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2-3, Red-black, and AA trees
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 Today, we will consider three search trees, which outwardly look different, but 
all are equivalent (or nearly so)

 All support find, insert, and delete in 𝑂𝑂(log 𝑛𝑛) time for a tree with 𝑛𝑛 nodes
 These are:

− 2-3 Trees

− Red-black Trees

− AA Trees

“A rose by any other name…”
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 2-Node: 
− Two children; stores one key; order: 𝐴𝐴 < 𝑏𝑏 < 𝐶𝐶

 3-Node: 
− Three children; stores two keys; order: 𝐴𝐴 < 𝑏𝑏 < 𝐶𝐶 < 𝑑𝑑 < 𝐸𝐸

A Variable Width Tree

2-3 Tree
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 A 2-3 tree is:
− An empty tree (i.e., null)

− Root is a 2-node and two subtrees 
are 2-3 trees of equal height

− Root is a 3-node and its three 
subtrees are 2-3 trees of equal 
height

 Theorem: A 2-3 tree with 𝑛𝑛 nodes 
has height 𝑂𝑂(log 𝑛𝑛)

 Proof: (Easy) The sparsest tree is 
already a complete binary tree

Formal Definition

2-3 Tree
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 Start as usual: Find the key and note the leaf node where we fall out of the tree
 Insert new key in this leaf, and restructure if needed:

− 2-node → 3-node – No problem

− 3-node → 4-node – !!
− Split into two 2-nodes; promote middle key to parent; 4 = 2 + 2

2-3 Tree Insertion
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 Start as usual: Find the key and note the leaf node where we fall out of the tree
 Insert new key in this leaf, and restructure if needed:

− 2-node → 3-node – No problem

− 3-node → 4-node – !!
− Split into two 2-nodes; promote middle key to parent; 4 = 2 + 2
−May need to fix parent or create a new root

2-3 Tree Insertion
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 Example:

2-3 Tree Insertion



CMSC 420 – Dave Mount8

 Deletion as usual: 
− Find the key

− If it is not a leaf, find the replacement node (inorder successor)

− Copy replacement-node contents to deleted node

− Recursively delete the replacement node

− (We may assume that restructuring always starts at the leaf level)

2-3 Tree Deletion
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 Restructuring: 
− 3-node → 2-node: No problem

− 2-node → 1-node: Two possible fixes:
− Adopt from sibling

−Merge with sibling

 Adoption:
− If there is a 3-node sibling

− Adopt its closest subtree

− …and associated key

− 1 + 3 = 2 + 2

2-3 Tree Deletion
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 Restructuring: 
− 3-node → 2-node: No problem

− 2-node → 1-node: Two possible fixes:
− Adopt from sibling

−Merge with sibling

 Merging:
− No sibling is 3-node ⇒ 2-node

− Merge these nodes: 1 + 2 = 3
− Demote key from parent

− May need to fix parent or delete root

2-3 Tree Deletion
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 Example:

2-3 Tree Deletion
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 2-3 trees are not binary trees – Can we simulate the same idea as a binary tree?
 Replace each 3-node with a pair of nodes:

− To distinguish them, we’ll color the upper node black and the lower node red

− The result is called a Red-Black Tree

Red-Black Trees
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 2-3 trees are not binary trees – Can we simulate the same idea as a binary tree?
 Replace each 3-node with a pair of nodes:

− To distinguish them, we’ll color the upper node black and the lower node red

− The result is called a Red-Black Tree

Red-Black Trees
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− Each node is either red or black

− The root is black
− This corresponds to the fact that the root is either a 2-node or the first half of a 3-node

− All null pointers are considered black
− This is just a convenient convention

− If a node is red, then both its children are black
− This enforces the condition that a child of the second half of a 3-node [red] must either 

be a 2-node [black] or the first half of a 3-node [black]

− Every path from a given node to any of its null descendants contains the same number 
of black nodes
− This corresponds to the requirement that all leaves of the 2-3 tree are of equal depth

Definition:

Red-Black Trees
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Lemma: Every 2-3 tree corresponds to a red-black tree
− But the converse does not hold. There are valid red-black trees that are not the 

encoding of some 2-3 tree

− (a) The red child could be on either the left or right side

− (b) Both children of a black node may be red

In fact, red-black trees are a binary encoding of a more general tree, a 2-3-4 tree

Red-Black Trees
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 A simpler variant of the red-black tree
 Invented by Arne Anderson (1993) to simplify coding of red-black trees
 Updated definition:

− If a node is red, then both its children are black it is the right child of a black node

