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CMSC 420: Lecture 11
Hashing - Handling Collisions

Hashing: In the previous lecture we introduced the concept of hashing as a method for imple-
menting the dictionary abstract data structure, supporting insert(), delete() and find().
Recall that we have a table of given size m, called the table size. We select an easily com-
putable hash function h(x), which is designed to scatter the keys in a virtually random manner
to indices in the range [0..m-1]. We then store x (and its associated value) in index h(x) in
the table.

In the previous lecture we discussed how to design a hash function in order to achieve good
scattering properties. But, given even the best hash function, it is possible that distinct keys
can map to the same location, that is, h(x) = h(y), even though x 6= y. Such events are called
collisions, and a fundamental aspect in the design of a good hashing system how collisions
are handled. We focus on this aspect of hashing in this lecture, called collision resolution.

Separate Chaining: If we have additional memory at our disposal, a simple approach to collision
resolution, called separate chaining, is to store the colliding entries in a separate linked list,
one for each table entry. More formally, each table entry stores a reference to a list data
structure that contains all the dictionary entries that hash to this location.

To make this more concrete, let h be the hash function, and let table[] be an m-element
array, such that each element table[i] is a linked list containing the key-value pairs (x, v),
such that h(x) = i. We will set the value of m so that each linked list is expected to contain
just a constant number of entries, so there is no need to be clever by trying to sort the
elements of the list. The dictionary operations reduce to applying the associated linked-list
operation on the appropriate entry of the hash table.

• insert(x,v): Compute i = h(x), and then invoke table[i].insert(x,v) to insert
(x, v) into the associated linked list. If x is already in the list, signal a duplicate-key
error (see Fig. 1).
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Fig. 1: Collision resolution by separate chaining.

• delete(x): Compute i = h(x), and then invoke table[i].delete(x) to remove x’s
entry from the associated linked list. If x is not in the list, signal a missing-key error.

• find(x): Compute i = h(x), and then invoke table[i].find(x) to determine (by
simple brute-force search) whether x is in the list.
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Clearly, the running time of this procedure depends on the number of entries that are stored
in the given table entry. To get a handle on this, consider a hash table of size m containing
n keys. Define its load factor to be λ = n/m. If we assume that our hash function has done
a good job of scattering keys uniformly about the table entries, it follows that the expected
number of entries in each list is λ.

We say that a search find(x) is successful if x is in the table, and otherwise it is unsuccessful.
Assuming that the entries appear in each linked list in random order, we would expect that we
need to search roughly half the list before finding the item being sought after. It follows that
the expected running time of a successful search with separate chaining is roughly 1 + λ/2.
(The initial “+1” accounts for the fact that we need to check one more entry than the list
contains, if just to check the null pointer at the end of the list.) On the other hand, if the
search is unsuccessful, we need to enumerate the entire list, and so the expected running time
of an unsuccessful search with separate chaining is roughly 1 +λ. In summary, the successful
and unsuccessful search times for separate chaining are:

SSC = 1 +
λ

2
USC = 1 + λ,

Observe that both are O(1) under our assumption that λ is O(1). Since we can insert and
delete into a linked list in constant time, it follows that the expected time for all dictionary
operations is O(1 + λ).

Note the “in expectation” condition is not based on any assumptions about the insertion or
deletion order. It depends simply on the assumption that the hash function uniformly scatters
the keys. Assuming that we use universal hashing (see the previous lecture), this uniformity
assumption is very reasonable, since the user cannot predict which random hash function will
be used. It has been borne out through many empirical studies that hashing is indeed very
efficient.

The principal drawback of separate chaining is that additional storage is required for linked-
list pointers. It would be nice to avoid this additional wasted space. The remaining methods
that we will discuss have this property. Before discussing them, we should discuss the issue
of controlling the load factor.

