
CMSC 420 – 0201 – Fall 2019
Lecture 04

Binary Search Trees

CMSC 420 – Dave Mount2

 Set of entries {𝑒𝑒1, … , 𝑒𝑒𝑛𝑛} , where each entry is a key-value pair 𝑥𝑥𝑖𝑖 , 𝑣𝑣𝑖𝑖
 Store these so that given any key 𝑥𝑥, we can efficiently retrieve the associated

value 𝑣𝑣 (or report that it is not present)
 Good coding versus our conventions:

− To simplify code fragments in lecture, we will assume two fixed types, Key and Value,
but these would typically be class generics, e.g., class Dictionary<K,V>

− We will use usual comparison operators for keys (==, <=, >, etc), but these would
normally be implemented using a Comparator class (e.g., compare(x,y))

Searching

CMSC 420 – Dave Mount3

 void insert(Key x, Value v):
− Inserts an entry with the key-value pair (𝑥𝑥, 𝑣𝑣)
− We assume that keys are unique, and so if this key already exists, an error condition will

be signaled (e.g., an exception will be thrown)

 void delete(Key x):
− Delete the entry with 𝑥𝑥's key from the dictionary

− If this key does not appear in the dictionary, then an error conditioned is signaled

 Value find(Key x):
− Determine whether there is an entry matching 𝑥𝑥 's key in the dictionary
− If so, it returns a reference to associated value. Otherwise, it returns a null reference.

Core Operations

Dictionary

CMSC 420 – Dave Mount4

 Allocate entries in an array. Simple, but not very efficient
 Unsorted array:

− Insertion in 𝑂𝑂 1 , but still need 𝑂𝑂(𝑛𝑛) to check for duplicates

− Find and Delete in 𝑂𝑂(𝑛𝑛)

 Sorted array:
− Find in 𝑂𝑂(log𝑛𝑛) through binary search

− Insert and Delete in 𝑂𝑂(𝑛𝑛)

Sequential Allocation

Dictionary

CMSC 420 – Dave Mount5

 Can we achieve O(log n) time for all operations?
 Yes! Binary search trees
 Store entries in a binary tree, so that an

inorder traversal encounters keys in
ascending order

Binary Search Tree

CMSC 420 – Dave Mount6

 To find a key x, start at the root
 For each node p:

− if (x == p.key) – Success!

− if (x < p.key) – Search p.left
− if (x > p.key) – Search p.right
− if (p == null) – Search is unsuccessful

 Can view the tree “as if” it were an
extended tree:
− Successful search ends at internal node

− Unsuccessful search ends at external node

Binary Search Tree - Find

CMSC 420 – Dave Mount7

Value find(Key x, BinaryNode p) {
if (p == null) return null; // unsuccessful search
else if (x < p.key) // x is smaller?

return find(x, p.left); // ... search left
else if (x > p.key) // x is larger?

return find(x, p.right); // ... search right
else return p.value; // successful search

}

Recursive formulation

Binary Search Tree - Find

CMSC 420 – Dave Mount8

Value find(Key x) {
BinaryNode p = root; // start at the root
while (p != null) { // until we fall out of tree

if (x < p.key) p = p.left; // x is smaller? ...search left
else if (x > p.key) p = p.right; // x is larger? ...search right
else return p.value; // successful search

}
return null; // unsuccessful search

}

Iterative formulation

Binary Search Tree - Find

CMSC 420 – Dave Mount9

Search time depends on the height of the tree

Binary Search Trees

CMSC 420 – Dave Mount10

 To insert a new key-value pair, first find the key
 If you find it, duplicate-key error
 Otherwise, insert the new node at the spot where you “fall out” of the tree

Binary Search Tree - Insert

CMSC 420 – Dave Mount11

BinaryNode insert(Key x, Value v, BinaryNode p) {
if (p == null) // fell out of the tree?

p = new BinaryNode(x, v, null, null); // ... create new leaf here
else if (x < p.key) // x is smaller?

