
CMSC 420 – 0201 – Fall 2019
Lecture 07

Treaps and Skip Lists



CMSC 420 – Dave Mount2

 Today we will discuss two randomized search structures:
− Treaps

− Skip lists

 We shall see that these structures are both very efficient and very simple
 Running times are measured in expectation over all random choices made
 Note that expected time does not depend on the distribution of keys or the 

order of operations 

Randomized Search Structures



CMSC 420 – Dave Mount3

 Recall that if 𝑛𝑛 keys are inserted into a (standard) binary search tree, the 
expected height is 𝑂𝑂(log𝑛𝑛)

 Treap – A binary tree that behaves “as if” keys were inserted in random order
 Intuition: 

− Label each item with 
its insertion time

− These timestamps are ordered
like a heap

Treap



CMSC 420 – Dave Mount4

 A treap is a binary search tree, where every node p stores a priority p.priority
− Priority values are chosen randomly when the key is inserted, and do not change

− The tree is structured as if keys were inserted in priority order

 Theorem: Expected height is 𝑂𝑂(log𝑛𝑛)
 Ordering:

− Keys – inorder

− Priorities – heap order

Treap



CMSC 420 – Dave Mount5

 Apply the standard insertion process – create node where we fall out of tree
 Assign a random priority value to the new node
 Apply rotations up the tree until it is in proper heap order
 Note: Inorder is maintained throughout

Treap Insertion



CMSC 420 – Dave Mount6

 Find the node to be deleted
 Set its priority value to ∞
 Rotate it down to the leaf level and unlink

Treap Deletion



CMSC 420 – Dave Mount7

 A “better” linked list
 Intuition: “Ideal” skip list

− Store keys in a sorted link list (level 0)

− Promote every other key from level 𝑖𝑖 − 1 to level 𝑖𝑖
− Number of levels is 𝑂𝑂(log𝑛𝑛)

Skip List



CMSC 420 – Dave Mount8

 (Randomized) Skip List
− Each node at level 𝑖𝑖 tosses a coin

− If the coin comes up heads (probability = ½) extend this node to level 𝑖𝑖 + 1
− Expected number of levels is 𝑂𝑂(log𝑛𝑛)

Skip List



CMSC 420 – Dave Mount9

− Start at the topmost level (i = maxLevel)

− Walk through level i until finding the rightmost node p such that p.key <= x
− if p.key == x, found it!

− else if i > 0, drop to next lower level (i = i-1)

− else not found

Skip List: Find(x)



CMSC 420 – Dave Mount10

 Let 𝐸𝐸(𝑖𝑖) be expected number of nodes visited at level 𝑖𝑖 and lower
 Backwards analysis: Walk backwards along the search path
 Suppose we are currently at level 𝑖𝑖 − 1
 If current node contributes to next higher level (with prob ½) search goes up a 

level (𝑖𝑖), else we stay at current level (𝑖𝑖 − 1). Thus:
𝐸𝐸(𝑖𝑖) = 1 + ½ 𝐸𝐸(𝑖𝑖 − 1) + ½ 𝐸𝐸(𝑖𝑖)

 Conclusion: 𝐸𝐸(𝑖𝑖) = 2 + 𝐸𝐸(𝑖𝑖 − 1) = 2 𝑖𝑖 (i.e., two nodes per level)
 Theorem: Expected search 

time is 𝑂𝑂(log𝑛𝑛)

Skip List – Randomized Analysis



CMSC 420 – Dave Mount11

 Walk through structure, as if doing find(x)
 Keep track of the last node visited before dropping down a level
 When we find where to insert x at level 0, apply coin flipping to determine level

k = 0
while (k <= maxLevel && Math.random() % 2 == 0) k++;
generate node of level k, with key x and value v

 Link this node into levels 0 through k

insert(x, v)

Skip List Insertion



CMSC 420 – Dave Mount12

Skip List - Insertion



CMSC 420 – Dave Mount13

 Randomized search structures
 Treaps
 Skip lists

Summary


	CMSC 420 – 0201 – Fall 2019�Lecture 07
	Randomized Search Structures
	Treap
	Treap
	Treap Insertion
	Treap Deletion
	Skip List
	Skip List
	Skip List: Find(x)
	Skip List – Randomized Analysis
	Skip List Insertion
	Skip List - Insertion
	Summary