Controlling the Load Factor and Rehashing: Recall that the load factor of a hashing scheme
is λ = n/m, and the expected running time of hashing operations using separate chaining is
O(1 + λ). We will see below that other popular collision-resolution methods have running
times that grow as O(λ/(1 − λ)). Clearly, we would like λ to be small and in fact strictly
smaller than 1. Making λ too small is wasteful, however, since it means that our table size
is significantly larger than the number of keys. This suggests that we define two constants
0 < λmin < λmax < 1, and maintain the invariant that λmin ≤ λ ≤ λmax. This is equivalent
to saying that n ≤ λmaxm (that is, the table is never too close to being full) and m ≤ n/λmin

(that is, the table size is not significantly larger than the number of entries). Define the ideal
load factor to be the mean of these two, λ0 = (λmin + λmax)/2.

Now, as we insert new entries, if the load factor ever exceeds λmax (that is, n > λmaxm),
we replace the hash table with a larger one, devise a new hash function (suited to the larger
size), and then insert the elements from the old table into the new one, using the new hash
function. This is called rehashing (see Fig. 2). More formally:

• Allocate a new hash table of size m′ = dn/λ0e
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• Generate a new hash function h′ based on the new table size

• For each entry (x, v) in the old hash table, insert it into the new table using h′

• Remove the old table

Observe that after rehashing the new load factor is roughly n/m′ ≈ λ0, thus we have restored
the table to the ideal load factor. (The ceiling is a bit of an algebraic inconvenience. Through-
out, we will assume that n is sufficiently large that floors and ceilings are not significant.)
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Fig. 2: Controlling the load factor by rehashing, where λmin = 0.25, λmax = 0.75, and λ0 = 0.5.

Symmetrically, as we delete entries, if the load factor ever falls below λmin (that is, n <
λminm), we replace the hash table with a smaller one of size dn/λ0e, generate a new hash
function for this table, and we rehash entries into this new table. Note that in both cases
(expanding and contracting) the hash table changes by a constant fraction of its current size.
This is significant in the analysis.

Amortized Analysis of Rehashing: Observe that whenever we rehash, the running time is pro-
portional to the number of keys n. If n is large, rehashing clearly takes a lot of time. But
observe that once we have rehashed, we will need to do a significant number of insertions or
deletions before we need to rehash again.

To make this concrete, let’s consider a specific example. Suppose that λmin = 1/4 and
λmax = 3/4, and hence λ0 = 1/2. Also suppose that the current table size is m = 1000.
Suppose the most recent insertion caused the load factor to exceed our upper bound, that is
n > λmaxm = 750. We allocate a new table of size m′ = n/λ0 = 2n = 1500, and rehash all
the old elements into this new table. In order to overflow this new table, we will need for n
to increase to some higher value n′ such that n′/m′ > λmax, that is n′ > (3/4)1500 = 1125.
In order to grow from the current 750 keys to 1125 keys, we needed to have at least 375 more
insertions (and perhaps many more operations if finds and deletions were included as well).
This means that we can amortize the (expensive) cost of rehashing 750 keys against the 375
(cheap) insertions.

Hopefully, this idea will sound familiar to you. In an earlier lecture, we discussed the idea of
doubling an array to store a stack. We showed there that by doubling the storage each time
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the stack overflowed, the amortized cost of each operation is just O(1). There was no magic to
doubling. Increasing the storage by any constant factor works, and the same analysis applies
here as well. Each time we rehash, we are either increasing or decreasing the hash-table size
by a constant factor. Assuming that the hash operations themselves take constant time, we
can “charge” the expensive rehashing time to the inexpensive insertions or deletions that led
up to the present state of affairs.

Recall that the amortized cost of a series of operations is the total cost divided by the number
of operations.

Theorem: Assuming that individual hashing operations take O(1) time each, if we start with
an empty hash table, the amortized complexity of hashing using the above rehashing
method with minimum and maximum load factors of λmin and λmax, respectively, is at
most 1 + 2λmax/(λmax − λmin).

Proof: Our proof is based on the same token-based argument that we used in the earlier
lecture. Let us assume that each standard hashing operation takes exactly 1 unit of
time, and rehashing takes time n, where n is the number of entries currently in the table.
Whenever we perform a hashing operation, we assess 1 unit to the actual operation, and
save 2λmax/(λmax − λmin) work tokens to pay for future rehashings.

