
CMSC 420 – 0201 – Fall 2019
Lecture 06

2-3, Red-black, and AA trees

CMSC 420 – Dave Mount2

 Today, we will consider three search trees, which outwardly look different, but
all are equivalent (or nearly so)

 All support find, insert, and delete in 𝑂𝑂(log 𝑛𝑛) time for a tree with 𝑛𝑛 nodes
 These are:

− 2-3 Trees

− Red-black Trees

− AA Trees

“A rose by any other name…”

CMSC 420 – Dave Mount3

 2-Node:
− Two children; stores one key; order: 𝐴𝐴 < 𝑏𝑏 < 𝐶𝐶

 3-Node:
− Three children; stores two keys; order: 𝐴𝐴 < 𝑏𝑏 < 𝐶𝐶 < 𝑑𝑑 < 𝐸𝐸

A Variable Width Tree

2-3 Tree

CMSC 420 – Dave Mount4

 A 2-3 tree is:
− An empty tree (i.e., null)

− Root is a 2-node and two subtrees
are 2-3 trees of equal height

− Root is a 3-node and its three
subtrees are 2-3 trees of equal
height

 Theorem: A 2-3 tree with 𝑛𝑛 nodes
has height 𝑂𝑂(log 𝑛𝑛)

 Proof: (Easy) The sparsest tree is
already a complete binary tree

Formal Definition

2-3 Tree

CMSC 420 – Dave Mount5

 Start as usual: Find the key and note the leaf node where we fall out of the tree
 Insert new key in this leaf, and restructure if needed:

− 2-node → 3-node – No problem

− 3-node → 4-node – !!
− Split into two 2-nodes; promote middle key to parent; 4 = 2 + 2

2-3 Tree Insertion

CMSC 420 – Dave Mount6

 Start as usual: Find the key and note the leaf node where we fall out of the tree
 Insert new key in this leaf, and restructure if needed:

− 2-node → 3-node – No problem

− 3-node → 4-node – !!
− Split into two 2-nodes; promote middle key to parent; 4 = 2 + 2
−May need to fix parent or create a new root

2-3 Tree Insertion

CMSC 420 – Dave Mount7

 Example:

2-3 Tree Insertion

CMSC 420 – Dave Mount8

 Deletion as usual:
− Find the key

− If it is not a leaf, find the replacement node (inorder successor)

− Copy replacement-node contents to deleted node

− Recursively delete the replacement node

− (We may assume that restructuring always starts at the leaf level)

2-3 Tree Deletion

CMSC 420 – Dave Mount9

 Restructuring:
− 3-node → 2-node: No problem

− 2-node → 1-node: Two possible fixes:
− Adopt from sibling

−Merge with sibling

 Adoption:
− If there is a 3-node sibling

− Adopt its closest subtree

− …and associated key

− 1 + 3 = 2 + 2

2-3 Tree Deletion

CMSC 420 – Dave Mount10

 Restructuring:
− 3-node → 2-node: No problem

− 2-node → 1-node: Two possible fixes:
− Adopt from sibling

−Merge with sibling

 Merging:
− No sibling is 3-node ⇒ 2-node

− Merge these nodes: 1 + 2 = 3
− Demote key from parent

− May need to fix parent or delete root

2-3 Tree Deletion

CMSC 420 – Dave Mount11

 Example:

2-3 Tree Deletion

CMSC 420 – Dave Mount12

 2-3 trees are not binary trees – Can we simulate the same idea as a binary tree?
 Replace each 3-node with a pair of nodes:

− To distinguish them, we’ll color the upper node black and the lower node red

− The result is called a Red-Black Tree

Red-Black Trees

CMSC 420 – Dave Mount13

 2-3 trees are not binary trees – Can we simulate the same idea as a binary tree?
 Replace each 3-node with a pair of nodes:

− To distinguish them, we’ll color the upper node black and the lower node red

− The result is called a Red-Black Tree

Red-Black Trees

CMSC 420 – Dave Mount14

− Each node is either red or black

− The root is black
− This corresponds to the fact that the root is either a 2-node or the first half of a 3-node

− All null pointers are considered black
− This is just a convenient convention

− If a node is red, then both its children are black
− This enforces the condition that a child of the second half of a 3-node [red] must either

be a 2-node [black] or the first half of a 3-node [black]

− Every path from a given node to any of its null descendants contains the same number
of black nodes
− This corresponds to the requirement that all leaves of the 2-3 tree are of equal depth

Definition:

Red-Black Trees

CMSC 420 – Dave Mount15

Lemma: Every 2-3 tree corresponds to a red-black tree
− But the converse does not hold. There are valid red-black trees that are not the

encoding of some 2-3 tree

− (a) The red child could be on either the left or right side

− (b) Both children of a black node may be red

In fact, red-black trees are a binary encoding of a more general tree, a 2-3-4 tree

Red-Black Trees

CMSC 420 – Dave Mount16

 A simpler variant of the red-black tree
 Invented by Arne Anderson (1993) to simplify coding of red-black trees
 Updated definition:

− If a node is red, then both its children are black it is the right child of a black node

 This fits exactly with our encoding of 2-3 trees as binary trees

AA Trees

AA tree

CMSC 420 – Dave Mount17

 No null pointers: Use a sentinel node, called nil.
nil.left = nil.right = nil

Reduces need for checking null pointers.
 No node colors: Every node stores a level number:

− nil is at level 0

− Leaves at level 1

− If you are a red node, you are at the
same level as your parent

− If you are a black node, you are at
one level less than your parent

− Levels match levels of 2-3 tree

AA Trees
Node Representation:

CMSC 420 – Dave Mount18

 skew(p): If p is black and has a red left child, rotate so that the red child is now
on the right

 split(p): If p is black and has a right chain of two consecutive red nodes, split
this triple, promoting p's right child to the next higher level

Restructuring

AA-Trees

CMSC 420 – Dave Mount19

AANode skew(AANode p) {
if (p.left.level == p.level) { // red node to our left?

