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CMSC 420: Lecture 12
Extended and Scapegoat Trees

Overview: Today’s lecture will focus on two concepts, extended binary search trees and scapegoat
trees. (The material on the SG-Tree, which was discussed in class is only covered in the lecture
slides.)

Extended Binary Search Trees: Recall from an earlier lecture the concept of an extended bi-
nary tree, that is, a binary tree whose nodes have either two children or zero children. The
former are called internal nodes and the latter are called external nodes. An example is shown
in Fig. 1(a).
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Fig. 1: (a) Extended binary tree, (b) extended binary search tree structure, and (c) extended binary
search tree containing the keys {2, 6, 7, 9, 11, 14, 17}.

As we saw in our discussion of B+ trees in an earlier lecture, it is often useful to employ
extended trees in the context of search trees. While B+ trees are multiway trees, we will
explore this in the context of binary search trees. The idea is to store all the key-value pairs
in just the external nodes. The internal nodes are merely an index structure whose purpose
is to allow us to rapidly identify an external node of interest.

More formally, each internal node stores a key s, called a splitter, with the property that all
external nodes whose key value x is at most s reside in s’s left subtree and all external nodes
whose key value is strictly greater than s reside within s’s right subtree (see Fig. 1(b)). An
example of an extended binary search tree is shown in Fig. 1(c).

It is important to note that the tree’s contents consist stored in the external nodes, not the
internal nodes. For example, in Fig. 1(c), the tree’s contents are {2, 6, 7, 9, 11, 14, 17}. The
splitter values 3, 8, and 10 appear in internal nodes, but they are not counted among the
tree’s contents.

Motivation - Multi-dimensional trees: In the context of binary search trees, the advantage
of this extended-tree approach is not very obvious. The useful of distinguishing data from
splitters becomes more evident when we consider search structures in a multi-dimensional
context of partition trees.

For example, consider the hierarchical decomposition of space shown in Fig. 2 (left). In this
case, the splitters correspond to lines in the plane. Each such line could be expressed as its
equation (e.g., y = ax + b). The points lying on one side of the line are stored in the left
subtree and the points lying on the other are stored in the right subtree. Continuing in this
manner, we obtain a data structure called a binary space partition tree, or BSP tree for short.
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The key-value pairs in this case are points and whatever additional data we wish to decorate
each point with. In this case, it is easy to see that there is a fundamental difference between
splitters (line equations) and data (points). Before exploring extended trees in the context
of multi-dimensional space, it will be useful to consider them in the simpler 1-dimensional
context, which we are familiar with.
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Fig. 2: Binary space partition tree, (a) decomposition of space and (b) the tree structure.

Dictionary Operations on Extended Trees: The dictionary operations that we defined for
standard (unbalanced) binary search trees are readily generalized to extended binary search
trees.

find(Key x, Node p): The initial call is find(x, root). The procedure operates recur-
sively. If x ≤ p.key we recurse on the left subtree, and otherwise we recurse on the right
subtree. On arriving to an external node p, we test whether x = p.key. If so, we report
success and otherwise we report failure.

Note that if we encounter an internal node whose key value is equal to x, we cannot
report success, since the key values in the internal nodes are not reflective of the tree’s
contents. They are merely an aid to finding the key in the external nodes. For example,
on the tree shown in Fig. 1(c), find(10) returns false, even though there is an internal
node containing 10. (In this case, the search ends at the external node containing 9.)

insert(Key x, Value v, Node p): This function returns a reference to the root of the
updated subtree where x is inserted. The initial call is root = insert(x, v, root).

The procedure operates recursively. We use the same process as in find to locate an
external node p. If there is no such node because the tree is empty, we create a single
external node containing x, which we return. Otherwise, we check whether x = p.key,
and if so we signal a duplicate-key error. If neither of these happens, we create a new
external node containing x, and an internal node to split between x and p.key.

