
CMSC 420 – 0201 – Fall 2019
Lecture 04

Binary Search Trees

CMSC 420 – Dave Mount2

 Set of entries {𝑒𝑒1, … , 𝑒𝑒𝑛𝑛} , where each entry is a key-value pair 𝑥𝑥𝑖𝑖 , 𝑣𝑣𝑖𝑖
 Store these so that given any key 𝑥𝑥, we can efficiently retrieve the associated

value 𝑣𝑣 (or report that it is not present)
 Good coding versus our conventions:

− To simplify code fragments in lecture, we will assume two fixed types, Key and Value,
but these would typically be class generics, e.g., class Dictionary<K,V>

− We will use usual comparison operators for keys (==, <=, >, etc), but these would
normally be implemented using a Comparator class (e.g., compare(x,y))

Searching

CMSC 420 – Dave Mount3

 void insert(Key x, Value v):
− Inserts an entry with the key-value pair (𝑥𝑥, 𝑣𝑣)
− We assume that keys are unique, and so if this key already exists, an error condition will

be signaled (e.g., an exception will be thrown)

 void delete(Key x):
− Delete the entry with 𝑥𝑥's key from the dictionary

− If this key does not appear in the dictionary, then an error conditioned is signaled

 Value find(Key x):
− Determine whether there is an entry matching 𝑥𝑥 's key in the dictionary
− If so, it returns a reference to associated value. Otherwise, it returns a null reference.

Core Operations

Dictionary

CMSC 420 – Dave Mount4

 Allocate entries in an array. Simple, but not very efficient
 Unsorted array:

− Insertion in 𝑂𝑂 1 , but still need 𝑂𝑂(𝑛𝑛) to check for duplicates

− Find and Delete in 𝑂𝑂(𝑛𝑛)

 Sorted array:
− Find in 𝑂𝑂(log𝑛𝑛) through binary search

− Insert and Delete in 𝑂𝑂(𝑛𝑛)

Sequential Allocation

Dictionary

CMSC 420 – Dave Mount5

 Can we achieve O(log n) time for all operations?
 Yes! Binary search trees
 Store entries in a binary tree, so that an

inorder traversal encounters keys in
ascending order

Binary Search Tree

CMSC 420 – Dave Mount6

 To find a key x, start at the root
 For each node p:

− if (x == p.key) – Success!

− if (x < p.key) – Search p.left
− if (x > p.key) – Search p.right
− if (p == null) – Search is unsuccessful

 Can view the tree “as if” it were an
extended tree:
− Successful search ends at internal node

− Unsuccessful search ends at external node

Binary Search Tree - Find

CMSC 420 – Dave Mount7

Value find(Key x, BinaryNode p) {
if (p == null) return null; // unsuccessful search
else if (x < p.key) // x is smaller?

return find(x, p.left); // ... search left
else if (x > p.key) // x is larger?

return find(x, p.right); // ... search right
else return p.value; // successful search

}

Recursive formulation

Binary Search Tree - Find

CMSC 420 – Dave Mount8

Value find(Key x) {
BinaryNode p = root; // start at the root
while (p != null) { // until we fall out of tree

if (x < p.key) p = p.left; // x is smaller? ...search left
else if (x > p.key) p = p.right; // x is larger? ...search right
else return p.value; // successful search

}
return null; // unsuccessful search

}

Iterative formulation

Binary Search Tree - Find

CMSC 420 – Dave Mount9

Search time depends on the height of the tree

Binary Search Trees

CMSC 420 – Dave Mount10

 To insert a new key-value pair, first find the key
 If you find it, duplicate-key error
 Otherwise, insert the new node at the spot where you “fall out” of the tree

Binary Search Tree - Insert

CMSC 420 – Dave Mount11

BinaryNode insert(Key x, Value v, BinaryNode p) {
if (p == null) // fell out of the tree?

p = new BinaryNode(x, v, null, null); // ... create new leaf here
else if (x < p.key) // x is smaller?

