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CMSC 420: Lecture 14
Answering Queries with kd-trees

Recap: In our previous lecture we introduced kd-trees, a multi-dimensional binary partition tree
that is based on axis-aligned splits. We have shown how to perform the operations of insertion
and deletion from kd-trees. In this lecture, we will investigate two important geometric queries
using kd-trees: orthogonal range search queries and nearest-neighbor queries.

Range Queries: Given any point set, a fundamental type of query is called a range query or more
properly, an orthogonal range query. To motivate this sort of query, suppose that you querying
a biomedical database with millions of records. Each point of the database is associated with
the medical record of a patient. Each coordinate is the numeric value of some statistic, such
as the patient’s height, weight, blood pressure, HDL and LDL cholesterol numbers, etc. So,
if there are 20 different numbers associated with each patient’s record, each patient can be
modeled as a point in a 20-dimensional space of real numbers, or R20 for short.

Suppose that as part of your study or these patients, you want to know information such as
“how many patients are there with weights in the range 70–80 kilograms, heights in the range
160–170 centimeters, etc.” This amounts to finding the number of points in the database
that lie within an axis-orthogonal rectangle, defined by the intersection of these intervals (see
Fig. 1). This is where the name orthogonal range searching originates.
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Fig. 1: Orthogonal range query.

More formally, given a set P of points in d-dimensional real space, Rd, we wish to store these
points in a kd-tree so that, given a query consisting of an axis-aligned rectangle, denoted R,
we can efficiently count or report the points of P lying within R. Listing all the points lying
in the range is called a range reporting query, and counting all the points in the range is called
a range counting query. The solutions for the two problems are often similar, but some tricks
can be employed when counting, that do not apply when reporting.

A Rectangle Class: Before we get into a description of how to answer orthogonal range queries
with the kd-tree tree, let us first define a simple class for storing a multi-dimensional rectangle,
or hyper-rectangle for short. The private data consists of two points low and high. A point
q lies within the rectangle if low[i] ≤ q[i] ≤ high[i], for 0 ≤ i ≤ d − 1 (assuming Java-like
indexing). In addition to a constructor, the class provides a few useful geometric primitives
(illustrated in Fig. 2).
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boolean contains(Point q): Returns true if and only if point q is contained within this
rectangle (using the above inequalities).

boolean contains(Rectangle c): Returns true if and only if this rectangle contains rect-
angle c. This boils down to testing containment on all the intervals defining each of the
rectangles’ sides:[

c.low[i], c.high[i]
]
⊆
[
low[i],high[i]

]
, for all 0 ≤ i ≤ d− 1.
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Fig. 2: An axis-parallel rectangle methods.

boolean isDisjointFrom(Rectangle c): Returns true if and only if rectangle c is disjoint
from this rectangle. This boils down to testing whether any of the defining intervals are
disjoint, that is

r.high[i] < c.low[i] or r.low[i] > c.high[i], for any 0 ≤ i ≤ d− 1.

float distanceTo(Point q): Returns the minimum Euclidean distance from q to any point
of this rectangle. This can be computed by computing the distance from the coordinate
q[i] to this rectangle’s ith defining interval, taking the sums of squares of these distances,
and then taking the square root of this sum:√√√√d−1∑

i=0

(distance(q[i],
[
low[i], high[i]

]
))2

There is one additional function worth discussing, because it is used in many algorithms that
involve kd-trees. The function is given a rectangle r and a splitting point s lying within
the rectangle. We want to cut the rectangle into two sub-rectangles by a line that passes
through the splitting point. These are used in a context where the rectangle r represents the
cell associated with a given kd-tree node, and by cutting the cell through the splitter, we
generate the cells associated with the node’s left and right children.

Rectangle leftPart(int cd, Point s): (and rightPart(int cd, Point s)) These are
both given a cutting dimension cd and a point s that lies within the rectangle. The
first returns the subrectangle lying to the left (below) of s with respect to the cutting
dimension, and the other returns the subrectangle lying to the right (above) of s with
respect to the cutting dimension (see Fig. 2). More formally, leftPart(cd, s), returns
a rectangle whose low point is the same as r.low and whose high point is the same as
r.high except that the cd-th coordinate is set to s[cd]. Similarly, rightPart(cd, s),
returns a rectangle whose high point is the same as r.high and whose low point is the
same as r.low except that the cd-th coordinate is set to s[cd].
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Fig. 3: The functions leftPart and rightPart.

