CMSC 420 - 0201 - Fall 2019 ®
Lecture 04

Binary Search Trees

Searching

= Set of entries {e,, ..., e,,} , where each entry is a key-value pair (x;, v;)

= Store these so that given any key x, we can efficiently retrieve the associated
value v (or report that it is not present)

= Good coding versus our conventions:

— To simplify code fragments in lecture, we will assume two fixed types, Key and Value,
but these would typically be class generics, e.g., class Dictionary<K,V>

— We will use usual comparison operators for keys (==, <=, >, etc), but these would
normally be implemented using a Comparator class (e.g., compare(x,y))

CMSC 420 — Dave Mount

Dictionary
Core Operations

* void insert(Key x, Value v):
— Inserts an entry with the key-value pair (x, v)

— We assume that keys are unique, and so if this key already exists, an error condition will
be signaled (e.g., an exception will be thrown)

» void delete(Key x):
— Delete the entry with x's key from the dictionary
— If this key does not appear in the dictionary, then an error conditioned is signaled
* Value find(Key x):
— Determine whether there is an entry matching x 's key in the dictionary
— If so, it returns a reference to associated value. Otherwise, it returns a null reference.

CMSC 420 — Dave Mount

Dictionary
Sequential Allocation

= Allocate entries in an array. Simple, but not very efficient
* Unsorted array:
— Insertion in 0(1), but still need 0(n) to check for duplicates
— Find and Delete in 0(n)
= Sorted array:
— Find in O(logn) through binary search
— Insert and Delete in 0O(n)

4 CMSC 420 — Dave Mount

Binary Search Tree

= Can we achieve O(log n) time for all operations?
= Yes! Binary search trees

= Store entries in a binary tree, so that an
inorder traversal encounters keys in
ascending order

CMSC 420 — Dave Mount

Binary Search Tree - Find
Extended Binary Search Tree

= To find a key x, start at the root | @
= For each node p: find(5)

— if (x == p.key) - Success! @ @

— if (x < p.key) - Searchp.left

— if (x > p.key) - Search p.right e @ @ @

find (14)

— if (p == null) - Search is unsuccessful
= Can view the tree “as if” it were an (1) H)O (()oO o (s o
extended tree: (successful) (unsuccessful)

— Successful search ends at internal node 9 d |\;| @ N @ @

— Unsuccessful search ends at external node

CMSC 420 — Dave Mount

Binary Search Tree - Find
Recursive formulation

Value find(Key x, BinaryNode p) {

if (p == null) return null; // unsuccessful search
else if (x < p.key) // x 1s smaller?
return find(x, p.left); // ... search left
else if (x > p.key) // x 1is larger?
return find(x, p.right); // ... search right
else return p.value; // successful search

CMSC 420 — Dave Mount

Binary Search Tree - Find
Ilterative formulation

Value find(Key x) {

BinaryNode p = root; // start at the root

while (p != null) { // until we fall out of tree
if (x < p.key) p = p.left; // X is smaller? ...search left
else if (x > p.key) p = p.right; // x 1s larger? ...search right
else return p.value; // successful search

}

return null; // unsuccessful search

CMSC 420 — Dave Mount

Binary Search Trees
Search time depends on the height of the tree

Balanced: Height = O(logn) Degenerate: Height = O(n)

9 CMSC 420 — Dave Mount

Binary Search Tree - Insert

» To insert a new key-value pair, first find the key
= |f you find it, duplicate-key error
= Otherwise, insert the new node at the spot where you “fall out” of the tree

insert(14)

.. >

10 CMSC 420 — Dave Mount

Binary Search Tree - Insert

BinaryNode insert(Key x, Value v, BinaryNode p) {
if (p == null)
p = new BinaryNode(x, v, null, null);
else if (x < p.key)
p.left = insert(x, v, p.left);
else if (x > p.key)
p.right = insert(x, v, p.right);
else throw DuplicateKeyException;

return p

// fell out of the tree?

// ... create new leaf here
// X 1s smaller?

// ...insert left

// X 1s larger?

// ...insert right

// X 1s equal ...duplicate!

// ref to current node

11

CMSC 420 — Dave Mount

Binary Search Tree - Insert

Beware: This code is tricky!
In the statement:

p.left = insert(x, v, p.left);

Note that the return value from insert is
used to modify the parent’s child pointer

= Areference to newly created node p; is
inserted into the left-child link of p,

12

CMSC 420 — Dave Mount

Binary Search Tree - Delete

= First find the node to delete, and then remove it, and fix the links

= Deletion is more complex than insertion

— Insertion creates a new leaf, but any node may be deleted
= Cases:

— Deleting a leaf (zero children)

— Deleting a node with one child

— Deleting a node with two children

13

CMSC 420 — Dave Mount

Binary Search Tree - Delete
Leaf deletion (zero children)

= Simply remove this node (and set
parent’s child link to null)

14

Leaf deletion

CMSC 420 — Dave Mount

Binary Search Tree - Delete
Single-child case

Single-child case

= Link the child in so that replaces the
deleted node

g
Q
0

.
-"'

(slide up)