 This fits exactly with our encoding of 2-3 trees as binary trees

AA Trees

AA tree
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 No null pointers: Use a sentinel node, called nil. 
nil.left = nil.right = nil

Reduces need for checking null pointers.
 No node colors: Every node stores a level number:

− nil is at level 0

− Leaves at level 1

− If you are a red node, you are at the
same level as your parent

− If you are a black node, you are at
one level less than your parent

− Levels match levels of 2-3 tree

AA Trees
Node Representation:
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 skew(p): If p is black and has a red left child, rotate so that the red child is now 
on the right

 split(p): If p is black and has a right chain of two consecutive red nodes, split 
this triple, promoting p's right child to the next higher level

Restructuring

AA-Trees
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AANode skew(AANode p) {
if (p.left.level == p.level) {  // red node to our left?

AANode q = p.left;          // do a right rotation at p
p.left = q.right;
q.right = p;
return q;                   // return pointer to new upper node

}
else return p;                  // else, no change needed

}

AANode split(AANode p) {
if (p.right.right.level == p.level) { // right-right red chain?

AANode q = p.right;         // do a left rotation at p
p.right = q.left;
q.left = p;
q.level += 1;               // promote q to next higher level
return q;                   // return pointer to new upper node

}
else return p;                  // else, no change needed

}

Restructuring Operations

AA Trees
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 Search for the new key and note where we fall out of the tree
 Insert a new (red) leaf node here (at level 1)
 Work back towards the root and restructure along the way

− Left child is red? → skew

− Two red children to the right? → split

Insertion

AA Trees - Insertion
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AANode insert(Key x, Value v, AANode p) {
if (p == nil)                            // fell out of the tree?

p = new AANode(x, v, 1, nil, nil);  // ... create a new leaf node here
else if (x < p.key)                     // x is smaller?

p.left = insert(x, v, p.left);      // ...insert left
else if (x > p.key)                     // x is larger?

p.right = insert(x, v, p.right);    // ...insert right
else

throw DuplicateKeyException;        // duplicate key!
return split(skew(p));                  // restructure and return result

}

Insertion

AA Trees

Only difference with standard binary search tree insertion
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Insertion Example

AA-Trees
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 Find the node to delete
 If it is not a leaf, find replacement at the leaf level and delete replacement
 Work back towards the root and restructure along the way

− More cases than with insertion

− Basic issue is that a node’s level may decrease

 Possibly 3 skew invocations:
− skew(p), skew(p.right), skew(p.right.right)

 Possibly 2 split invocations:
− split(p), split(p.right)

AA-Trees - Deletion
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AANode updateLevel(AANode p) {                  // update p's level 
int idealLevel = 1 + min(p.left.level,  p.right.level); 
if (p.level > idealLevel) {                 // p's level is too high?

p.level = idealLevel;                   // decrease its level
if (p.right.level > idealLevel)         // p's right child red?

p.right.level = idealLevel;         // ...fix its level as well
}
return p;

}

AANode fixupAfterDelete(AANode p) {
p = updateLevel(p);                         // update p's level
p = skew(p);                                // skew p
p.right = skew(p.right);                    // ...and p's right child
p.right.right = skew(p.right.right);        // ...and p's right-right grandchild
p = split(p);                               // split p
p.right = split(p.right);                   // ...and p's (new) right child
return p;

}

Deletion – Restructuring Utilities

AA Trees
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AANode delete(Key x, AANode p) {
if (p == nil)                                // fell out of tree?

throw KeyNotFoundException;             // ...error - no such key
else {

if (x < p.key)                          // look in left subtree
p.left = delete(x, p.left);

else if (x > p.key)                     // look in right subtree
p.right = delete(x, p.right);

else {                                  // found it!
if (p.left == nil && p.right == nil)// leaf node?

return nil;                     // just unlink the node
else if (p.left == nil) {           // no left child?

AANode r = inorderSuccessor(p); // get replacement from right
p.copyContentsFrom(r);          // copy replacement contents here
p.right = delete(r.key, p.right);// delete replacement

}
else {                              // no right child?

AANode r = inorderPredecessor(p);// get replacement from left
p.copyContentsFrom(r);          // copy replacement contents here
p.left = delete(r.key, p.left); // delete replacement

}
}
return fixupAfterDelete(p);             // fix structure after deletion

}
}s

AA Trees - Deletion



CMSC 420 – Dave Mount26

Deletion Example

AA-Trees
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 2-3 Trees
 Insertion

− Splitting nodes

 Deletion
− Adoption

− Merging

 Red-black trees – Model 2-3-4 trees
 AA trees – Simplified red-black trees

− Skew and split to restructure

Summary
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