Searching

- Set of entries \{e_1, ..., e_n\}, where each entry is a key-value pair \((x_i, v_i)\)
- Store these so that given any key \(x\), we can efficiently retrieve the associated value \(v\) (or report that it is not present)
- Good coding versus our conventions:
 - To simplify code fragments in lecture, we will assume two fixed types, \(\text{Key}\) and \(\text{Value}\), but these would typically be class generics, e.g., `class Dictionary<K,V>`
 - We will use usual comparison operators for keys (==, <=, >, etc), but these would normally be implemented using a Comparator class (e.g., `compare(x,y)`)

```
Dictionary

Core Operations

- **void insert(Key x, Value v):**
  - Inserts an entry with the key-value pair \((x, v)\)
  - We assume that keys are unique, and so if this key already exists, an error condition will be signaled (e.g., an exception will be thrown)

- **void delete(Key x):**
  - Delete the entry with \(x\)'s key from the dictionary
  - If this key does not appear in the dictionary, then an error conditioned is signaled

- **Value find(Key x):**
  - Determine whether there is an entry matching \(x\)'s key in the dictionary
  - If so, it returns a reference to associated value. Otherwise, it returns a null reference.
Dictionary
Sequential Allocation

- Allocate entries in an array. Simple, but not very efficient
- **Unsorted array:**
  - Insertion in $O(1)$, but still need $O(n)$ to check for duplicates
  - Find and Delete in $O(n)$
- **Sorted array:**
  - Find in $O(\log n)$ through **binary search**
  - Insert and Delete in $O(n)$
Can we achieve $O(\log n)$ time for all operations?
Yes! Binary search trees
Store entries in a binary tree, so that an inorder traversal encounters keys in ascending order
Binary Search Tree - Find

- To find a key x, start at the root
- For each node p:
  - if (x == p.key) - Success!
  - if (x < p.key) - Search p.left
  - if (x > p.key) - Search p.right
  - if (p == null) - Search is unsuccessful
- Can view the tree “as if” it were an extended tree:
  - Successful search ends at internal node
  - Unsuccessful search ends at external node
Binary Search Tree - Find

Recursive formulation

```java
Value find(Key x, BinaryNode p) {
 if (p == null) return null; // unsuccessful search
 else if (x < p.key) // x is smaller?
 return find(x, p.left); // ... search left
 else if (x > p.key) // x is larger?
 return find(x, p.right); // ... search right
 else return p.value; // successful search
}
```
Binary Search Tree - Find

Iterative formulation

```java
Value find(Key x) {
 BinaryNode p = root; // start at the root
 while (p != null) { // until we fall out of tree
 if (x < p.key) p = p.left; // x is smaller? ...search left
 else if (x > p.key) p = p.right; // x is larger? ...search right
 else return p.value; // successful search
 }
 return null; // unsuccessful search
}
```
Binary Search Trees

Search time depends on the height of the tree

Balanced: Height = $O(\log n)$  

Degenerate: Height = $O(n)$
To insert a new key-value pair, first find the key
If you find it, duplicate-key error
Otherwise, insert the new node at the spot where you “fall out” of the tree
Binary Search Tree - Insert

```java
BinaryNode insert(Key x, Value v, BinaryNode p) {
 if (p == null) { // fell out of the tree?
 p = new BinaryNode(x, v, null, null); // ... create new leaf here
 } else if (x < p.key) { // x is smaller?
 p.left = insert(x, v, p.left); // ...insert left
 } else if (x > p.key) { // x is larger?
 p.right = insert(x, v, p.right); // ...insert right
 } else { // x is equal ...duplicate!
 throw DuplicateKeyException;
 }
 return p; // ref to current node
}
```
Beware: This code is tricky!

In the statement:

```plaintext
p.left = insert(x, v, p.left);
```

Note that the return value from `insert` is used to modify the parent’s child pointer.

A reference to newly created node $p_3$ is inserted into the left-child link of $p_2$. 
Binary Search Tree - Delete

- First find the node to delete, and then remove it, and fix the links
- Deletion is more complex than insertion
  - Insertion creates a new leaf, but any node may be deleted
- Cases:
  - Deleting a leaf (zero children)
  - Deleting a node with one child
  - Deleting a node with two children
Binary Search Tree - Delete

Leaf deletion (zero children)

- Simply remove this node (and set parent’s child link to null)
Binary Search Tree - Delete

Single-child case

- Link the child in so that replaces the deleted node
Binary Search Tree - Delete

Two-Child Case

- Find a replacement node, \( r \), our inorder successor
- Copy \( r \)'s contents into the deleted node
- Delete \( r \) (recursively)
Binary Search Tree - Deletion

- First, define a helper procedure to find the replacement node
- This is the inorder successor, or equivalently, the leftmost node of the right subtree

