Balanced Binary Search Trees

- Standard **binary search trees** provide a **simple** implementation of the sorted dictionary abstract data type, but their worst-case performance is **poor**, $O(n)$ per operation.
- Is there a version of the binary search tree that achieves $O(\log n)$ worst-case performance for all operations?
- Yes! Today we will study the oldest of these, **AVL Trees**, by Adelson-Velskii and Landis (1962).
AVL Tree

Height-Balanced Binary Search Tree

- Height:
 - $\text{height}(v)$ is the height of the subtree rooted at v
 - $\text{height}(\text{null}) = -1$
AVL Tree

Height-Balanced Binary Search Tree

- **Height:**
 - height(v) is the **height** of the subtree rooted at v
 - height(null) = −1

- **Balance Factor:**
 - balance(v) = height(v.right) − height(v.left)
 - balance(v) < 0: **Left-heavy**
 - balance(v) > 0: **Right-heavy**
AVL Tree

Height-Balanced Binary Search Tree

- **Height:**
 - $\text{height}(v)$ is the height of the subtree rooted at v
 - $\text{height}(\text{null}) = -1$

- **Balance Factor:**
 - $\text{balance}(v) = \text{height}(v.\text{right}) - \text{height}(v.\text{left})$

- **AVL Height Condition:**
 - For all nodes v, $-1 \leq \text{balance}(v) \leq +1$
AVL Tree

Height-Balanced Binary Search Tree

- **Height:**
 - \(\text{height}(v) \) is the height of the subtree rooted at \(v \)
 - \(\text{height}(\text{null}) = -1 \)

- **Balance Factor:**
 - \(\text{balance}(v) = \text{height}(v.\text{right}) - \text{height}(v.\text{left}) \)

- **AVL Height Condition:**
 - For all nodes \(v \), \(-1 \leq \text{balance}(v) \leq +1\)
Worst-Case Height

Does height condition imply $O(\log n)$ height?

- Consider the AVL trees of height h with the fewest possible nodes:

<table>
<thead>
<tr>
<th>Height</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td># Nodes</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td># Leaves</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
</tr>
</tbody>
</table>

```
          o
         /|
        / |
       o  o
      /   |
     o    o
    /     |
    o     o
    /     /|
   o     o  o
   /     /   |
  o     o     o
```

```
Worst-Case Height

Does height condition imply $O(\log n)$ height?

- Consider the AVL trees of height $h$ with the fewest possible nodes:

<table>
<thead>
<tr>
<th>Height</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td># Nodes</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td># Leaves</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
</tr>
</tbody>
</table>

- $N(h) = \text{minimum number of nodes for tree of height } h$
- Lemma: $N(h) \approx \varphi^h$, where $\varphi = \frac{1 + \sqrt{5}}{2}$ (Golden Ratio!)
Worst-Case Height

Does height condition imply $O(\log n)$ height?

- **Lemma:** $N(h) \approx \varphi^h$, where $\varphi = \frac{1+\sqrt{5}}{2}$
- **Theorem:** Maximum height of a tree with $n$ nodes is $O(\log n)$
Rotation

Single Rotation

- When tree is out of balance, we need an operation that modifies subtree heights while preserving tree’s inorder properties

- **Rotation**: (Also called single rotation)

```java
AvlNode rotateRight(AvlNode p) {
 AvlNode q = p.left;
 p.left = q.right;
 q.right = p;
 return q;
}
```

![Diagram showing right rotation]
Rotation

Single Rotation

- When tree is out of balance, we need an operation that modifies subtree heights while preserving tree’s inorder properties
- **Rotation**: (Also called single rotation)

```java
AvlNode rotateLeft(AvlNode p) {
 AvlNode q = p.right;
 p.right = q.left;
 q.left = p;
 return q;
}
```

![Diagram of left rotation](image)
Rotation

Double Rotation

- A single rotation does not always suffice
- **Double Rotation:**

```cpp
AvlNode rotateLeftRight(AvlNode p)
{
 p.left = rotateLeft(p.left);
 return rotateRight(p);
}
```

![Diagram of Left-Right rotation with nodes A, B, C, D, and E showing the rotation process.](diagram.png)
Rotation

Double Rotation

- A single rotation does not always suffice
- **Double Rotation:**

