CMSC 420 - 0201 - Fall 2019 ®
Lecture 07/

Treaps and Skip Lists

Randomized Search Structures

Today we will discuss two randomized search structures:

— Treaps

— Skip lists
We shall see that these structures are both very efficient and very simple
» Running times are measured in expectation over all random choices made

Note that expected time does not depend on the distribution of keys or the
order of operations

CMSC 420 — Dave Mount

Treap

= Recall that if n keys are inserted into a (standard) binary search tree, the
expected height is O(logn)
= Treap - A binary tree that behaves “as if” keys were inserted in random order

= |ntuition:
— Label each item with Insertion order: k, e, b, o, £, h, w, m, c, a, s
1ts insertion time @ Binary search tree With timestamps
— These timestamps are ordered
- 2 (4)
like a heap

e 0
M M< -------- Timestamp
S

6 11

& o b ©

CMSC 420 — Dave Mount

Treap

= Atreap is a binary search tree, where every node p stores a priority p.priority

— Priority values are chosen randomly when the key is inserted, and do not change

— The tree is structured as if keys were inserted in priority order
* Theorem: Expected height is O(logn)
* Ordering:

Insertion order: k¥, e, b, o, f, h, w, m, c, a, s

- Keys - inorder @ Binary search tree (1) With timestamps

— Priorities - heap order

R Timestamp

: \f%@’dy' ________ e
10 (9) (6) (11

& o B

CMSC 420 — Dave Mount

Treap Insertion

Apply the standard insertion process - create node where we fall out of tree
Assign a random priority value to the new node

Apply rotations up the tree until it is in proper heap order

Note: Inorder is maintained throughout

priority = 14
(45 13
0 e

13)

e

3
37 (81) (78] [(67) (37
f

ol m

< &

CMSC 420 — Dave Mount

Treap Deletion

= Find the node to be deleted
= Set its priority value to o
= Rotate it down to the leaf level and unlink

_______ delote("e”) . (03) __rotateeb — (03) wotate e-f
i3) (i4) 14) 37) (i4) 37) id)
(\X\e/g/\ t t b t b t
370) (51) (45) (67 15) (67) (B9 67) (89 (51) (45) (67
Y Y Y L\ W & W @ o U,
) 57 89 57 & (BT
a Ny a Ry unlink e &Y (b

CMSC 420 — Dave Mount

Skip List

= A “better” linked list

= Intuition: “ldeal” skip list
— Store keys in a sorted link list (level 0)
— Promote every other key from level i — 1 to level i

— Number of levels is O(logn)
head

S = DN W e Ot

[]

v

10] »

11

13

19

22

29

!

!

!

!

v

tail

CMSC 420 — Dave Mount

Skip List

» (Randomized) Skip List

— Each node at level i tosses a coin

— If the coin comes up heads (probability = 2) extend this node to level i + 1
— Expected number of levels is O(logn)

head

S~ N W = Ot

v

®

v

10

11

13

v

19

22

29

v

tail

CMSC 420 — Dave Mount

Skip List: Find(x)

— Start at the topmost level (i =

maxLevel

)

— Walk through level i until finding the rightmost node p such that p.key <= x

—if p.key == x, found it!

—elseif i > 0, drop to next lower level (i = i-1)

—else not found

reas find(22) tail
5 e X
4]]
S E—— I
) T - =g
L ik o e e — 1 250 ..
O] ¢ A . 10] o . 13 N— 99 1 ..

CMSC 420 — Dave Mount

Skip List - Randomized Analysis

10

Let E (i) be expected number of nodes visited at level i and lower
Backwards analysis: Walk backwards along the search path
Suppose we are currently at level i — 1

If current node contributes to next higher level (with prob %2) search goes up a
level (i), else we stay at current level (i — 1). Thus:

E() =1+ %E{-1) + YL2E(i)
Conclusion: E(i) = 2 + E(i—1) = 2i (i.e., two nodes per level)

Theorem: Expected search head find (25) tail
time is O(logn) - -

I

— 13—
— 10— — 19— -
L [T o

CMSC 420 — Dave Mount

Skip List Insertion
insert(x, v)

11

Walk through structure, as if doing find(x)
Keep track of the last node visited before dropping down a level

When we find where to insert x at level 0, apply coin flipping to determine level

k = 0
while (k <= maxLevel && Math.random() % 2 == 0) k++;
generate node of level k, with key x and value v

Link this node into levels O through k

CMSC 420 — Dave Mount

Skip List - Insertion

12

head tail

51 ¢ >

41 e >

3| . oo

2] . >

N - 131 -]

Of o . 10 . 11] . 19 . 22| 25| 11—

head insert(24)

51 ¢ >
4 ° ° >
3| e . . =
e _ 131 : 241 f
Of o . 10 . 11 o . 19 . 22| . 25| -

tail

CMSC 420 — Dave Mount

Summary

= Randomized search structures
" Treaps
= Skip lists

13

CMSC 420 — Dave Mount

	CMSC 420 – 0201 – Fall 2019�Lecture 07
	Randomized Search Structures
	Treap
	Treap
	Treap Insertion
	Treap Deletion
	Skip List
	Skip List
	Skip List: Find(x)
	Skip List – Randomized Analysis
	Skip List Insertion
	Skip List - Insertion
	Summary