A skelton of a simple Rectangle class
public class Rectangle {

Point low; // lower left corner

Point high; // upper right corner

public Rectangle(Point low, Point high) // constructor

public boolean contains(Point q) // do we contain q?

public boolean contains(Rectangle c) // do we contain rectangle c?

public boolean isDisjointFrom(Rectangle c) // disjoint from rectangle c?

public float distanceTo(Point q) // minimum distance to point q

public Rectangle leftPart(int cd, Point s) // left part from s

public Rectangle rightPart(int cd, Point s) // right part from s

}

The following code block provides a high-level overview of the Rectangle class (without
defining any of the functions).

Anwering the Range Query: In order to answer range counting queries, let us first assume that
each node p of the tree has been augmented with a member p.size, indicating the number of
points lying within the subtree rooted at p. This can easily be updated as points are inserted
to and deleted from the tree. The counting function, rangeCount(r, p, cell) operates
recursively. The first argument r is the range itself, the second argument p is the node
currently visited, and cell is its associated cell. It returns a count of the number of points
within p’s subtree that lie within r. The initial call is rangeCount(r, root, boundingBox),
where boundingBox is the bounding box of the entire kd-tree.

The function operates recursively, working from the root down to the leaves. First, if we fall
out of the tree then there is nothing to count. Second, if the current node’s cell is completely
disjoint from the query range, we may return 0, because none of this node’s points lie within
the range (see Fig. 4). Next, if the query range completely contains the current cell, we can
count all the points of p as lying within the range, and so we return p.size. Finally, the
range must partially overlap the cell. In this case, we apply the function recursively to each
of our two children. The function is presented in the code block below.

An Example: Fig. 5 shows an example of a range search. Next to each node we store the size of
the associated subtree in blue. We say that a node is visited if a call to rangeCount() is made
on this node. We say that a node is processed if both of its children are visited. Observe that
for a node to be processed, its cell must overlap the range without being contained within the
range. In the example, the shaded nodes are those that are not processed. For example the
subtree rooted at h is entirely contained within the range, and any points in the subtree can be
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kd-tree Range Counting Query
int rangeCount(Rectangle r, KDNode p, Rectangle cell) {

if (p == null) return 0; // empty subtree

else if (r.isDisjointFrom(cell)) // no overlap with range

return 0;

else if (r.contains(cell)) // range contains our entire cell?

return p.size; // include all points in the count

else { // range partially overlaps cell

int count = 0;

if (r.contains(p.point)) // consider this point

count++;

// apply recursively to children

count += rangeCount(r, p.left, cell.leftPart(p.cutDim, p.point));

count += rangeCount(r, p.right, cell.rightPart(p.cutDim, p.point));

return count;

}

}

(a) (b) (c)
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Fig. 4: Cases arising in orthogonal range searching.
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safely included in the count. (In this case, this includes the two points p and h.) The subtrees
rooted at k and g are entirely disjoint from the query, and the subtrees rooted at these nodes
can be completely ignored. The nodes with red squares surrounding them those whose points
have been added individually to the count (by the condition r.contains(p.point)). There
are four such nodes d, f , l, and q. Combined with the two points of h’s subtree, the total
count returned is 6.
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Fig. 5: Range search in kd-trees. The subtree rooted at h is counted entirely. The subtrees rooted
at k and g are excluded entirely. The other points are checked individually.

Analysis of query time: How many nodes does this method visit altogether? We claim that
the total number of nodes is O(

√
n) assuming a balanced kd-tree (which is a reasonable

assumption in the average case).

Theorem: Given a balanced kd-tree with n points, range counting queries can be answered
in O(

√
n) time.

Recall from the discussion above that a node is processed (both children visited) if and only if
the cell overlaps the range without being contained within the range. We say that such a cell
is stabbed by the query. To bound the total number of nodes that are processed in the search,
it suffices to count the total number of nodes whose cells are stabbed by the query rectangle.
Rather than prove the above theorem directly, we will prove a simpler result, which illustrates
the essential ideas behind the proof. Rather than using a 4-sided rectangle, we consider an
orthogonal range having a only one side, that is, an orthogonal halfplane. In this case, the
query stabs a cell if the vertical or horizontal line that defines the halfplane intersects the
cell.

Lemma: Given a balanced kd-tree with n points, any vertical or horizontal line stabs O(
√
n)

cells of the tree.

Proof: Since the tree is balanced, its height is O(log n). Since the constant factor will not
really matter, it will simplify matters to assume that the height is exactly lg n. Let us
consider the case of a vertical line x = x0. The horizontal case is symmetrical.

Consider a processed node which has a cutting dimension along x. The vertical line
x = x0 either stabs the left child or the right child but not both. If it fails to stab one
of the children, then it cannot stab any of the cells belonging to the descendents of this
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child either. If the cutting dimension is along the y-axis (or generally any other axis in
higher dimensions), then the line x = x0 stabs both children’s cells.