p.left = insert(x, v, p.left); // ...insert left
else if (x > p.key) // x is larger?

p.right = insert(x, v, p.right); // ...insert right
else throw DuplicateKeyException; // x is equal ...duplicate!
return p // ref to current node

}

Binary Search Tree - Insert

CMSC 420 – Dave Mount12

 Beware: This code is tricky!
 In the statement:

p.left = insert(x, v, p.left);
 Note that the return value from insert is

used to modify the parent’s child pointer
 A reference to newly created node 𝑝𝑝3 is

inserted into the left-child link of 𝑝𝑝2

Binary Search Tree - Insert

CMSC 420 – Dave Mount13

 First find the node to delete, and then remove it, and fix the links
 Deletion is more complex than insertion

− Insertion creates a new leaf, but any node may be deleted

 Cases:
− Deleting a leaf (zero children)

− Deleting a node with one child

− Deleting a node with two children

Binary Search Tree - Delete

CMSC 420 – Dave Mount14

 Simply remove this node (and set
parent’s child link to null)

Binary Search Tree - Delete
Leaf deletion (zero children)

CMSC 420 – Dave Mount15

 Link the child in so that replaces the
deleted node

Binary Search Tree - Delete
Single-child case

CMSC 420 – Dave Mount16

 Find a replacement node, 𝑟𝑟, our inorder successor
 Copy 𝑟𝑟’s contents into the deleted node
 Delete 𝑟𝑟 (recursively)

Two-Child Case

Binary Search Tree - Delete

CMSC 420 – Dave Mount17

BinaryNode findReplacement(BinaryNode p) { // find p's replacement node

BinaryNode r = p.right; // start in p's right subtree

while (r.left != null) r = r.left; // go to the leftmost node

return r;

}

Binary Search Tree - Deletion

 First, define a helper procedure to find the replacement node
 This is the inorder successor, or equivalently, the leftmost node of the right

subtree

CMSC 420 – Dave Mount18

BinaryNode delete(Key x, BinaryNode p) {
if (p == null) // fell out of tree?

throw KeyNotFoundException; // ...error - no such key
else {

if (x < p.data) // look in left subtree
p.left = delete(x, p.left);

else if (x > p.data) // look in right subtree
p.right = delete(x, p.right);

// found it!
else if (p.left == null || p.right == null) { // either child empty?

if (p.left == null) return p.right; // return replacement node
else return p.left;

}
else { // both children present

r = findReplacement(p); // find replacement node
copy r's contents to p; // copy its contents to p
p.right = delete(r.key, p.right); // delete the replacement

}
}
return p;

}

Binary Search Tree - Deletion

CMSC 420 – Dave Mount19

 All operations take time 𝑂𝑂(ℎ), where h is the height of the tree
 But what is the height?

− Worst case: 𝑂𝑂(𝑛𝑛)
− Best case: 𝑂𝑂(log𝑛𝑛)
− Expected case? If keys are inserted in random order, then the expected depth of any

node is 𝑂𝑂(log𝑛𝑛)

 The proof is rather messy (deriving a recurrence and solving it)
 We will show a weaker result, that the expected depth of the leftmost node is
𝑂𝑂(log𝑛𝑛)

Binary Search Tree - Analysis

CMSC 420 – Dave Mount20

Theorem: Given a set of 𝑛𝑛 keys 𝑥𝑥1 < 𝑥𝑥2 < … < 𝑥𝑥𝑛𝑛, let 𝐷𝐷(𝑛𝑛) denote the expected
depth of node 𝑥𝑥1 after inserting all these keys in a binary search tree, under the
assumption that all 𝑛𝑛! insertion orders are equally likely. Then 𝐷𝐷(𝑛𝑛) ≤ ln𝑛𝑛, where
ln denotes the natural logarithm.
Proof:

Overview:

