
CMSC 420 – 0201 – Fall 2019
Lecture 03

Rooted Trees and Binary Trees

CMSC 420 – Dave Mount2

 Graph: A graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) is a finite set of nodes 𝑉𝑉 and a set of edges 𝐸𝐸. Each
edge is a pair of nodes
− Directed graph: edge pairs are ordered

− Undirected graph: edge pairs are unordered

Graphs and Free Trees

Tree Definition and Notation

CMSC 420 – Dave Mount3

 Free Tree: A connected, undirected, acyclic graph
− Example: Minimum spanning tree of an undirected graph

Graphs and Free Trees

Tree Definition and Notation

CMSC 420 – Dave Mount4

 Rooted Tree:
− Designate a special node, called the root

− As in a family tree, all other nodes are descendants of the root

− Nodes with no descendants are called leaves

− Nodes with one or more descendants are called internal nodes

Graphs and Free Trees

Tree Definition and Notation

CMSC 420 – Dave Mount5

 Rooted Tree: (Recursive definition)
− A single node is a rooted tree

− Given rooted trees 𝑇𝑇𝑇, … ,𝑇𝑇𝑇𝑇, joining these trees under a common root node is a rooted
tree

− Note that this definition does not allow for empty trees

 Convention: When we say “tree”, we
mean “rooted tree” (not “free tree”)

Recursive Definition

Tree Definition and Notation

CMSC 420 – Dave Mount6

 Terminology:
− From family trees: parent, child, sibling (all have the expected meaning)

− Degree (of a node): is its number of children

− Degree (of a tree): is the maximum degree of any node

− Depth (of a node): is the length of path from root (root depth = 0)

− Height (of a tree): is the maximum
depth of any node

− Ordered tree: Children are ordered
(left to right)

Recursive Definition

Tree Definition and Notation

CMSC 420 – Dave Mount7

 It is often handy to assign directions to the edges
 Arborescence (or Out-Tree): Edges emanate outwards from root
 Anti-arborescence (or In-Tree): Edges are directed inwards to the root

Arborescences – Out-trees and In-trees

Tree Definition and Notation

CMSC 420 – Dave Mount8

Node structure (Binary-like)

How to Represent Rooted Trees

CMSC 420 – Dave Mount9

 Binary tree: A (possibly empty) rooted, ordered tree, where each internal node
has two children, left and right

 Full binary tree: Every non-leaf node has exactly two children
 Extended binary tree: Replace empty subtrees special external nodes

Standard Definition

Binary Tree

CMSC 420 – Dave Mount10

class BinaryTreeNode<E> {
private E entry; // this node's data
private BinaryTreeNode<E> left; // left child reference
private BinaryTreeNode<E> right; // right child reference
// ... remaining details omitted

}

 The entry type E can be filled in according to the application

 This is a minimalist representation. We might other information, such as a parent link

 Disclaimer: Java code in lectures is designed to be illustrative (and brief). It may be poorly
structured and may contain errors. (If you find any, let me know.)

Java representation

Binary Tree

CMSC 420 – Dave Mount11

 Given tree with root 𝑟𝑟 and subtrees 𝑇𝑇1, … ,𝑇𝑇𝑘𝑘:
 Preorder: Visit 𝑟𝑟, then recursively do a preorder traversal of 𝑇𝑇1, … ,𝑇𝑇𝑘𝑘
 Postorder: Recursively do a postorder traversal of 𝑇𝑇1, … ,𝑇𝑇𝑘𝑘 and then visit 𝑟𝑟
 Inorder: (for binary trees) Do an inorder traversal of 𝑇𝑇𝐿𝐿, visit 𝑟𝑟, do an inorder

traversal of 𝑇𝑇𝑅𝑅.