There are two ways to trigger rehashing: expansion due to insertion, and contraction due
to deletion. Let us consider insertion first. Suppose that our most recent insertion has
triggered rehashing. This implies that the current table contains roughly n ≈ λmaxm
entries. (Again, to avoid worrying about floors and ceilings, let’s assume that n is
quite large.) The last time the table was rehashed, the table contained n′ = λ0m
entries immediately after the rehashing finished. This implies that we inserted at least
n−n′ = (λmax−λ0)m entries. Therefore, the number of work tokens we have accumulated
since then is at least

(λmax − λ0)m
2λmax

λmax − λmin
=

(
λmax −

λmax + λmin

2

)
m

2λmax

λmax − λmin

=

(
λmax − λmin

2

)
m

2λmax

λmax − λmin

= λmaxm ≈ n,

which implies that we have accumulated enough work tokens to pay the cost of n to
rehash.

Next, suppose that our most recent deletion has triggered rehashing. This implies that
the current table contains roughly n ≈ λminm entries. (Again, to avoid worrying about
floors and ceilings, let’s assume that n is quite large.) The last time the table was
rehashed, the table contained n′ = λ0m entries immediately after the rehashing finished.
This implies that we deleted at least n′−n = (λ0−λmin)m entries. Therefore, the number
of work tokens we have accumulated since then is at least

(λ0 − λmin)m
2λmax

λmax − λmin
=

(
λmax + λmin

2
− λmin

)
m

2λmax

λmax − λmin

=

(
λmax − λmin

2

)
m

2λmax

λmax − λmin

= λmaxm ≥ λminm ≈ n,
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again implying that we have accumulated enough work tokens to pay the cost of n to
rehash.

To make this a bit more concrete, suppose that we set λmin = 1/4 and λmax = 3/4, so
that λ0 = 1/2 (see Fig. 2). Then the amortized cost of each hashing operation is at most
1 + 2λmax/(λmax − λmin) = 1 + 2(3/4)/(1/2) = 4. Thus, we pay just additional factor of four
due to rehashing. Of course, this is a worst case bound. When the number of insertions and
deletions is relatively well balanced, we do not need rehash very often, and the amortized cost
is even smaller.

Open Addressing: Let us return to the question of collision-resolution methods that do not
require additional storage. Our objective is to store all the keys within the hash table.
(Therefore, we will need to assume that the load factor is never greater than 1.) To know
which table entries store a value and which do not, we will store a special value, called empty,
in the empty table entries. The value of empty must be such that it matches no valid key.

Whenever we attempt to insert a new entry and find that its position is already occupied, we
will begin probing other table entries until we discover an empty location where we can place
the new key. In it most general form, an open addressing system involves a secondary search
function, f . If we discover that location h(x) is occupied, we next try locations

(h(x) + f(1)) mod m, (h(x) + f(2)) mod m, (h(x) + f(3)) mod m, . . . .

until finding an open location. (To make this a bit more elegant, let us assume that f(0) = 0,
so even the first probe fits within the general pattern.) This is called a probe sequence, and
ideally it should be capable of searching the entire list. How is this function f chosen? There
are a number of alternatives, which we consider below.

Linear Probing: The simplest idea is to simply search sequential locations until finding one that
is open. In other words, the probe function is f(i) = i. Although this approach is very simple,
it only works well for fairly small load factor. As the table starts to get full, and the load
factor approaches 1, the performance of linear probing becomes very bad.

To see what is happening consider the example shown in Fig 3. Suppose that we insert four
keys, two that hash to table[0] and two that hash to table[2]. Because of the collisions,
we will fill the table entries table[1] and table[3] as well. Now, suppose that the fifth key
(“t”) hashes to location table[1]. This is the first key to arrive at this entry, and so it is
not involved any collisions. However, because of the previous collisions, it needs to slide down
three positions to be entered into table[4].
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Fig. 3: Linear probing.
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This phenomenon is called secondary clustering. Primary clustering happens when multiple
keys hash to the same location. Secondary clustering happens when keys hash to different
locations, but the collision-resolution has resulted in new collisions. Note that secondary
clustering cannot occur with separate chaining, because the lists for separate hash locations
are kept separate from each other. But in open addressing, secondary clustering is a significant
phenomenon. As the load factor approaches 1, secondary clustering becomes more and more
pronounced, and probe sequences may become unacceptably long.