More formally, let y ← p.key. Following our convention that the left subtree contains
key values that less than or equal to the splitter and the right subtree is strictly greater,
the splitter can be any value s such that min(x, y) ≤ s < max(x, y). We will assume
the simple convention of setting s = min(x, y). We first create a new internal node
containing s and a new external node containing key x and value v. Between the two
external nodes x and y, we make the smaller the left child of s and the larger is its right
child (see Fig. 3). Finally, we return a reference to the internal node containing s, which
is stored in the child link of the parent of p. (An example is shown in Fig. 4.)
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Fig. 3: Inserting a new external node into an extended binary search tree. Note that the internal
node is assigned the smaller of the two key values.
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Fig. 4: Inserting a key 12 into an extended binary search tree. A search for 12 leads to the external
node 14. Two nodes are created, one external node containing 12 and one internal node containing
the minimum of 12 and 14.

delete(Key x, Node p): This function returns a reference to the root of the updated sub-
tree from which x is deleted. The initial call is root = delete(x, root).

The procedure operates recursively. We use the same process as in find to locate the
external node p that contains x. If x is not found, we signal an nonexistent-key error.
Otherwise, if this external node is the root of the tree, we remove it and return the
value null. If neither of these occurs, we delete the external node and its internal node
parent. We return a reference to the other child of the parent (see Fig. 5).
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Fig. 5: Deleting a key 9 from an extended binary search tree. After finding the external node
containing 9, we remove it and its parent, and link the other child of the parent into the grandparent.

As with standard (unbalanced) binary search trees, all operations take time proportional to
the height of the tree. The height of the tree is (up to a constant additive term) the same
in expectation for the extended tree as for the standard tree, namely O(log n) if n keys are
inserted in random order.

Scapegoat Trees: We have previously studied the splay tree, a data structure that supports
dictionary operations in O(log n) amortized time. Recall that this means that, over a series of
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operations, the average cost per operation is O(log n), even though the cost of any individual
operation can be as high as O(n). We will now study another example of a binary search tree
that has good amortized efficiency, called a scapegoat tree. The idea underlying the scapegoat
tree was due initially to Arne Anderson (of AA trees) in 1989. This idea was rediscovered by
Galperin and Rivest in 1993, who made some refinements and gave it the name “scapegoat
tree” (which we will explain below).

While amortized data structures often interesting in their own right, there is a particular
motivation for studying the scapegoat tree. So far, all of the binary search trees that we have
studied achieve balance through the use of rotation operation. Scapegoat trees are unique in
that they do not rely on rotation. This is significant because there exist binary trees that
cannot be balanced through the use of rotations. (One such example is the binary space
partition tree shown in Fig. 2.) As we shall see, the scapegoat tree achieves good balance by
“rebuilding” subtrees that exhibit poor balance. The trick behind scapegoat trees is figuring
out which subtrees to rebuild and when to do this.

Below, we will discuss the details of how the scapegoat tree works. Here is a high-level
overview. A scapegoat tree is a binary search tree, which does not need to store any addi-
tional information in the nodes, other than the key, value, and left and right child pointers.
(Additional information, such as parent pointers may be added to simplify coding, however,
but these are not needed.) Nonetheless, it height will always be O(log n). (Note that this
is not the case for splay trees, whose height can grow to as high as O(n).) Insertion and
deletions work roughly as follows.

Insertion:

• The key is first inserted just as in a standard (unbalanced) binary tree

• We monitor the depth of the inserted node after each insertion, and if it is too high,
there must be at least one node on the search path that has poor weight balance
(that is, its left and right children have very different sizes).

• In such a case, we find such a node, called the scapegoat,1 and we completely rebuild
the subtree rooted at this node so that it is perfectly balanced.

Deletion:

• The key is first deleted just as in a standard (unbalanced) binary tree

• Once the number of deletions is sufficiently large relative to the entire tree size,
rebuild the entire tree so it is perfectly balanced.

