
CMSC 420 – 0201 – Fall 2019
Lecture 08

Splay Trees



CMSC 420 – Dave Mount2

 (Standard) Binary search trees: No balance. O(log n) height/time if operations 
are random

 AVL trees: A classic, height-balanced binary tree. O(log n) performance 
guaranteed. Good, but not the fastest in practice

 2-3 trees: A tree that allows nodes to have 2 or 3 children. O(log n) performance 
guaranteed. Some space wastage

 Red-black trees: A binary implementation of 2-3 (actually 2-3-4) trees. O(log n) 
performance guaranteed. Considered among the fastest deterministic structures

 AA trees: A kinder, simpler red-black tree
 Treap and Skiplists: Randomized search structures. O(log n) performance in 

expectation (over random choices). Very simple and practical

Recap
We have seen many variants on the binary search tree



CMSC 420 – Dave Mount3

 There are still many interesting extensions

− Order-statistic queries: Find the 𝑘𝑘th smallest key

− Range queries: Count/sum/report all the keys in the interval [𝑥𝑥0, 𝑥𝑥1]

− Split/Merge: Given a tree 𝑇𝑇 and key 𝑥𝑥, split 𝑇𝑇 into subtrees 𝑇𝑇1 and 𝑇𝑇2, such that keys in 

𝑇𝑇1 are at most 𝑥𝑥, and keys in 𝑇𝑇2 are greater than 𝑥𝑥. Merge reverses this, melding two 

trees (with one having keys smaller than the other) into a single tree

− Expected-case Optimal Trees: Given access probabilities for the elements, build a tree 

that minimizes the expected search time. (Static optimality)

Are we done yet?

Recap



CMSC 420 – Dave Mount4

 Optimal Search Trees: 
− Let {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛} be the keys

− Let 𝑝𝑝𝑖𝑖 denote the access probability of 𝑥𝑥𝑖𝑖. Where, 0 ≤ 𝑝𝑝𝑖𝑖 ≤ 1, and 𝑝𝑝1 + ⋯+ 𝑝𝑝𝑛𝑛 = 1.

− High-probability items should be stored near root

− Can be solved by dynamic programming

 Static optimality: We assume that access probabilities never change
 Dynamic optimality? 

− Suppose that access probabilities do change. 

− Can we build a tree that automatically adjusts to the current distribution?

− Yes! Splay trees

Optimal Binary Search Trees

Recap



CMSC 420 – Dave Mount5

 We seek a tree structure that readjusts itself, depending on the access pattern
 Want low-probability nodes near the bottom and high-probability nodes near top
 Intuition: 

− Keys near the bottom of long access chains have high cost

− Whenever we access a key, let’s pull it up to the root

− Frequently accessed keys will tend to “rise to the top,” leading to faster access and 
better expected performance

 But how do we pull a node up to the root?
− Need to preserve inorder structure – use rotations!

Intuition

Splay Trees



CMSC 420 – Dave Mount6

 Here is an idea for a restructuring operation, that doesn’t work
− Let 𝑝𝑝 be the node we wish to access

− Apply rotations along the path from 𝑝𝑝 back to the root, thus pulling p up to the root

 Unfortunately, while this brings 𝑝𝑝 to the root, the rest of the tree structure may 
remain poorly balanced

A good idea, that doesn’t work

Splay Trees

𝑝𝑝



CMSC 420 – Dave Mount7

 There is an easy fix, however. Perform rotations two at a time!
 If done properly, the search path length reduces by roughly half

 Can we make this idea rigorous?

Fixing our idea

Splay Trees



CMSC 420 – Dave Mount8

 Let T be a splay tree. The operation T.splay(p) rotates a node p to the root.
 Case 1: (Zig-zig) p is the left-left or right-right grandchild of some node

− Do two rotations. First at p’s grandparent, then at p’s parent

Basic Splay Operations

Splay Trees



CMSC 420 – Dave Mount9

 Case 2: (Zig-zag) p is the left-right or right-left grandchild of some node
− Do two rotations. First at p’s parent, then at p’s grandparent

Basic Splay Operations

Splay Trees



CMSC 420 – Dave Mount10

 Case 3: (Zig) p is a child of the root
− Do two a single rotation, pulling p up to the root

 Case 4: (End) p is the root – We’re done

Basic Splay Operations

Splay Trees



CMSC 420 – Dave Mount11

 T.splay(x): 

− Apply a standard tree descent to find 𝑥𝑥 in the tree. 

− Let 𝑝𝑝 be the node containing 𝑥𝑥 (if present) or the last node visited before falling out (if 

not). Note that 𝑝𝑝 either contains 𝑥𝑥 or its inorder predecessor or successor

− Apply zig-zig, zig-zag rotations until almost to root

− If needed, apply one final zig rotation to finish things off

A Self-Adjusting Tree Structure

Splay Trees



CMSC 420 – Dave Mount12

 T.splay(3):

A Self-Adjusting Tree Structure

Splay Trees



CMSC 420 – Dave Mount13

 T.find(x):
− T.splay(x). Check whether root contains key 𝑥𝑥

 T.insert(x, v):
− T.splay(x). If root contains 𝑥𝑥, duplicate!