While we will not present it, a careful analysis shows that the expected costs for successful
and unsuccessful searches using linear probing are, respectively:

SLP =
1

2

(
1 +

1

1− λ

)
ULP =

1

2

(
1 +

(
1

1− λ

)2
)
.

The proof is quite sophisticated, and we will skip it. Observe, however, that in the limit as
λ→ 1 (a full table) the running times (especially for unsuccessful searches) rapidly grows to
infinity. A rule of thumb is that as long as the table remains less than 75% full, linear probing
performs fairly well. Nonetheless, the issue of secondary clustering is a major shortcoming,
and the methods given below do significantly better in this regard.

Quadratic Probing: To avoid secondary clustering, one idea is to use a nonlinear probing function
which scatters subsequent probes around more effectively. One such method is called quadratic
probing, which works as follows. If the index hashed to h(x) is full, then we consider next
h(x) + 1, h(x) + 4, h(x) + 9, . . . (again taking indices mod m). Thus, the probing function is
f(i) = i2.

The find function is shown in the following code block. Rather than computing h(x)+ i2, we
use a cute trick to update the probe location. Observe that i2 = (i− 1)2 + 2i− 1. Thus, we
can advance to the next position in the probe sequence (i2) by incrementing the old position
((i − 1)2) by the value 2i − 1. We assume that each table entry table[i] contains two
elements, table[i].key and table[i].value. If found, the function returns the associated
value, and otherwise it returns null.

Find Operation with Quadratic Probing
Value find(Key x) { // find x

int c = h(x) // initial probe location

int i = 0 // probe offset

while (table[c].key != empty) && (table[c].key != x) {

c += 2*(++i) - 1 // next position

c = c % m // wrap around if needed

}

return table[c].value // return associated value (or null if empty)

}

Experience shows that this succeeds in breaking up the secondary clusters that arise from
linear probing, but this simple procedure conceals a rather knotty problem. Unlike linear
probing, which is guaranteed to try every entry in your table, quadratic probing bounces
around less predictably. Might it miss some entries? The answer, unfortunately, is yes! To
see why, consider the rather trivial case where m = 4. Suppose that h(x) = 0 and your table
has empty slots at table[1] and table[3]. The quadratic probe sequence will inspect the
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following indices:

12 mod 4 = 1 22 mod 4 = 0 32 mod 4 = 1 42 mod 4 = 0 . . .

It can be shown that it will only check table entries 0 and 1. This means that you cannot find
a slot to insert this key, even though your table is only half full! A more realistic example is
when m = 105. In this case,

The following lemma shows that, if you choose your table size m to be a prime number, then
quadratic probing is guaranteed to visit at least half of the table entries before repeating.
This means that it will succeed in finding an empty slot, provided that m is prime and your
load factor is smaller than 1/2.

Theorem: If quadratic probing is used, and the table size m is a prime number, the first
bm/2c probe sequences are distinct.

Proof: Suppose by way of contradiction that for 0 ≤ i < j ≤ bm/2c, both h(x) + i2 and
h(x) + j2 are equivalent modulo m. Then the following equivalencies hold modulo m:

i2 ≡ j2 ⇔ i2 − j2 ≡ 0 ⇔ (i− j)(i+ j) ≡ 0 (mod m)

This means that the quantity (i− j)(i+ j) is a multiple of m. But this cannot be, since
m is prime and both i− j and i+ j are nonzero and strictly smaller than m. (The fact
that i < j ≤ bm/2c implies that their sum is strictly smaller than m.) Thus, we have
the desired contradiction.

This is a rather weak result, however, since people usually want their hash tables to be more
than half full. You can do better by being more careful in the choice of the table size and/or
the quadratic increment. Here are two examples, which I will present without proof.

• If the table size m is a prime number of the form 4k + 3, then quadratic probing will
succeed in probing every table entry before repeating an entry.