You might wonder why there is a notable asymmetry between the rebuilding rules for insertion
and deletion. The existence of a single very deep node is proof that a tree is out of balance.
Thus, for insertion, we can use the fact that the inserted node is too deep to trigger rebuilding.
However, observe that the converse does not work for deletion. The natural counterpart would
be “if the depth of the external node containing the deleted key is too small, then trigger a
rebuilding operation.” However, the fact that a single node has a low depth, does not imply
that the rest of the tree is out of balance. (It may just be that a single search path has low
depth, but the rest of the tree is perfectly balanced.) Could we instead apply the deletion
rebuilding trigger to work for insertion? Again, this will not work. The natural counterpart
would be, “given a newly rebuild tree with n keys, we will rebuild it after inserting roughly n/2

1A “scapegoat” is an individual who is assigned the blame when something goes wrong. In this case, the unbalanced
node takes the blame for the tree’s height being too great.
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new keys.” However, if we are very unlucky, all these keys may fall along a single search path,
and the tree’s height would be as bad as O((log n) + n/2) = O(n), and this is unacceptably
high.

How to Rebuild a Subtree: Before getting to the details of how the scapegoat tree works, let’s
consider the basic operation that is needed to maintain balance, namely rebuilding subtrees
into balanced form. We shall see that if the subtree contains k keys, this operation can be
performed in O(k) time. Suppose that p is a pointer to the node of the scapegoat tree whose
subtree is to be rebuilt. We begin be performing an inorder traversal of p’s subtree, copying
the keys to an array A[0, ..., k − 1]. Because we use an inorder traversal, the elements of A
are in ascending sorted order.

To create the new subtree, we will define a procedure that extracts the median element of
the array as the root, and then recursively rebuilds the subarrays to the left and right of the
median, and then makes the resulting subtrees the left and right children of the median node.
More formally, let us define a function buildSubtree(A, i, k), which returns a reference
to a balanced subtree containing the k-element subarray of A whose first element is A[i], that
is, A[i, . . . , i + k − 1]. Pseudocode is given in the code block below.

Building a Balanced Tree from an Array
BinaryNode buildSubtree(Key[] A, int i, int k) {

if (k == 0) return null; // empty array

else {

int m = ceiling(k/2); // root is the median

BinaryNode p = new BinaryNode(A[i+m]); // A[i+m] is root

p.left = buildSubtree(A, i, m); // A[i..m-1] in left subtree

p.right = buildSubtree(A, i+m+1, k-m-1); // A[i+m+1..i+k-1] in right

return p; // return root of the subtree

}

}

Ignoring the recursive calls, we spend O(1) time within each recursive call, so the overall time
is proportional to the size of the tree, which is k, so the total time is O(k).

Scapegoat Tree Operations: In addition to the nodes themselves, the scapegoat tree maintains
two integer values. The first, denoted by n, is just the number of keys in the tree. The second,
denoted by m, is an upper bound on the size of the tree. This latter value plays a role in
deciding when the rebalance the tree when deletions are performed. In particular, whenever
we insert a key, we increment m, but whenever we delete a key we do not decrement m. Thus,
m ≥ n and the difference m − n intuitively represents the number of deletions. When we
reach a point where m > 2n (or equivalently m − n > n) we can infer that the number of
deletions exceeds the number of keys remaining in the tree. In this case, we will rebuild the
entire tree in balanced form.

We are now in a position to describe how to perform the dictionary operations for a scapegoat
tree.

find(Key x): The find operation is performed exactly as in a standard (unbalanced) binary
search tree. They height of the tree never exceeds log3/2 n, so this is guaranteed to run
ins O(log n) time.
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delete(Key x): This operates exactly the same as deletion in a standard binary search tree.
After the deletion, we decrement n, but we do not change m. As mentioned above, if
m > 2n, we rebuild the entire tree, and set m← n.

insert(Key x, Value v): The begins exactly as insertion does for a standard binary search
tree. But, as we are tracing the search path to the insertion point, keep track of our
depth in the tree. (Recall that depth is the number of edges to root.) Increment both n
and m. If the depth of the inserted node exceeds log3/2m then we trigger a rebuilding
event. This involves the following:

• Walk back up along the insertion search path. Let u be the current node that is
visited, and let u.child be the child of u that lies on the search path.

• Let size(u) denote the size of the subtree rooted at u, that is, the number of nodes
in this subtree. If

size(u.child)

size(u)
>

2

3
,

then rebuild the subtree rooted at u (e.g., using the method described above).