Tree Traversals

CMSC 420 – Dave Mount12

void preorder(BinaryTreeNode v) {
if (v == null) return; // empty subtree - do nothing
visit(v); // visit (depends on the application)
preorder(v.left); // recursively visit left subtree
preorder(v.right); // recursively visit right subtree

}

Tree Traversals
Java implementation of inorder traversal

CMSC 420 – Dave Mount13

 Theorem: An extended binary tree with 𝑛𝑛 internal nodes has 𝑛𝑛 + 𝑇 external
nodes

 Proof: (By induction on 𝑛𝑛) Let 𝑥𝑥(𝑛𝑛) be the number of external nodes
− 𝑛𝑛 = 0: No internal nodes and 𝑇 internal node. 𝑥𝑥(0) = 𝑇, as desired

− 𝑛𝑛 ≥ 𝑇: Tree has a root and two subtrees, 𝑇𝑇𝐿𝐿 and 𝑇𝑇𝑅𝑅. Let 𝑛𝑛𝐿𝐿 and 𝑛𝑛𝑅𝑅 be the numbers of
internal nodes in each. We have 𝑛𝑛 = 𝑇 + 𝑛𝑛𝐿𝐿 + 𝑛𝑛𝑅𝑅.

− By induction, 𝑥𝑥(𝑛𝑛𝐿𝐿) = 𝑛𝑛𝐿𝐿 + 𝑇 and 𝑥𝑥 𝑛𝑛𝑅𝑅 = 𝑛𝑛𝑅𝑅 + 𝑇
− Total number of external nodes is:

𝑥𝑥 𝑛𝑛𝐿𝐿 + 𝑥𝑥(𝑛𝑛𝑅𝑅) = (𝑛𝑛𝐿𝐿+𝑇) + (𝑛𝑛𝑅𝑅 + 𝑇) = (𝑇 + 𝑛𝑛𝐿𝐿 + 𝑛𝑛𝑅𝑅) + 𝑇 = 𝑛𝑛 + 𝑇

 Corollary: It has a total of 2𝑛𝑛 + 𝑇 nodes

How many external nodes?

Extended Binary Trees

CMSC 420 – Dave Mount14

 Can we make better use of the null references? Help perform traversals!
 Left (null) child: Points to inorder predecessor
 Right (null) child: Points to inorder successor
 Add a mark bit so we know which

links are real and which are
threads (u.left.isThread
and u.right.isThread)

Standard Definition

Threaded Binary Trees

CMSC 420 – Dave Mount15

BinaryTreeNode inorderSuccessor(BinaryTreeNode v) {
BinaryTreeNode u = v.right; // go to right child
if (v.right.isThread) return u; // if thread, then done
while (!u.left.isThread) { // else u is right child

u = u.left; // go to left child
} // ...until hitting thread
return u;

}

Standard Definition

Threaded Binary Trees

CMSC 420 – Dave Mount16

 Can we allocate binary trees in an array, without pointers?

 Yes, but the tree needs to be really full

 Complete Binary Tree: Every level of the tree is completely filled, except possibly the
bottom level, which is filled from left to right

…and array allocation

Complete Binary Trees

CMSC 420 – Dave Mount17

 We can allocate the nodes of a complete binary tree in an array as follows:
− Number the nodes level by level from 𝑇 to 𝑛𝑛, and store in array 𝐴𝐴[𝑇…𝑛𝑛]
− leftChild(𝑖𝑖): if (2𝑖𝑖 ≤ 𝑛𝑛) return 2𝑖𝑖, else null

− rightChild(𝑖𝑖): if (2𝑖𝑖 + 𝑇 ≤ 𝑛𝑛) return 2𝑖𝑖 + 𝑇, else null

− parent(𝑖𝑖): if (𝑖𝑖 ≥ 2) return 𝑖𝑖/2 , else null

…and array allocation

Complete Binary Trees

CMSC 420 – Dave Mount18

 Rooted trees – Definition, terminology and representation
 Binary trees - Definition and terminology
 Node representation
 Tree traversals
 Extended binary trees (and number of external nodes)
 Threaded binary trees
 Complete binary trees and array allocation

Summary

	CMSC 420 – 0201 – Fall 2019�Lecture 03
	Tree Definition and Notation
	Tree Definition and Notation
	Tree Definition and Notation
	Tree Definition and Notation
	Tree Definition and Notation
	Tree Definition and Notation
	How to Represent Rooted Trees
	Binary Tree
	Binary Tree
	Tree Traversals
	Tree Traversals
	Extended Binary Trees
	Threaded Binary Trees
	Threaded Binary Trees
	Complete Binary Trees
	Complete Binary Trees
	Summary