• If the table size m is a power of two, and the increment is chosen to be 1
2(i2 + i) (thus,

you probe locations h(x), h(x) + 1, h(x) + 3, h(x) + 6, and so on) then you will succeed
in probing every table entry before repeating an entry.

Double Hashing: Both linear probing and quadratic probing have their shortcomings (secondary
clustering for the first and short cycles for the second). Our final method overcomes both
of these limitations. Recall that in any open-addressing scheme, we are accessing the probe
sequence h(x) + f(1), h(x) + f(2), and so on. How about if we make the increment function
f(i) a function of the search key? Indeed, to make it as random as possible, let’s use another
hash function! This leads to the concept of double hashing.

More formally, we define two hash functions h(x) and g(x). We use h(x) to determine the
first probe location. If this entry is occupied, we then try:

h(x) + g(x), h(x) + 2g(x), h(x) + 3g(x), . . .

More formally, the probe sequence is defined by the function f(i) = i · g(x). In order to be
sure that we do not cycle, it should be the case that m and g(x) are relatively prime, that
is, they share no common factors. There are lots of ways to achieve this. For example, we
could adjust the table size so that m is always prime, and then we are free to select g(x)
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to be any non-zero value. Alternately, we could be careful in the choice of g(x) so that it is
prime, and then we could make m arbitrary. In short, we should be careful in the design of
a double-hashing scheme, but there is a lot of room for adjustment.

Fig. 4 provides an illustration of how the various open-addressing probing methods work.

Linear probing

h(x)

Quadratic probing

insert

Double hashing

h(x)

+1 +4

+g(x)

+9 +16

+2g(x) +3g(x) +4g(x)

insert

insert

h(x)

Fig. 4: Various open-addressing systems. (Shaded squares are occupied and the black square
indicates where the key is inserted.)

Theoretical running-time analysis shows that double hashing is the most efficient among
the open-addressing methods of hashing, and it is competitive with separate chaining. The
running times of successful and unsuccessful searches for open addressing using double hashing
are

SDH =
1

λ
ln

1

1− λ
UDH =

1

1− λ
.

To get some feeling for what these quantities mean, consider the following table:

λ 0.50 0.75 0.90 0.95 0.99

U(λ) 2.00 4.00 10.0 20.0 100.
S(λ) 1.39 1.89 2.56 3.15 4.65

Note that, unlike tree-based search structures where the search time grows with n, these
search times depend only on the load factor. For example, if you were storing 100,000 items
in your data structure, the above search times (except for the very highest load factors) are
superior to a running time of O(log n).

Deletions: Deletions are a bit tricky with open-addressing schemes. Can you see why?

The issue is illustrated Fig. 5. When we insert “a”, an existing key “f” was on the probe
path, and we inserted “a” beyond “f”. Then we delete “f” and then search for “a”. The
problem is that with “f” no longer on the probe path, we arrive at the empty slot and take
this to mean that “a” is not in the dictionary, which is not correct.

To handle this we create a new special value (in addition to empty) for cells whose keys have
been deleted, called, say “deleted”. If the entry is marked deleted this means that the
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Fig. 5: The problem with deletion in open addressing systems.

slot is available for future insertions, but if the find function comes across such an entry, it
should keep searching. The searching stops when it either finds the key or arrives at an cell
marked “empty” (key not found).
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Fig. 6: Deleting in open-addressing by using special empty entry.

Using the “deleted” entry is a rather quick-and-dirty fix. It suffers from the shortcoming
that as keys are deleted, the search paths are unnaturally long. (The load factor has come
down, but the search paths are just as long as before.) A more clever solution would involve
moving keys that that were pushed down in the probe sequence up to fill the vacated entries.
Doing this, however make deletion times longer.

Further refinements: Hashing is a very well studied topic. We have hit the major points, but
there are a number of interesting refinements that can be applied. One example is a technique
called Brent’s method. This approach is used to reduce the search times when double hashing
is used. It exploits the fact that any given cell of the table may lie at the intersection of
two or more probe sequences. If one of these probe sequences is significantly longer than the
other, we can reduce the average search time by changing which key is placed at this point
of overlap. Brent’s algorithm optimizes this selection of which keys occupy these locations in
the hash table.
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