Since we alternate splitting on left and right, this means that after descending two levels
in the tree, we may stab at most two of the possible four grandchildren of each node.
(This is illustrated in Fig. 6.) In general each time we descend two more levels we double
the number of nodes being stabbed. Thus, we stab the root node, at most 2 nodes at
level 2 of the tree, at most 4 nodes at level 4, 8 nodes at level 6, and generally at most
2i nodes at level 2i.

NW, SW

NW NE

SW SE

NW NE

SW SE

NE, SE

NW, NE

SW, NE

SW, SE

Fig. 6: An axis-parallel line in 2D can stab at most two out of four cells in two levels of the kd-tree
decomposition. In general, it stabs 2i cells at level 2i.

Because we have an exponentially increasing number, the total sum is dominated by its
last term. Thus, it suffices to count the number of nodes stabbed at the lowest level of
the tree. If we assume that the kd-tree is balanced, then the tree has height of h ≈ lg n
(up to constant factors). The number of leaf nodes processed at the bottommost level is

2h/2 ≈ 2(lgn)/2 = (2lgn)1/2 = n1/2 =
√
n.

This completes the proof.

We have shown that any vertical or horizontal line can stab only O(
√
n) cells of the tree.

Thus, if we were to extend the four sides of Q into lines, the total number of cells stabbed by
all these lines is at most O(4

√
n) = O(

√
n). Thus the total number of cells stabbed by the

query range is O(
√
n), and hence the total query time is O(

√
n). Again, this assumes that

the kd-tree is balanced (having O(log n) depth). If the points were inserted in random order,
this will be true on average.

Nearest-Neighbor Queries: Next we consider how to perform an important retrieval query on
a kd-tree. Nearest neighbor queries are among the most important queries. We are given a
set of points P stored in a kd-tree, and a query point q, and we want to return the point of P
that is closest to q. Let’s assume that distances are measured using Euclidean distances. In
particular, given two points p = (p1, . . . , pd) and q = (q1, . . . , qd), their Euclidean distance is

dist(p, q) =
√

(p1 − q1)2 + · · ·+ (pd − qd)2.

Generalizations to other sorts of distance functions (e.g., the Manhattan or taxicab distance)
is also possible. An example is shown in Fig. 7. Observe that the circle centered at q and
passing through its nearest neighbor p contains no other points. However, every leaf cell of
the kd-tree whose cell overlaps the interior of this circle (shaded in the figure) may need to
be visited in the search, since each might contribute a point that could be closer to q than p
is. What makes the search efficient is that the number of such nodes is usually much smaller
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q q
p

Fig. 7: Nearest-neighbor searching using a kd-tree.

than the total number of nodes in the tree. Of course, finding these nodes is the key issue in
answering nearest neighbor queries.

An intuitively appealing approach to nearest neighbor queries would be to find the leaf node
of the kd-tree that contains q and then search this and the neighboring cells of the kd-tree.
The problem is that the nearest neighbor may actually be very far away, in the sense of the
tree’s structure. For example, in Fig. 8, many of the points are at nearly the same distance
from the query point q. It would be necessary to visit almost all the nodes of the tree to
determine which of these points is the actual nearest neighbor.

q

p

q

Fig. 8: A (nearly) worst-case scenario for nearest-neighbor searching. Almost all the nodes of the
tree need to be visited, since any might be the nearest neighbor.

We will need a more systematic approach to finding nearest neighbors. Nearest neighbor
queries illustrate three important elements of range and nearest neighbor processing.

Partial results: Store the intermediate results of the query and update these results as the
query proceeds.

Traversal order: Visit the subtree first that is more likely to be relevant to the final results.

Pruning: Do not visit any subtree that be judged to be irrelevant to the final results.

Nearest-neighbor Utilities: Before presenting the code for nearest-neighbor searching, we in-
troduce a few helpful utilities. First, recall that every cell of the kd-tree is associated with
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an axis-parallel rectangle, called its cell. (For d ≥ 3 the generalization of a rectangle is called
a hyperrectangle, but we will just use the term “rectangle” for simplicity.) A convenient way
to represent a rectangle in any d-dimensional space is to give two points low and high. In
2D, these represent the lower-left and upper-right corners of the rectangle, respectively. In
general, the rectangle consists of all points q such that lowi ≤ qi ≤ highi (see Fig. 2(a)). A
possible implementation, without any details, is outlined in the code block below. (We make
use of the Point object, which was introduced in the previous lecture.)