AANode q = p.left; // do a right rotation at p
p.left = q.right;
q.right = p;
return q; // return pointer to new upper node

}
else return p; // else, no change needed

}

AANode split(AANode p) {
if (p.right.right.level == p.level) { // right-right red chain?

AANode q = p.right; // do a left rotation at p
p.right = q.left;
q.left = p;
q.level += 1; // promote q to next higher level
return q; // return pointer to new upper node

}
else return p; // else, no change needed

}

Restructuring Operations

AA Trees

CMSC 420 – Dave Mount20

 Search for the new key and note where we fall out of the tree
 Insert a new (red) leaf node here (at level 1)
 Work back towards the root and restructure along the way

− Left child is red? → skew

− Two red children to the right? → split

Insertion

AA Trees - Insertion

CMSC 420 – Dave Mount21

AANode insert(Key x, Value v, AANode p) {
if (p == nil) // fell out of the tree?

p = new AANode(x, v, 1, nil, nil); // ... create a new leaf node here
else if (x < p.key) // x is smaller?

p.left = insert(x, v, p.left); // ...insert left
else if (x > p.key) // x is larger?

p.right = insert(x, v, p.right); // ...insert right
else

throw DuplicateKeyException; // duplicate key!
return split(skew(p)); // restructure and return result

}

Insertion

AA Trees

Only difference with standard binary search tree insertion

CMSC 420 – Dave Mount22

Insertion Example

AA-Trees

CMSC 420 – Dave Mount23

 Find the node to delete
 If it is not a leaf, find replacement at the leaf level and delete replacement
 Work back towards the root and restructure along the way

− More cases than with insertion

− Basic issue is that a node’s level may decrease

 Possibly 3 skew invocations:
− skew(p), skew(p.right), skew(p.right.right)

 Possibly 2 split invocations:
− split(p), split(p.right)

AA-Trees - Deletion

CMSC 420 – Dave Mount24

AANode updateLevel(AANode p) { // update p's level
int idealLevel = 1 + min(p.left.level, p.right.level);
if (p.level > idealLevel) { // p's level is too high?

p.level = idealLevel; // decrease its level
if (p.right.level > idealLevel) // p's right child red?

p.right.level = idealLevel; // ...fix its level as well
}
return p;

}

AANode fixupAfterDelete(AANode p) {
p = updateLevel(p); // update p's level
p = skew(p); // skew p
p.right = skew(p.right); // ...and p's right child
p.right.right = skew(p.right.right); // ...and p's right-right grandchild
p = split(p); // split p
p.right = split(p.right); // ...and p's (new) right child
return p;

}

Deletion – Restructuring Utilities

AA Trees

CMSC 420 – Dave Mount25

AANode delete(Key x, AANode p) {
if (p == nil) // fell out of tree?

throw KeyNotFoundException; // ...error - no such key
else {

if (x < p.key) // look in left subtree
p.left = delete(x, p.left);

else if (x > p.key) // look in right subtree
p.right = delete(x, p.right);

else { // found it!
if (p.left == nil && p.right == nil)// leaf node?

return nil; // just unlink the node
else if (p.left == nil) { // no left child?

AANode r = inorderSuccessor(p); // get replacement from right
p.copyContentsFrom(r); // copy replacement contents here
p.right = delete(r.key, p.right);// delete replacement

}
else { // no right child?

AANode r = inorderPredecessor(p);// get replacement from left
p.copyContentsFrom(r); // copy replacement contents here
p.left = delete(r.key, p.left); // delete replacement

}
}
return fixupAfterDelete(p); // fix structure after deletion

}
}s

AA Trees - Deletion

CMSC 420 – Dave Mount26

Deletion Example

AA-Trees

CMSC 420 – Dave Mount27

 2-3 Trees
 Insertion

− Splitting nodes

 Deletion
− Adoption

− Merging

 Red-black trees – Model 2-3-4 trees
 AA trees – Simplified red-black trees

− Skew and split to restructure

Summary

	CMSC 420 – 0201 – Fall 2019�Lecture 06
	“A rose by any other name…”
	2-3 Tree
	2-3 Tree
	2-3 Tree Insertion
	2-3 Tree Insertion
	2-3 Tree Insertion
	2-3 Tree Deletion
	2-3 Tree Deletion
	2-3 Tree Deletion
	2-3 Tree Deletion
	Red-Black Trees
	Red-Black Trees
	Red-Black Trees
	Red-Black Trees
	AA Trees
	AA Trees
	AA-Trees
	AA Trees
	AA Trees - Insertion
	AA Trees
	AA-Trees
	AA-Trees - Deletion
	AA Trees
	AA Trees - Deletion
	AA-Trees
	Summary