15 CMSC 420 — Dave Mount

Binary Search Tree - Delete
Two-Child Case

* Find a replacement node, r, our inorder successor

= Copy r’s contents into the deleted node

= Delete r (recursively) et

16

Two-Child Case

CMSC 420 — Dave Mount

Binary Search Tree - Deletion

= First, define a helper procedure to find the replacement node

= This is the inorder successor, or equivalently, the leftmost node of the right
subtree

BinaryNode findReplacement(BinaryNode p) { // find p's replacement node
BinaryNode r = p.right; // start in p's right subtree
while (r.left != null) r = r.left; // go to the leftmost node
return r;

}

17 CMSC 420 — Dave Mount

Binary Search Tree - Deletion

BinaryNode delete(Key x, BinaryNode p) {

if (p == null) // fell out of tree?
throw KeyNotFoundException; // ...error - no such key
else {
if (x < p.data) // look in left subtree
p.left = delete(x, p.left);
else if (x > p.data) // look in right subtree
p.right = delete(x, p.right);
// found it!
else if (p.left == null || p.right == null) { // either child empty?
if (p.left == null) return p.right; // return replacement node
else return p.left;
}
else { // both children present
r = findReplacement(p); // find replacement node
copy r's contents to p; // copy its contents to p
p.right = delete(r.key, p.right); // delete the replacement
}
}
return p;

18 CMSC 420 — Dave Mount

Binary Search Tree - Analysis

All operations take time O(h), where h is the height of the tree

But what is the height?
— Worst case: 0(n)

— Best case: O(logn)

— Expected case? If keys are inserted in random order, then the expected depth of any
node is O(logn)

» The proof is rather messy (deriving a recurrence and solving it)

We will show a weaker result, that the expected depth of the leftmost node is
O(logn)

19 CMSC 420 — Dave Mount

Binary Search Tree - Analysis
Depth of the Leftmost Node

Theorem: Given a set of n keys x; <x, < ... <x,, let D(n) denote the expected
depth of node x; after inserting all these keys in a binary search tree, under the
assumption that all n! insertion orders are equally likely. Then D(n) < Inn, where

In denotes the natural logarithm.

Proof:

Overview:

— We’ll show that the depth of the leftmost node increases by one whenever the key being
inserted is smaller than all the keys that preceded it

— We’ll show that the probability of this occurring with the i-th insertion is %

— This implies that the expected height of the node is bounded by the Harmonic series

20 CMSC 420 — Dave Mount

Binary Search Tree - Analysis
Depth of the Leftmost Node

Proof:

— Consider any i, 2 <i < n. Observe that the depth of the leftmost node increases by one
only when the i-th item to be inserted is the minimum among all the keys inserted so far

Insertion order: (9,5,10,6,3,4,2)

insert(5) 1nsert(10 insert(6) insert(3) insert(4)

@ = (9) o .
insert(9)
~® 9@@@ (50 @ () @ () QO

21 CMSC 420 — Dave Mount

Binary Search Tree - Analysis
Depth of the Leftmost Node

Proof:

22

Consider any i, 2 < i < n. Observe that the depth of the leftmost node increases by one
only when the i-th item to be inserted is the minimum among all the keys inserted so far

Let X; be a random variable that is 1 if the i-th item in the insertion sequence is the
smallest so far and 0 otherwise

Since the order of the first i items is random, Pr(X; = 1) = % (anyone can be the min)

Each time this event happens, the depth of the leftmost node increases by 1.
Thus,

D(n) = ¥M,Pr(X; = 1) = ¥yt < (¥0,3)—1 = Hn) — 1,
where H(n) is the famous Harmonic Series. It is well known that H(n) < (Inn) + 1.
So D(n) < Inn, as desired

CMSC 420 — Dave Mount

Binary Search Tree - Analysis
Deletions behave differently

23

Suppose you have a tree with roughly n nodes in the steady state, where nodes
are inserted and deleted randomly

You might think that the expected height would be 0(logn), but it is not!
Over time, the height converges to 0(y/n)

Why? Choosing the replacement node as the inorder successor, introduces a
systematic bias into the tree’s structure

A more balanced approach would be to randomly switch between the inorder
predecessor and inorder successor

It is conjectured that with balanced deletion, the height of the tree is the same
as in the insertion-only case [Culberson & Munro, 1990]

CMSC 420 — Dave Mount

Summary

24

Dictionary data structure
Sequential allocation - Simple but slow

Binary Search Trees
— Definition
— Finding a key
— Inserting a key-value pair
— Deleting a key

Analysis
— Expected case for insertion
— The difficulty of deletions

CMSC 420 — Dave Mount

	CMSC 420 – 0201 – Fall 2019�Lecture 04
	Searching
	Dictionary
	Dictionary
	Binary Search Tree
	Binary Search Tree - Find
	Binary Search Tree - Find
	Binary Search Tree - Find
	Binary Search Trees
	Binary Search Tree - Insert
	Binary Search Tree - Insert
	Binary Search Tree - Insert
	Binary Search Tree - Delete
	Binary Search Tree - Delete
	Binary Search Tree - Delete
	Binary Search Tree - Delete
	Binary Search Tree - Deletion
	Binary Search Tree - Deletion
	Binary Search Tree - Analysis
	Binary Search Tree - Analysis
	Binary Search Tree - Analysis
	Binary Search Tree - Analysis
	Binary Search Tree - Analysis
	Summary