Nearest-neighbor Code: Our procedure for returning the nearest neighbor actually only returns
the distance to the nearest neighbor, but it is an easy matter to modify the code to produce
both the distance and the point achieving this distance. (Think about how you would do
this.) As usual, we employ a recursive utility function that works on an individual node p of
the tree. The function nearNeighbor(q, p, cell, bestDist) is given four parameters:

• the query point q

• the current node p of the tree

• the rectangular cell associated with this node, cell, and

• the smallest distance, bestDist, between q and any point seen so far in the search.

The procedure works as follows:

• First, if p is null, we must have fallen out of the tree, and we just return the current
smallest distance, bestDist as the answer.

• Otherwise, we compute the distance from the point p.point to q, and update the
bestDist value if this point is closer than the previous.

• Next, we need to search the subtrees for possibly closer points:

– We invoke leftPart and rightPart to determine the cells of the left and right
subtrees, respectively (see Fig. 9(a)).

– Next, we check which side p.point the query point lies. The closer child of p is the
one that lies on the same side of the splitter as q does.

(a) (b) (c)

leftPart

qbestDist

rightPart leftPart

q
bestDist

visit

closer

q

visit

farther

rightPart

bestDist

(b)(a)

Fig. 9: Nearest-neighbor searching.

– We visit the closer subtree first (see Fig. 9(b)), since it is more likely to yield the
nearest neighbor. The value of bestDist will be updated to the closest point seen
so far.

– After returning from this call, we compute q’s distance to the right subtree cell.
Observe that if this distance is greater than bestDist, there is no chance that
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the other subtree contains the nearest neighbor, and so there is no need to visit
this subtree. Otherwise, we apply the search recursively to the right subtree (see
Fig. 9(c)) and update bestDist accordingly.

Given a query point q, the initial call is nearNeigh(q, root, rootCell, Float.MAX VALUE),
where rootCell is the rectangle that encloses the entire tree contents, and Float.MAX VALUE

is the maximum possible float value. The code is presented below.

Compute distance to nearest neighbor in kd-tree
float nearNeighbor(Point q, KDNode p, Rectangle cell, float bestDist) {

if (p != null) {

float thisDist = q.distanceTo(p.point); // distance to p’s point

bestDist = Math.min(thisDist, bestDist); // keep smaller distance

int cd = p.cutDim; // cutting dimension

Rectangle leftCell = cell.leftPart(cd, p.point); // left child’s cell

Rectangle rightCell = cell.rightPart(cd, p.point); // right child’s cell

if (q[cd] < p.point[cd]) { // q is closer to left

bestDist = nearNeighbor(q, p.left, leftCell, bestDist);

if (rightCell.distanceTo(q) < bestDist) { // worth visiting right?

bestDist = nearNeighbor(q, p.right, rightCell, bestDist);

}

} else { // q is closer to right

bestDist = nearNeighbor(q, p.right, rightCell, bestDist);

if (leftCell.distanceTo(q) < bestDist) { // worth visiting left?

bestDist = nearNeighbor(q, p.left, leftCell, bestDist);

}

}

}

return bestDist;

}

An example of the algorithm in action is shown in Fig. 10. The algorithm starts by descending
to the leaf node (the upper child of (70, 30)), computing distances to all the points seen along
the way. At this point (70, 30) is the closest, and its distance to q defines bestDist. Because
the lower child of (70, 30) overlaps the ball of radius bestDist, we need to inspect this
subtree. When we visit (50, 25), we discover that it is even closer. We visit both its children.
However, observe that when we arrive at (60, 10), we visit the closer of its two children (the
empty subtree lying above this point), but there is no need to visit its lower child, because
it lies entirely outside of the ball of radius bestDist. We then return from the recursion.
On returning to (80, 40) and (70, 80), we see that the cells of their other children lie entirely
outside the ball of radius bestDist, and so we do not need to visit them. On returning to
the root at (35, 90) we see that its left subtree does overlap the bestDist ball, and so we
recurse on that subtree as well. We continue until arriving at the closest leaf to the query
point, namely the right child of (25, 10). We compute distances too all the points associated
with the nodes visited, and we discover along the way that (25, 50) is even closer to the query
point, and thus bestDist is again reduced. After this, all the remaining cells (shaded in
white in the figure) lie outside the nearest-neighbor ball, and so we can terminate the search.

Analysis: How efficient is this procedure? It is quite difficult to analyze from the perspective of
its worst-case performance, because as seen in Fig. 8, there are cases where we may need to
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Fig. 10: Nearest-neighbor search.
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visit almost every node of the tree, because almost all the points are equidistant from the
query point. However, this is really a very pathological example. In most instances, the
typical running time is much closer to O(2d + log n), where d is the dimension of the space.
Generally, you expect to visit some set of nodes that are in the neighborhood of the query
point (giving rise to the 2d term) and require O(log n) time to descend the tree to find these
nodes.
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