The fact that a child has over 2/3 of the nodes of the entire subtree intuitively means
that this subtree has roughly speaking more than twice as many nodes as its sibling. We
call such a node on the search path a scapegoat candidate. A short way of summarize the
above process is “rebuild the scapegoat candidate that is closest to the insertion point.”
An example is shown in Fig. 6.
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Fig. 6: Inserting a key into a scapegoat tree, which triggers a rebuilding event. The node containing
9 is the first scapegoat candidate encountered while backtracking up the search path and is rebuilt.

You might wonder whether we will necessarily encounter an scapegoat candidate when we
trace back along the search path. The following lemma shows that this is always the case.

Lemma: Given a binary search tree of n nodes, if there exists a node p such that depth(p) >
log3/2 n, then p has an ancestor (possibly p itself) that is a scapegoat candidate.

Proof: The proof is by contradiction. Suppose to the contrary that no node from p to the
root is a scapegoat candidate. This means that for every ancestor node u from p to the
root, we have size(u.child) ≤ 2

3 ·size(u). We know that the root has a size of n. It follows
that if p is at depth k in the tree, then

size(p) ≥
(

2

3

)k

n.
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We know that size(p) ≥ 1 (since the subtree contains p itself, if nothing else), so it follows
that 1 ≥ (2/3)kn. With some simple manipulations, we have(

3

2

)k

≤ n,

which implies that k ≤ log3/2 n. However, this violates our hypothesis that p’s depth
exceeds log3/2 n, yielding the desired contradiction.

Recall that m ≥ n, and so if a rebuilding event is triggered, the insertion depth is at least
log3/2m, which means that it is at depth at least log3/2 n. Therefore, by the above lemma,
there must be a scapegoat candidate along the search path.

How to Compute Subtree Sizes? We mentioned earlier that the scapegoat tree does not store
any information in the nodes other than the key, value, and left and right child pointers. So
how can we compute size(u) for a node u during the insertion process?

Unfortunately, there is no clever way to do this efficiently (say in O(log n) time). Since we
are doing this as we back up the search path, we may assume that we already know the
value of s′ = size(u.child), where this is the child that lies along the insertion search
path. So, to compute size(u), it suffices to compute the size of u’s other child. To do this,
we perform a traversal of this child’s subtree to determine its size s′′. Given this, we have
size(u) = 1 + s′ + s′′, where the +1 counts the node u itself.

You might wonder, how can we possibly expect to achieve O(log n) amortized time for inser-
tion if we are using brute force (which may take as much as O(n) time) to compute the sizes
of the subtrees? The reason is to first recall that we do not need to compute subtree sizes
unless a rebuild event has been triggered. Every node that we are visiting in the counting
process will need to be visited again in the rebuilding process. Thus, the cost of this counting
process can be accounted for in the cost of the rebuilding process, and hence it essentially
comes for free!

By the way, there is an alternative method for computing sizes. This is to store the size value
of each node explicity within each node. The size of a node is easy to update whenever there
are changes in the tree’s structure, since we have:

size(u) = (u == null ? 0 : size(u.left) + size(u.right))

While we are at it, it is worth noting that the height is just as easy to store and update:

height(u) = (u == null ? 0 : 1 + max(height(u.left), height(u.right)))

Amortized Analysis: We will not present a formal analysis of the amortized analysis of the
scapegoat tree. The following theorem (and the rather sketchy proof that follows) provides
the main results, however.

Theorem: Starting with an empty tree, any sequence of k dictionary operations (find, insert,
and delete) to a scapegoat tree can be performed in time O(k log k).

Proof: (Sketch)

• Find: Because the tree’s height is at most log3/2m ≤ log3/2 2n = O(log n) the costs
of a find operation is O(log n) (unconditionally).
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• Delete: In order to rebuild a tree due to deletions, at least half the entries since
the last full rebuild must have been deleted. By token-based analyses (recall stacks
and rehashing from earlier lectures), it follows that the O(n) cost of rebuilding the
entire tree can be amortized against the time spent processing the deletions.

• Insert: This is analyzed by a potential argument. Intuitively, after any subtree of
size k is rebuilt it takes O(k) insertions to force this subtree to be rebuilt again.
Charge the rebuilding time against these “cheap” insertions.

Corollary: The amortized complexity of the scapegoat tree with at most n nodes is O(log n).
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