p.left = insert(x, v, p.left); // ...insert left
else if (x > p.key) // x is larger?

p.right = insert(x, v, p.right); // ...insert right
else throw DuplicateKeyException; // x is equal ...duplicate!
return p // ref to current node

}

Binary Search Tree - Insert

CMSC 420 – Dave Mount12

 Beware: This code is tricky!
 In the statement:

p.left = insert(x, v, p.left);
 Note that the return value from insert is

used to modify the parent’s child pointer
 A reference to newly created node 𝑝𝑝3 is

inserted into the left-child link of 𝑝𝑝2

Binary Search Tree - Insert

CMSC 420 – Dave Mount13

 First find the node to delete, and then remove it, and fix the links
 Deletion is more complex than insertion

− Insertion creates a new leaf, but any node may be deleted

 Cases:
− Deleting a leaf (zero children)

− Deleting a node with one child

− Deleting a node with two children

Binary Search Tree - Delete

CMSC 420 – Dave Mount14

 Simply remove this node (and set
parent’s child link to null)

Binary Search Tree - Delete
Leaf deletion (zero children)

CMSC 420 – Dave Mount15

 Link the child in so that replaces the
deleted node

Binary Search Tree - Delete
Single-child case

CMSC 420 – Dave Mount16

 Find a replacement node, 𝑟𝑟, our inorder successor
 Copy 𝑟𝑟’s contents into the deleted node
 Delete 𝑟𝑟 (recursively)

Two-Child Case

Binary Search Tree - Delete

CMSC 420 – Dave Mount17

BinaryNode findReplacement(BinaryNode p) { // find p's replacement node

BinaryNode r = p.right; // start in p's right subtree

while (r.left != null) r = r.left; // go to the leftmost node

return r;

}

Binary Search Tree - Deletion

 First, define a helper procedure to find the replacement node
 This is the inorder successor, or equivalently, the leftmost node of the right

subtree

CMSC 420 – Dave Mount18

BinaryNode delete(Key x, BinaryNode p) {
if (p == null) // fell out of tree?

throw KeyNotFoundException; // ...error - no such key
else {

if (x < p.data) // look in left subtree
p.left = delete(x, p.left);

else if (x > p.data) // look in right subtree
p.right = delete(x, p.right);

// found it!
else if (p.left == null || p.right == null) { // either child empty?

if (p.left == null) return p.right; // return replacement node
else return p.left;

}
else { // both children present

r = findReplacement(p); // find replacement node
copy r's contents to p; // copy its contents to p
p.right = delete(r.key, p.right); // delete the replacement

}
}
return p;

}

Binary Search Tree - Deletion

CMSC 420 – Dave Mount19

 All operations take time 𝑂𝑂(ℎ), where h is the height of the tree
 But what is the height?

− Worst case: 𝑂𝑂(𝑛𝑛)
− Best case: 𝑂𝑂(log𝑛𝑛)
− Expected case? If keys are inserted in random order, then the expected depth of any

node is 𝑂𝑂(log𝑛𝑛)

 The proof is rather messy (deriving a recurrence and solving it)
 We will show a weaker result, that the expected depth of the leftmost node is
𝑂𝑂(log𝑛𝑛)

Binary Search Tree - Analysis

CMSC 420 – Dave Mount20

Theorem: Given a set of 𝑛𝑛 keys 𝑥𝑥1 < 𝑥𝑥2 < … < 𝑥𝑥𝑛𝑛, let 𝐷𝐷(𝑛𝑛) denote the expected
depth of node 𝑥𝑥1 after inserting all these keys in a binary search tree, under the
assumption that all 𝑛𝑛! insertion orders are equally likely. Then 𝐷𝐷(𝑛𝑛) ≤ ln𝑛𝑛, where
ln denotes the natural logarithm.
Proof:

Overview:

