# CMSC 420 - 0201 - Fall 2019 Lecture 03

**Rooted Trees and Binary Trees** 

Graphs and Free Trees

- Graph: A graph G = (V, E) is a finite set of nodes V and a set of edges E. Each edge is a pair of nodes
  - Directed graph: edge pairs are ordered
  - Undirected graph: edge pairs are unordered

Graphs and Free Trees

- Free Tree: A connected, undirected, acyclic graph
  - Example: Minimum spanning tree of an undirected graph



Graphs and Free Trees

- Rooted Tree:
  - Designate a special node, called the root
  - As in a family tree, all other nodes are descendants of the root
  - Nodes with no descendants are called leaves
  - Nodes with one or more descendants are called internal nodes



**Recursive Definition** 

- Rooted Tree: (Recursive definition)
  - A single node is a rooted tree
  - Given rooted trees T1, ..., Tk, joining these trees under a common root node is a rooted tree
  - Note that this definition does not allow for empty trees
- Convention: When we say "tree", we mean "rooted tree" (not "free tree")



**Recursive Definition** 

- Terminology:
  - From family trees: parent, child, sibling (all have the expected meaning)
  - Degree (of a node): is its number of children
  - Degree (of a tree): is the maximum degree of any node
  - Depth (of a node): is the length of path from root (root depth = 0)
  - Height (of a tree): is the maximum depth of any node
  - Ordered tree: Children are ordered (left to right)



Arborescences - Out-trees and In-trees

- It is often handy to assign directions to the edges
- Arborescence (or Out-Tree): Edges emanate outwards from root
- Anti-arborescence (or In-Tree): Edges are directed inwards to the root



### How to Represent Rooted Trees

Node structure (Binary-like)



### **Binary Tree**

#### **Standard Definition**

- Binary tree: A (possibly empty) rooted, ordered tree, where each internal node has two children, left and right
- Full binary tree: Every non-leaf node has exactly two children
- Extended binary tree: Replace empty subtrees special external nodes



### **Binary Tree**

Java representation

```
class BinaryTreeNode<E> {
    private E entry;
    private BinaryTreeNode<E> left;
    private BinaryTreeNode<E> right;
    // ... remaining details omitted
}
```

entry; // this node's data left; // left child reference right; // right child reference

- The entry type E can be filled in according to the application
- This is a minimalist representation. We might other information, such as a parent link
- Disclaimer: Java code in lectures is designed to be illustrative (and brief). It may be poorly structured and may contain errors. (If you find any, let me know.)

### **Tree Traversals**

- Given tree with root r and subtrees  $T_1, \ldots, T_k$ :
- Preorder: Visit r, then recursively do a preorder traversal of  $T_1, \dots, T_k$
- Postorder: Recursively do a postorder traversal of  $T_1, \dots, T_k$  and then visit r
- Inorder: (for binary trees) Do an inorder traversal of T<sub>L</sub>, visit r, do an inorder traversal of T<sub>R</sub>.



Preorder: / \* + a b c - d e

Postorder: a b + c \* d e - /

Inorder: a + b \* c / d - e

### Tree Traversals

Java implementation of inorder traversal

```
void preorder(BinaryTreeNode v) {
       visit(v);
```



if (v == null) return; // empty subtree - do nothing // visit (depends on the application) preorder(v.left); // recursively visit left subtree preorder(v.right); // recursively visit right subtree

Postorder: a b + c \* d e - /

Inorder: a + b \* c / d - e

### **Extended Binary Trees**

How many external nodes?

- Theorem: An extended binary tree with n internal nodes has n + 1 external nodes
- Proof: (By induction on n) Let x(n) be the number of external nodes
  - -n = 0: No internal nodes and 1 internal node. x(0) = 1, as desired
  - $-n \ge 1$ : Tree has a root and two subtrees,  $T_L$  and  $T_R$ . Let  $n_L$  and  $n_R$  be the numbers of internal nodes in each. We have  $n = 1 + n_L + n_R$ .
  - By induction,  $x(n_L) = n_L + 1$  and  $x(n_R) = n_R + 1$
  - Total number of external nodes is:

 $x(n_L) + x(n_R) = (n_L+1) + (n_R+1) = (1 + n_L + n_R) + 1 = n + 1$ 

• Corollary: It has a total of 2n + 1 nodes

# **Threaded Binary Trees**

Standard Definition

Can we make better use of the null references? Help perform traversals!

(a)

- Left (null) child: Points to inorder predecessor
- Right (null) child: Points to inorder successor
- Add a mark bit so we know which links are real and which are threads (u.left.isThread and u.right.isThread)



(b)

C

# **Threaded Binary Trees**

Standard Definition

```
BinaryTreeNode inorderSuccessor(BinaryTreeNode v) {
                               // go to right child
     BinaryTreeNode u = v.right;
      if (v.right.isThread) return u; // if thread, then done
                                // else u is right child
      while (!u.left.isThread) {
                                         // go to left child
          u = u.left;
                                         // ...until hitting thread
      return u;
                                  (a)
                                                     (b)
                                                                  C
```

## **Complete Binary Trees**

...and array allocation

- Can we allocate binary trees in an array, without pointers?
- Yes, but the tree needs to be really full
- Complete Binary Tree: Every level of the tree is completely filled, except possibly the bottom level, which is filled from left to right



## **Complete Binary Trees**

...and array allocation

- We can allocate the nodes of a complete binary tree in an array as follows:
  - Number the nodes level by level from 1 to n, and store in array A[1 ... n]
  - leftChild(*i*): if  $(2i \leq n)$  return 2*i*, else null
  - rightChild(i): if  $(2i + 1 \le n)$  return 2i + 1, else null
  - parent(i): if  $(i \ge 2)$  return  $\lfloor i/2 \rfloor$ , else null





- Rooted trees Definition, terminology and representation
- Binary trees Definition and terminology
- Node representation
- Tree traversals
- Extended binary trees (and number of external nodes)
- Threaded binary trees
- Complete binary trees and array allocation

