
CMSC 420 – 0201 – Fall 2019
Lecture 07

Treaps and Skip Lists



CMSC 420 – Dave Mount2

 Today we will discuss two randomized search structures:
− Treaps

− Skip lists

 We shall see that these structures are both very efficient and very simple
 Running times are measured in expectation over all random choices made
 Note that expected time does not depend on the distribution of keys or the 

order of operations 

Randomized Search Structures



CMSC 420 – Dave Mount3

 Recall that if 𝑛𝑛 keys are inserted into a (standard) binary search tree, the 
expected height is 𝑂𝑂(log𝑛𝑛)

 Treap – A binary tree that behaves “as if” keys were inserted in random order
 Intuition: 

− Label each item with 
its insertion time

− These timestamps are ordered
like a heap

Treap



CMSC 420 – Dave Mount4

 A treap is a binary search tree, where every node p stores a priority p.priority
− Priority values are chosen randomly when the key is inserted, and do not change

− The tree is structured as if keys were inserted in priority order

 Theorem: Expected height is 𝑂𝑂(log𝑛𝑛)
 Ordering:

− Keys – inorder

− Priorities – heap order

Treap



CMSC 420 – Dave Mount5

 Apply the standard insertion process – create node where we fall out of tree
 Assign a random priority value to the new node
 Apply rotations up the tree until it is in proper heap order
 Note: Inorder is maintained throughout

Treap Insertion



CMSC 420 – Dave Mount6

 Find the node to be deleted
 Set its priority value to ∞
 Rotate it down to the leaf level and unlink

Treap Deletion



CMSC 420 – Dave Mount7

 A “better” linked list
 Intuition: “Ideal” skip list

− Store keys in a sorted link list (level 0)

− Promote every other key from level 𝑖𝑖 − 1 to level 𝑖𝑖
− Number of levels is 𝑂𝑂(log𝑛𝑛)

Skip List



CMSC 420 – Dave Mount8

 (Randomized) Skip List
− Each node at level 𝑖𝑖 tosses a coin

− If the coin comes up heads (probability = ½) extend this node to level 𝑖𝑖 + 1
− Expected number of levels is 𝑂𝑂(log𝑛𝑛)

Skip List



CMSC 420 – Dave Mount9

− Start at the topmost level (i = maxLevel)

− Walk through level i until finding the rightmost node p such that p.key <= x
− if p.key == x, found it!

− else if i > 0, drop to next lower level (i = i-1)

− else not found

Skip List: Find(x)



CMSC 420 – Dave Mount10

 Let 𝐸𝐸(𝑖𝑖) be expected number of nodes visited at level 𝑖𝑖 and lower
 Backwards analysis: Walk backwards along the search path
 Suppose we are currently at level 𝑖𝑖 − 1
 If current node contributes to next higher level (with prob ½) search goes up a 

level (𝑖𝑖), else we stay at current level (𝑖𝑖 − 1). Thus:
𝐸𝐸(𝑖𝑖) = 1 + ½ 𝐸𝐸(𝑖𝑖 − 1) + ½ 𝐸𝐸(𝑖𝑖)

 Conclusion: 𝐸𝐸(𝑖𝑖) = 2 + 𝐸𝐸(𝑖𝑖 − 1) = 2 𝑖𝑖 (i.e., two nodes per level)
 Theorem: Expected search 

time is 𝑂𝑂(log𝑛𝑛)

Skip List – Randomized Analysis



CMSC 420 – Dave Mount11

 Walk through structure, as if doing find(x)
 Keep track of the last node visited before dropping down a level
 When we find where to insert x at level 0, apply coin flipping to determine level

k = 0
while (k <= maxLevel && Math.random() % 2 == 0) k++;
generate node of level k, with key x and value v

 Link this node into levels 0 through k

insert(x, v)

Skip List Insertion



CMSC 420 – Dave Mount12

Skip List - Insertion



CMSC 420 – Dave Mount13

 Randomized search structures
 Treaps
 Skip lists

Summary


	CMSC 420 – 0201 – Fall 2019�Lecture 07
	Randomized Search Structures
	Treap
	Treap
	Treap Insertion
	Treap Deletion
	Skip List
	Skip List
	Skip List: Find(x)
	Skip List – Randomized Analysis
	Skip List Insertion
	Skip List - Insertion
	Summary

