-based dictionary
structures.

Skip Lists: Skip lists began with the idea, “how can we make sorted linked lists better?” It is
easy to do operations like insertion and deletion into linked lists, but it is costly to locate
items efficiently because we have to walk through the list one item at a time. If we could
“skip” over multiple of items at a time, however, then we could perform searches efficiently.
Intuitively, a skip list is a data structure that encodes a collection of sorted linked lists, where
links skip over 2, then 4, then 8, and so on, elements with each link.

To make this more concrete, imagine a linked list, sorted by key value. There are two nodes
at either end of the list, called head and tail. Take every other entry of this linked list (say
the even numbered entries) and extend it up to a new linked list with 1/2 as many entries.
Now take every other entry of this linked list and extend it up to another linked with 1/4 as
many entries as the original list, and continue this until no elements remain. The head and
tail nodes are always lifted (see Fig. 4). Clearly, we can repeat this process dlg ne times.
(Recall that “lg” denotes log base 2.) The result is something that we will call an “ideal”
skip list. Unlike the standard linked list, where you may need to traverse O(n) links to reach
a given node, in this list any node can be reached with O(log n) links from the head.

2 10 13 22
8 19

11
25

head tail

∞

0

1

2

3

4

5

Fig. 4: The “ideal” skip list.

To search for a key x, we start at the highest level of head. We scan linearly along the list at
the current level i, until we are about to jump to an node whose key value is strictly greater

Lecture 7 3 Fall 2019



CMSC 420 Dave Mount

than to x. Since tail is associated with ∞, we will always succeed in finding such a node.
Let p point to the node just before this step. If p’s data value is equal to x then we stop.
Otherwise, if we are not yet at the lowest level, we descend to the next lower level i− 1 and
continue the search there. Finally, if we are at the lowest level and have not found x, we
announce that the x is not in the list (see Fig. 5).

2 10 13 22
8 19

11
25

head tail
find(22)

∞

0

1

2

3

4

5

Fig. 5: Searching the ideal skip list.

How long would this search require in the worst case? Observe that we need never traverse
more than one link at any given level in the path to the desired node. We will generally need
to access two nodes at each level, however, because the need to determine the node whose
key is greater than x’s. As mentioned earlier, the number of levels is dlg ne. Therefore, the
total number of nodes accessed is O(log n).

Randomized Skip Lists: Unfortunately, like a perfectly balanced binary tree, the ideal skip list
is too pure to be able to use for a dynamic data structure. As soon as a single node was
added to the middle of the lists, all the heights following it would need to be modified. But
we can relax this requirement to achieve an efficient data structure. In the ideal skip list,
every other node from level i is extended up to level i + 1. Instead, how about if we did this
randomly?

Suppose that we have built the skip list up to some level i, and we want to extend this to level
i + 1. Imagine of node at level i tossing a coin. If the coin comes up heads (with probability
1/2) this node promotes itself to level i + 1, and otherwise it stops here. By the nature of
randomization, the expected number of nodes at level i + 1 will be half the number of nodes
at level i. Thus, the expected number of nodes at level k will be n/2k, which means that the
expected number of nodes at level dlg ne is a constant. Fig. 6 shows what such a randomized
skip list, or simply skip list, will look like.

25

13

2 8 11 22
10 19

head tail

∞

0

1

2

3

4

5

Fig. 6: A (randomized) skip list.

Space Analysis: Unlike binary search trees whose nodes are all of the same size, the nodes of a
skip list have variable sizes. If we assume that the maximum number of levels of a skip is

Lecture 7 4 Fall 2019



CMSC 420 Dave Mount

O(log n), then in the worst case every node contributes to every level, and the skip list would
have total storage of O(n log n). In the best case (from the perspective of storage), every
node contributes only to the lowest level, and the total storage would be O(n). Note that
either of these cases is extremely unlikely.

To describe the expected case, observe that in expectation, exactly half of the nodes from
one level are promoted to the next. Thus in expectation, all n nodes contribute to level 0,
n/2 contribute to level 1, n/4 contribute to level 2, and generally n/2i contribute to level i.
In summary in expectation, the total storage (for pointers) is:

h−1∑
i=0

n

2i
= n

h−1∑
i=0

1

2i
= n

(
2− 1

2i

)
≤ n

(
2− 1

2m

)
≤ 2n.

(Here we have made use of the formula for the geometric series,
∑m−1

i=0 (12)i = 2 − (12)m.)
Thus, the expected storage just for the pointers is O(n). Storing the keys themselves takes
just O(n) storage. Finally, the head and tail nodes take O(log n) storage each, but log n is
dominated by n asymptotically, so we can ignore their contribution.

