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Lecture 07/

Treaps and Skip Lists



Randomized Search Structures

Today we will discuss two randomized search structures:

— Treaps

— Skip lists
We shall see that these structures are both very efficient and very simple
» Running times are measured in expectation over all random choices made

Note that expected time does not depend on the distribution of keys or the
order of operations
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Treap

= Recall that if n keys are inserted into a (standard) binary search tree, the
expected height is O(logn)
= Treap - A binary tree that behaves “as if” keys were inserted in random order

= |ntuition:
— Label each item with Insertion order: k, e, b, o, £, h, w, m, c, a, s
1ts insertion time @ Binary search tree With timestamps
— These timestamps are ordered
- 2 (4)
like a heap
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Treap

= Atreap is a binary search tree, where every node p stores a priority p.priority

— Priority values are chosen randomly when the key is inserted, and do not change

— The tree is structured as if keys were inserted in priority order
* Theorem: Expected height is O(logn)
* Ordering:

Insertion order: k¥, e, b, o, f, h, w, m, c, a, s

- Keys - inorder @ Binary search tree (1) With timestamps

— Priorities - heap order
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Treap Insertion

Apply the standard insertion process - create node where we fall out of tree
Assign a random priority value to the new node

Apply rotations up the tree until it is in proper heap order

Note: Inorder is maintained throughout
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Treap Deletion

= Find the node to be deleted
= Set its priority value to o
= Rotate it down to the leaf level and unlink
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Skip List

= A “better” linked list

= Intuition: “ldeal” skip list
— Store keys in a sorted link list (level 0)
— Promote every other key from level i — 1 to level i

— Number of levels is O(logn)
head
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Skip List

» (Randomized) Skip List

— Each node at level i tosses a coin

— If the coin comes up heads (probability = 2) extend this node to level i + 1
— Expected number of levels is O(logn)

head
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Skip List: Find(x)

— Start at the topmost level (i =

maxLevel

)

— Walk through level i until finding the rightmost node p such that p.key <= x

—if p.key == x, found it!

—elseif i > 0, drop to next lower level (i = i-1)

—else not found

reas find(22) tail
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Skip List - Randomized Analysis

10

Let E (i) be expected number of nodes visited at level i and lower
Backwards analysis: Walk backwards along the search path
Suppose we are currently at level i — 1

If current node contributes to next higher level (with prob %2) search goes up a
level (i), else we stay at current level (i — 1). Thus:

E() =1+ %E{-1) + YL2E(i)
Conclusion: E(i) = 2 + E(i—1) = 2i (i.e., two nodes per level)

Theorem: Expected search head find (25) tail
time is O(logn) - -
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Skip List Insertion
insert(x, v)

11

Walk through structure, as if doing find(x)
Keep track of the last node visited before dropping down a level

When we find where to insert x at level 0, apply coin flipping to determine level

k = 0
while (k <= maxLevel && Math.random() % 2 == 0) k++;
generate node of level k, with key x and value v

Link this node into levels O through k
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Skip List - Insertion

12

head tail
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Summary

= Randomized search structures
" Treaps
= Skip lists

13
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