
CMSC 420 – 0201 – Fall 2019
Lecture 02

Basic Data Structures

CMSC 420 – Dave Mount2

You are given a large integer 𝑛𝑛, and are asked to implement an array data
structure 𝐴𝐴[1, … ,𝑛𝑛] of some type 𝑇𝑇, with the following operations:

init(𝑣𝑣): all elements of 𝐴𝐴 are defined to be 𝑣𝑣
get(𝑖𝑖): return the value of 𝐴𝐴[𝑖𝑖], where 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
set(𝑖𝑖, 𝑥𝑥): set 𝐴𝐴 𝑖𝑖 = 𝑥𝑥, where 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛

Here is the catch … All the above operations must run in time 𝑂𝑂(1), irrespective of
the value of 𝑛𝑛. (Thus, you cannot use a loop to initialize the array.)
Rules:

1. You may use additional arrays, but you cannot assume they are initialized

2. No fancy data structures other than arrays are allowed

3. No bit manipulation is allowed (You cannot use a bit vector)

Fun Challenge – Arrays for Busy People

CMSC 420 – Dave Mount3

 Lists are among the most basic data types. Here is a simple interface.
− init(): Initialize an empty list

− get(i): Returns element 𝑎𝑎𝑖𝑖
− set(i, x): Sets the 𝑖𝑖th element to 𝑥𝑥
− length(): Returns the number of elements currently in the list

− insert(i, x): Insert element 𝑥𝑥 just prior to element 𝑎𝑎𝑖𝑖 (causing the index of all
subsequent items to be increased by one)

− delete(i): Delete the 𝑖𝑖th element (causing the indices of all subsequent elements to be
decreased by 1)

Linear Lists

CMSC 420 – Dave Mount4

 Lists can be allocated in many ways. For example:
− Sequential allocation – as an array

− Singly linked – nodes, each referencing its successor

− Doubly linked – nodes, each referencing its successor and predecessor

Allocation Types

Linear Lists

CMSC 420 – Dave Mount5

 There are a few very common types of lists:
− Stacks – Supports insertion/removal from one end, called the top

− push

− pop

− Queues – Supports insertion to tail end and removal from head end
− enqueue

− dequeue

− Deque – Doubly-ended queue – Supports insertion/removal from either end
− push-front, push-back

− pop-front, pop-back

− The name is a play on words, pronounced the same as “deck” of cards.

Stacks, Queues, Deques

Linear Lists

CMSC 420 – Dave Mount6

 When dealing with sequential allocation, what to do when we run out of space?
 Doubling:

− Let 𝑛𝑛 denote the current array size, and suppose we are asked to insert (𝑛𝑛 + 1)st item

− Allocate a new array of size 2𝑛𝑛 (or generally any constant factor larger)

− Copy the old contents to this array

− Now, continue with the insertion

 Why double? Why not…
− Less aggressive – Increase by a fixed number, say 100, more entries?

− More aggressive – Increase by squaring the number of entries, say to 𝑛𝑛2?

Dynamic Storage Allocation

Linear Lists

CMSC 420 – Dave Mount7

 Amortized cost: Given a sequence of 𝑚𝑚 operations, the amortized cost of
operations is the total cost of all the operations divided by the total number of
operations, 𝑚𝑚.

 Theorem: When doubling reallocation is used, the amortized cost of stack,
queue, and deque operations is O(1).

 Proof:
− Charging argument – Each operation will perform a constant amount of work, and save a

constant number of work tokens

− When reallocation occurs, we will show that there are enough tokens to pay for the
reallocation cost

Dynamic Storage Allocation

Linear Lists

CMSC 420 – Dave Mount8

 Theorem: When doubling reallocation is used, the amortized cost of stack
operations is O(1).

 Proof:
− Initialization – Assume a constant initial size O(1) initialization cost

− Push – Do the operation, and deposit 4 work tokens in a bank account

− Pop – Do the operation

− Reallocation – Copy the current list of size 𝑛𝑛 to a new array of size 2𝑛𝑛. We claim there
are enough funds to pay for this. Why?
− The last reallocation increased array size from 𝑛𝑛/2 to 𝑛𝑛
− Since we overflowed, there must have been at least 𝑛𝑛/2 pushes since then

− Bank account has at least 4(𝑛𝑛/2) = 2𝑛𝑛. Thus, we have enough to pay for reallocation.

Dynamic Storage Allocation

Linear Lists

CMSC 420 – Dave Mount9

 Lists can be combined to perform more complex structures
 Example: Java’s ArrayList
 Better example: Sparse matrices
 Suppose you have a very large matrix, say 𝑛𝑛 × 𝑚𝑚, where 𝑛𝑛 and 𝑚𝑚 are in the tens

of thousands.
 In many applications (particle dynamics in physics), almost all the matrix entries

are zero

Multilists and Sparse Matrices

CMSC 420 – Dave Mount10

Multilist Representing a Sparse Matrix

CMSC 420 – Dave Mount11

You are given a large integer 𝑛𝑛, and are asked to implement an array data
structure 𝐴𝐴[1, … ,𝑛𝑛] of some type 𝑇𝑇, with the following operations:

init(𝑣𝑣): all elements of 𝐴𝐴 are defined to be 𝑣𝑣
get(𝑖𝑖): return the value of 𝐴𝐴[𝑖𝑖], where 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
set(𝑖𝑖, 𝑥𝑥): set 𝐴𝐴 𝑖𝑖 = 𝑥𝑥, where 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛

Here is the catch … All the above operations must run in time 𝑂𝑂(1), irrespective of
the value of 𝑛𝑛. (Thus, you cannot use a loop to initialize the array.)
Rules:

1. You may use additional arrays, but you cannot assume they are initialized

2. No fancy data structures other than arrays are allowed

3. No bit manipulation is allowed (You cannot use a bit vector)

Fun Challenge – Arrays for Busy People

CMSC 420 – Dave Mount12

We need to keep track of the entries of 𝐴𝐴 that are defined, but how?