Search-Time Analysis: Earlier, we argued that the worst-case search time in an ideal skip list
is O(log n). Now, we will show that the expected case search time in the randomized skip list
will be O(log n). It is important to note that the analysis to follow will not depend on the
choice of keys in the data structure nor the order in which they were inserted. Rather, it will
depend solely on the randomized (coin-flipping) process used to build the data structure.

The analysis of skip lists is an example of a probabilistic analysis. As observed earlier, the
expected number of levels in a skip list is O(log n). We will show that for any fixed node, the
length of the search path leading here is O(log n) in expectation. Our analysis will be based
on walking backwards along the search path. (This is sometimes called a backwards analysis.)
Observe that the forward search path drops down a level whenever the next link would have
taken us “beyond” the node we are searching for. Thus, when we consider the reversed search
path, it will always take a step up if it can (i.e., if the node it is visiting contributes to the
next higher level), otherwise it will take a step to the left.

13

2 8 11 22
10 19

head tail

∞

0

1

2

3

4

5

25

find(25)

Fig. 7: The search path (blue) to x = 25 and the reverse search path (red).

Theorem: The expected number of nodes visited in a search in a skip list of n keys is
O(log n).

Proof: We will prove this for the more general case, where the probability that a node is
promoted to the next higher level is p, for some constant 0 < p < 1. The analysis for
our coin-flipping version of the skip follows by setting p = 1/2.

Lecture 7 5 Fall 2019



CMSC 420 Dave Mount

For 0 ≤ i ≤ O(log n), let E(i) denote the expected number of nodes visited in the skip
list at the top i levels of the skip list. (For example, in Fig. 7, the skip list’s top level
is 5. In this case E(2) would be the expected number of steps taken at levels 4 and 5,
and E(6) would be the expected number of steps at all the levels.) Whenever we arrive
at some node of level i, the probability that it contributes to the next higher level is
exactly p. With the remaining probability 1− p we stay at the same level. Counting the
current node we are visiting (+1), we can express E(i) by the recurrence:

E(i) = 1 + pE(i− 1) + (1− p)E(i).

With a bit of algebra, we have:

E(i) =
1

p
+ E(i− 1).

By expansion, it is easy to verify that E(i) = i
p . Since i ≤ O(log n), and by our

assumption that p is a constant, it follows that the expected search time is O(log n).

Insertion and Deletion: Insertion into a skip list is almost as easy as insertion into a standard
linked list. Given a key x to insert, we first do a search on key x to find its immediate
predecessors in the skip list at each level of the structure. Next, we create a new node x. To
determine the height of this node, we toss a coin repeatedly until it comes up tails. (More
practically, we generate a random number until its parity is odd.) Letting k denote the
number of tosses needed, we create a node who height is the minimum of k + 1 and the
maximum height of the skip list. We then link this node in to its k + 1 lowest predecessors
in the list (see Fig. 8).

25

13

2 11 22
10 19

head tail

∞

0

1

2

3

4

5

252 11
10

head tail

∞

0

1

2

3

4

5

24

insert(24)

13

19
22

Fig. 8: Inserting a new key 24.

Deletion is quite similar. Again, we search for the node containing the key to delete, and we
keep track of all its predecessors at various levels in the skip list. On finding it we unlink
the node from each level, exactly as we would do in a standard linked-list deletion. Both
operations take O(log n) time in expectation.

Lecture 7 6 Fall 2019



CMSC 420 Dave Mount

Implementation Notes: One of the appeals of skip lists is their ease of implementation. Most
of procedures that operate on skip lists make use of the same simple code that is used for
linked-list operations. One additional element is that you need to keep track of the level that
you are currently on when performing searching.

Skip-list nodes have variable size, which is a bit unusual. This is not a problem in program-
ming languages like Java that allow us to dynamically allocated arrays of variable size. Thus,
each node of the skip list will generally contain the key-value pair associated with this entry,
a variable-sized array of next pointers (so that p.next[i] points to the next node in the skip
list from node p at level i). Finally, the structure has two special “sentinel nodes, ” head and
tail. We assume that tail.key is set to some incredibly large value so that searches always
stop here.

Overall Performance: From a practical perspective, skip lists can do pretty much everything
that standard binary trees structures can do. In expectation, they require O(n) storage
space, and all dictionary operations can be performed in time O(log n) in expectation. Given
their simple linear structure, they are arguably easier to visualize and program. Experimental
studies show that skip lists are among the fastest data structures for sorted dictionaries (with
treaps). This is largely because the power of randomization keeps us from having to maintain
more complex balance information, and thus simplifies the code and processing.

Lecture 7 7 Fall 2019