```java
BinaryNode findReplacement(BinaryNode p) {
 BinaryNode r = p.right; // start in p's right subtree
 while (r.left != null) r = r.left; // go to the leftmost node
 return r;
}
```
Binary Search Tree - Deletion

BinaryNode delete(Key x, BinaryNode p) {
    if (p == null)                                  // fell out of tree?
        throw KeyNotFoundException;                 // ...error - no such key
    else {
        if (x < p.data)                             // look in left subtree
            p.left = delete(x, p.left);
        else if (x > p.data)                        // look in right subtree
            p.right = delete(x, p.right);
        else if (p.left == null || p.right == null) { // either child empty?
            if (p.left == null) return p.right;     // return replacement node
                return p.left;
        }
        else {                                      // both children present
            r = findReplacement(p);                 // find replacement node
            copy r's contents to p;                 // copy its contents to p
            p.right = delete(r.key, p.right);       // delete the replacement
        }
    }
    return p;
}
Binary Search Tree - Analysis

- All operations take time $O(h)$, where $h$ is the height of the tree
- But what is the height?
  - Worst case: $O(n)$
  - Best case: $O(\log n)$
  - Expected case? If keys are inserted in random order, then the expected depth of any node is $O(\log n)$
- The proof is rather messy (deriving a recurrence and solving it)
- We will show a weaker result, that the expected depth of the leftmost node is $O(\log n)$
Binary Search Tree - Analysis

Depth of the Leftmost Node

Theorem: Given a set of \( n \) keys \( x_1 < x_2 < \ldots < x_n \), let \( D(n) \) denote the expected depth of node \( x_1 \) after inserting all these keys in a binary search tree, under the assumption that all \( n! \) insertion orders are equally likely. Then \( D(n) \leq \ln n \), where \( \ln \) denotes the natural logarithm.

Proof:

Overview:

– We’ll show that the depth of the leftmost node increases by one whenever the key being inserted is smaller than all the keys that preceded it.
– We’ll show that the probability of this occurring with the \( i \)-th insertion is \( \frac{1}{i} \).
– This implies that the expected height of the node is bounded by the Harmonic series.
Binary Search Tree - Analysis

Depth of the Leftmost Node

Proof:

- Consider any $i$, $2 \leq i \leq n$. Observe that the depth of the leftmost node increases by one only when the $i$-th item to be inserted is the minimum among all the keys inserted so far.

Insertion order: $\{9, 5, 10, 6, 3, 4, 2\}$
Binary Search Tree - Analysis

Depth of the Leftmost Node

Proof:

- Consider any $i$, $2 \leq i \leq n$. Observe that the depth of the leftmost node increases by one only when the $i$-th item to be inserted is the minimum among all the keys inserted so far.
- Let $X_i$ be a random variable that is 1 if the $i$-th item in the insertion sequence is the smallest so far and 0 otherwise.
- Since the order of the first $i$ items is random, $\Pr(X_i = 1) = \frac{1}{i}$ (anyone can be the min).
- Each time this event happens, the depth of the leftmost node increases by 1.
- Thus,

$$D(n) = \sum_{i=2}^{n} \Pr(X_i = 1) = \sum_{i=2}^{n} \frac{1}{i} \leq \left(\sum_{i=1}^{n} \frac{1}{i}\right) - 1 = H(n) - 1,$$

- where $H(n)$ is the famous Harmonic Series. It is well known that $H(n) \leq (\ln n) + 1$.
- So $D(n) \leq \ln n$, as desired.
Binary Search Tree - Analysis

Deletions behave differently

- Suppose you have a tree with roughly $n$ nodes in the steady state, where nodes are inserted and deleted **randomly**
- You might think that the expected height would be $O(\log n)$, but it is not!
- Over time, the height converges to $O(\sqrt{n})$
- Why? Choosing the replacement node as the inorder successor, introduces a **systematic bias** into the tree’s structure
- A more balanced approach would be to **randomly** switch between the inorder predecessor and inorder successor
- It is conjectured that with balanced deletion, the height of the tree is the same as in the insertion-only case [Culberson & Munro, 1990]
Summary

- Dictionary data structure
- Sequential allocation - Simple but slow
- Binary Search Trees
  - Definition
  - Finding a key
  - Inserting a key-value pair
  - Deleting a key
- Analysis
  - Expected case for insertion
  - The difficulty of deletions