Idea 1: Maintain a parallel boolean array indicating which elements of 𝐴𝐴 are defined:
isDefined[𝑖𝑖] = true if 𝐴𝐴[𝑖𝑖] is defined.

get(𝑖𝑖) ∶= (isDefined[𝑖𝑖] ? 𝐴𝐴[𝑖𝑖] ∶ 𝑣𝑣)
Problem: We need to initialize this array, which will take 𝑂𝑂(𝑛𝑛) time. Too long!

Idea 2: Maintain a stack of indices of 𝐴𝐴 that have been defined a value. (Can be initialized
in constant time by setting 𝑡𝑡𝑡𝑡𝑡𝑡 = 0.) We can “define” an entry 𝐴𝐴[𝑖𝑖] by pushing 𝑖𝑖 on the
stack.

Problem: Need to search the entire stack to test whether an entry is defined. Too long!

Solution – Arrays for Busy People

CMSC 420 – Dave Mount13

Here’s the trick: Do both.
− Maintain a stack 𝑆𝑆 containing the indices of defined elements.

− Maintain a parallel array 𝐵𝐵[1, … ,𝑛𝑛], where 𝐵𝐵[𝑖𝑖] indicates the element of the stack that
witnesses that 𝐴𝐴[𝑖𝑖] is defined.

− Note that 𝐵𝐵 may contain garbage, but the stack validates its “legitimate” entries.

Solution – Arrays for Busy People

cat

pig

1

2

3

4

5

2

*

*
1

*

1

2

3

4

5

4

1

*
*

*

1

2

3

4

5

𝐴𝐴 𝐵𝐵 𝑆𝑆

← 𝑡𝑡𝑡𝑡𝑡𝑡
cat

pig

dog

1

2

3

4

5

2

*

*
1

3

1

2

3

4

5

4

1

5
*

*

1

2

3

4

5

𝐴𝐴 𝐵𝐵 𝑆𝑆

← 𝑡𝑡𝑡𝑡𝑡𝑡set(5,”dog”)

trusted
trusted

CMSC 420 – Dave Mount14

In addition to 𝐴𝐴, we maintain two arrays, 𝐵𝐵[1, … ,𝑛𝑛] and a stack 𝑆𝑆.
1. The command init(𝑣𝑣) saves the value of 𝑣𝑣 and sets the stack empty (𝑡𝑡𝑡𝑡𝑡𝑡 ← 0).

2. When an entry 𝐴𝐴[𝑖𝑖] is first defined a value 𝑥𝑥, we push index 𝑖𝑖 onto the stack, signaling
that this entry has been initialized. We set 𝐵𝐵[𝑖𝑖] ← 𝑡𝑡𝑡𝑡𝑡𝑡, which validates this entry.
(Note that, 1 ≤ 𝐵𝐵[𝑖𝑖] ≤ 𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑆𝑆[𝐵𝐵[𝑖𝑖]] = 𝑖𝑖.) Finally, we set 𝐴𝐴[𝑖𝑖] ← 𝑥𝑥.

3. To test whether 𝐴𝐴[𝑖𝑖] is defined, test whether 1 ≤ 𝐵𝐵[𝑖𝑖] ≤ 𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑆𝑆[𝐵𝐵[𝑖𝑖]] = 𝑖𝑖.
4. The command set(𝑖𝑖, 𝑥𝑥) applies Step 3 to test whether 𝐴𝐴[𝑖𝑖] is already defined. If not,

we apply Step 2 to define it. If it was defined, we set 𝐴𝐴[𝑖𝑖] ← 𝑥𝑥
5. The command get(𝑥𝑥) applies Step 3 to test whether 𝐴𝐴[𝑖𝑖] is defined. If so, it returns

𝐴𝐴[𝑖𝑖]. Otherwise it returns the default value 𝑣𝑣.

Do you believe it? You should be skeptical. Try it on a few examples to convince
yourself.

Solution – Arrays for Busy People

CMSC 420 – Dave Mount15

 Basic data structures – Linear lists
 Stacks, queues, and deques
 Dynamic reallocation through doubling and amortized analysis
 Multilists
 (Fun problem – Not covered on the exams)

Summary

	CMSC 420 – 0201 – Fall 2019�Lecture 02
	Fun Challenge – Arrays for Busy People
	Linear Lists
	Linear Lists
	Linear Lists
	Linear Lists
	Linear Lists
	Linear Lists
	Multilists and Sparse Matrices
	Multilist Representing a Sparse Matrix
	Fun Challenge – Arrays for Busy People
	Solution – Arrays for Busy People
	Solution – Arrays for Busy People
	Solution – Arrays for Busy People
	Summary