− We’ll show that the depth of the leftmost node increases by one whenever the key being
inserted is smaller than all the keys that preceded it

− We’ll show that the probability of this occurring with the 𝑖𝑖-th insertion is 1
𝑖𝑖

− This implies that the expected height of the node is bounded by the Harmonic series

Depth of the Leftmost Node

Binary Search Tree - Analysis

CMSC 420 – Dave Mount21

Proof:
− Consider any 𝑖𝑖, 2 ≤ 𝑖𝑖 ≤ 𝑛𝑛. Observe that the depth of the leftmost node increases by one

only when the 𝑖𝑖-th item to be inserted is the minimum among all the keys inserted so far

Depth of the Leftmost Node

Binary Search Tree - Analysis

CMSC 420 – Dave Mount22

Proof:
− Consider any 𝑖𝑖, 2 ≤ 𝑖𝑖 ≤ 𝑛𝑛. Observe that the depth of the leftmost node increases by one

only when the 𝑖𝑖-th item to be inserted is the minimum among all the keys inserted so far

− Let 𝑋𝑋𝑖𝑖 be a random variable that is 1 if the 𝑖𝑖-th item in the insertion sequence is the
smallest so far and 0 otherwise

− Since the order of the first 𝑖𝑖 items is random, Pr 𝑋𝑋𝑖𝑖 = 1 = 1
𝑖𝑖

(anyone can be the min)

− Each time this event happens, the depth of the leftmost node increases by 1.

− Thus,

𝐷𝐷 𝑛𝑛 = ∑𝑖𝑖=2𝑛𝑛 Pr 𝑋𝑋𝑖𝑖 = 1 = ∑𝑖𝑖=2𝑛𝑛 1
i
≤ ∑𝑖𝑖=1𝑛𝑛 1

i
− 1 = H n − 1,

− where 𝐻𝐻(𝑛𝑛) is the famous Harmonic Series. It is well known that 𝐻𝐻(𝑛𝑛) ≤ (ln𝑛𝑛) + 1.

− So 𝐷𝐷(𝑛𝑛) ≤ ln𝑛𝑛, as desired

Depth of the Leftmost Node

Binary Search Tree - Analysis

CMSC 420 – Dave Mount23

 Suppose you have a tree with roughly 𝑛𝑛 nodes in the steady state, where nodes
are inserted and deleted randomly

 You might think that the expected height would be 𝑂𝑂(log𝑛𝑛), but it is not!
 Over time, the height converges to 𝑂𝑂 𝑛𝑛
 Why? Choosing the replacement node as the inorder successor, introduces a

systematic bias into the tree’s structure
 A more balanced approach would be to randomly switch between the inorder

predecessor and inorder successor
 It is conjectured that with balanced deletion, the height of the tree is the same

as in the insertion-only case [Culberson & Munro, 1990]

Deletions behave differently

Binary Search Tree - Analysis

CMSC 420 – Dave Mount24

 Dictionary data structure
 Sequential allocation – Simple but slow
 Binary Search Trees

− Definition

− Finding a key

− Inserting a key-value pair

− Deleting a key

 Analysis
− Expected case for insertion

− The difficulty of deletions

Summary

	CMSC 420 – 0201 – Fall 2019�Lecture 04
	Searching
	Dictionary
	Dictionary
	Binary Search Tree
	Binary Search Tree - Find
	Binary Search Tree - Find
	Binary Search Tree - Find
	Binary Search Trees
	Binary Search Tree - Insert
	Binary Search Tree - Insert
	Binary Search Tree - Insert
	Binary Search Tree - Delete
	Binary Search Tree - Delete
	Binary Search Tree - Delete
	Binary Search Tree - Delete
	Binary Search Tree - Deletion
	Binary Search Tree - Deletion
	Binary Search Tree - Analysis
	Binary Search Tree - Analysis
	Binary Search Tree - Analysis
	Binary Search Tree - Analysis
	Binary Search Tree - Analysis
	Summary