− We’ll show that the depth of the leftmost node increases by one whenever the key being
inserted is smaller than all the keys that preceded it

− We’ll show that the probability of this occurring with the 𝑖𝑖-th insertion is 1
𝑖𝑖

− This implies that the expected height of the node is bounded by the Harmonic series

Depth of the Leftmost Node

Binary Search Tree - Analysis

CMSC 420 – Dave Mount21

Proof:
− Consider any 𝑖𝑖, 2 ≤ 𝑖𝑖 ≤ 𝑛𝑛. Observe that the depth of the leftmost node increases by one

only when the 𝑖𝑖-th item to be inserted is the minimum among all the keys inserted so far

Depth of the Leftmost Node

Binary Search Tree - Analysis

CMSC 420 – Dave Mount22

Proof:
− Consider any 𝑖𝑖, 2 ≤ 𝑖𝑖 ≤ 𝑛𝑛. Observe that the depth of the leftmost node increases by one

only when the 𝑖𝑖-th item to be inserted is the minimum among all the keys inserted so far

− Let 𝑋𝑋𝑖𝑖 be a random variable that is 1 if the 𝑖𝑖-th item in the insertion sequence is the
smallest so far and 0 otherwise

− Since the order of the first 𝑖𝑖 items is random, Pr 𝑋𝑋𝑖𝑖 = 1 = 1
𝑖𝑖

(anyone can be the min)

− Each time this event happens, the depth of the leftmost node increases by 1.

− Thus,

𝐷𝐷 𝑛𝑛 = ∑𝑖𝑖=2𝑛𝑛 Pr 𝑋𝑋𝑖𝑖 = 1 = ∑𝑖𝑖=2𝑛𝑛 1
i
≤ ∑𝑖𝑖=1𝑛𝑛 1

i
− 1 = H n − 1,

− where 𝐻𝐻(𝑛𝑛) is the famous Harmonic Series. It is well known that 𝐻𝐻(𝑛𝑛) ≤ (ln𝑛𝑛) + 1.

− So 𝐷𝐷(𝑛𝑛) ≤ ln𝑛𝑛, as desired

Depth of the Leftmost Node

Binary Search Tree - Analysis

CMSC 420 – Dave Mount23

 Suppose you have a tree with roughly 𝑛𝑛 nodes in the steady state, where nodes
are inserted and deleted randomly

 You might think that the expected height would be 𝑂𝑂(log𝑛𝑛), but it is not!
 Over time, the height converges to 𝑂𝑂 𝑛𝑛
 Why? Choosing the replacement node as the inorder successor, introduces a

systematic bias into the tree’s structure
 A more balanced approach would be to randomly switch between the inorder

predecessor and inorder successor
 It is conjectured that with balanced deletion, the height of the tree is the same

as in the insertion-only case [Culberson & Munro, 1990]

Deletions behave differently

Binary Search Tree - Analysis

CMSC 420 – Dave Mount24

 Dictionary data structure
 Sequential allocation – Simple but slow
 Binary Search Trees

− Definition

− Finding a key

− Inserting a key-value pair

− Deleting a key

 Analysis
− Expected case for insertion

− The difficulty of deletions

Summary

	CMSC 420 – 0201 – Fall 2019�Lecture 04
	Searching
	Dictionary
	Dictionary
	Binary Search Tree
	Binary Search Tree - Find
	Binary Search Tree - Find
	Binary Search Tree - Find
	Binary Search Trees
	Binary Search Tree - Insert
	Binary Search Tree - Insert
	Binary Search Tree - Insert
	Binary Search Tree - Delete
	Binary Search Tree - Delete
	Binary Search Tree - Delete
	Binary Search Tree - Delete
	Binary Search Tree - Deletion
	Binary Search Tree - Deletion
	Binary Search Tree - Analysis
	Binary Search Tree - Analysis
	Binary Search Tree - Analysis
	Binary Search Tree - Analysis
	Binary Search Tree - Analysis
	Summary