```java
AvlNode rotateRightLeft(AvlNode p)
{
 p.right = rotateRight(p.right);
 return rotateLeft(p);
}
```

![Diagram of Right-Left rotation]
AVL Insertion

- Insert the key-value pair as in standard binary search trees
- As we return, update heights/balance factors along the search path
- If any node is found to be out of balance (balance factor = $-2$ or $+2$), apply appropriate rotations to restore balance
- **Cases**: (Messy, but a lot of symmetry)
  - **Left heavy** ($\text{balance}(p) == -2$)
    - Left-left grandchild as heavy as left-right grandchild
    - Left-left grandchild lighter than left-right grandchild
  - **Right heavy** ($\text{balance}(p) == +2$)
    - Right-right grandchild as heavy as right-left grandchild
    - Right-right grandchild lighter than right-left grandchild
AVL Insertion

- Left-left ($A$) as heavy as left-right ($C$) - Fix with single rotation
AVL Insertion

- Left-left ($A$) lighter than left-right ($C$) - Fix with double rotation
AVL Insertion

Utility functions

```java
int height(AvlNode p) { // height of subtree (-1 if null)
 return p == null ? -1 : p.height;
}

void updateHeight(AvlNode p) { // update height from children
 p.height = 1 + max(height(p.left), height(p.right));
}

int balanceFactor(AvlNode p) { // compute balance factor
 return height(p.right) - height(p.left);
}
```
AVL Insertion

Insertion function

```java
AvlNode insert(Key x, Value v, AvlNode p) {
 if (p == null) { // fell out of tree; create node
 p = new AvlNode(x, v, null, null);
 }
 else if (x < p.key) { // x is smaller - insert left
 p.left = insert(x, p.left); // ... insert left
 } else if (x > p.key) { // x is larger - insert right
 p.right = insert(x, p.right); // ... insert right
 }
 else throw DuplicateKeyException; // key already in the tree?
 return rebalance(p); // rebalance if needed
}
```
AVL Insertion

Rebalancing function

```c
AvlNode rebalance(AvlNode p) {
 if (p == null) return p; // null - nothing to do
 if (balanceFactor(p) < -1) { // too heavy on the left?
 if (height(p.left.left) >= height(p.left.right)) { // left-left heavy?
 p = rotateRight(p); // fix with single rotation
 } else // left-right heavy?
 p = rotateLeftRight(p); // fix with double rotation
 } else if (balanceFactor(p) > +1) { // too heavy on the right?
 if (height(p.right.right) >= height(p.right.left)) { // right-right?
 p = rotateLeft(p); // fix with single rotation
 } else // right-left heavy?
 p = rotateRightLeft(p); // fix with double rotation
 }
 updateHeight(p); // update p's height
 return p;
}
```
AVL Deletion

- Delete the key-value pair as in standard binary search trees
- As we return, update heights/balance factors along the search path
- If any node is found to be out of balance (balance factor = $-2$ or $+2$), apply appropriate rotations to restore balance

**Cases:** (Same as for insertion)
- **Left heavy** ($\text{balance}(p) == -2$)
  - Left-left grandchild as heavy as left-right grandchild
  - Left-left grandchild lighter than left-right grandchild
- **Right heavy** ($\text{balance}(p) == +2$)
  - Right-right grandchild as heavy as right-left grandchild
  - Right-right grandchild lighter than right-left grandchild
AVL Deletion

- Left-left ($A$) as heavy as left-right ($C$) - Fix with single rotation

(a) $d$  
(b) $d$  
(c) $b$  

-1 or 0    -2 !!    0 or +1

$A$  $C$  $E$  $A$  $C$  $E$  $A$  $C$  $E$

Deleted item
AVL Deletion

- Left-left ($A$) lighter than left-right ($C$) - Fix with double rotation
Summary

- AVL Tree definition - Balance condition
- AVL trees have $O(\log n)$ height
- Rotations
  - Single rotation
  - Double rotations
- AVL insertion
- AVL deletion