− Let 𝑦𝑦 be root. If 𝑦𝑦 < 𝑥𝑥, link subtrees together as shown below (other case symmetrical)

Dictionary Operations

Splay Trees



CMSC 420 – Dave Mount14

 T.delete(x):
− T.splay(x). Check that 𝑥𝑥 is at root (if not, key not found!)

− Let 𝐿𝐿 and 𝑅𝑅 be left and right subtrees. If either is null, return the other

− If both are non-null, do R.splay(x)

− New root 𝑦𝑦 is smallest key in 𝑅𝑅 (so its left child is null)

− Relink trees as shown below

Dictionary Operations

Splay Trees



CMSC 420 – Dave Mount15

 Potential: 
− A function Φ that represents how imbalanced the tree 𝑇𝑇 is

− Φ is like a bank account that can be spent to balance the tree

− There must always be sufficient funds in this account

 Amortized cost: For any operation, there are two costs to consider:
− The actual cost of the 𝑖𝑖th operation (number of rotations): 𝐶𝐶𝑖𝑖
− The change in the tree’s potential: ΔΦ𝑖𝑖 = Φ𝑖𝑖 − Φ𝑖𝑖−1

− Amortized cost of 𝑖𝑖th operation is defined to be: 𝐴𝐴𝑖𝑖 = 𝐶𝐶𝑖𝑖 + ΔΦ𝑖𝑖

− Objective: Prove that amortized cost is 𝑂𝑂(log𝑛𝑛) for every operation

 Intuition: Can tolerate a high actual cost, if there is a large decrease in potential

Amortized Analysis (Optional)

Splay Trees



CMSC 420 – Dave Mount16

 Potential:
− For each node 𝑝𝑝 in the tree, 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠(𝑝𝑝) = number of nodes in 𝑝𝑝’s subtree

− Define 𝑟𝑟𝑟𝑟𝑛𝑛𝑘𝑘(𝑝𝑝) = lg 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠(𝑝𝑝) (intuitively, this is ideal height of 𝑝𝑝’s subtree)

− Φ 𝑇𝑇 = ∑𝑝𝑝∈𝑇𝑇 𝑟𝑟𝑟𝑟𝑛𝑛𝑘𝑘(𝑝𝑝)

 Rotation Lemma: Given any node 𝑝𝑝, let 𝑟𝑟𝑟𝑟𝑛𝑛𝑘𝑘(𝑝𝑝) and 𝑟𝑟𝑟𝑟𝑛𝑛𝑘𝑘𝑟(𝑝𝑝) be its rank before 
and after a rotation operation. Then:
− Amortized cost of zig-zig or zig-zag is ≤ 3(𝑟𝑟𝑟𝑟𝑛𝑛𝑘𝑘𝑟(𝑝𝑝) – 𝑟𝑟𝑟𝑟𝑛𝑛𝑘𝑘(𝑝𝑝))
− Amortized cost of zig is ≤ 1 + 3(𝑟𝑟𝑟𝑟𝑛𝑛𝑘𝑘𝑟(𝑝𝑝) – 𝑟𝑟𝑟𝑟𝑛𝑛𝑘𝑘(𝑝𝑝))
− (See lecture notes for the proof…it’s not easy!)

 Splay Lemma: Amortized cost of T.splay(p) is ≤ 1 + 3(𝑟𝑟𝑟𝑟𝑛𝑛𝑘𝑘(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) – 𝑟𝑟𝑟𝑟𝑛𝑛𝑘𝑘(𝑝𝑝))
 Corollary: Amortized cost of T.splay(p) is 𝑂𝑂(log𝑛𝑛)

Amortized Analysis (Optional)

Splay Trees



CMSC 420 – Dave Mount17

 Consider any sequence 𝑆𝑆 of 𝑚𝑚 accesses to a splay tree of size 𝑛𝑛
 Balance Theorem: The running time of 𝑆𝑆 is 𝑂𝑂(𝑚𝑚 log𝑛𝑛 + 𝑛𝑛 log𝑛𝑛)
 Static Optimality: Let 𝑞𝑞𝑥𝑥 be the number of times that 𝑥𝑥 is accessed in 𝑆𝑆. Then

the running time of 𝑆𝑆 is 𝑂𝑂(𝑚𝑚 + ∑𝑖𝑖 𝑞𝑞𝑥𝑥 log ⁄𝑚𝑚 𝑞𝑞𝑥𝑥). This is theoretically optimal (the
Entropy of the access distribution)

 Dynamic Finger Theorem: Number the elements 1 through 𝑛𝑛. Given a sequence 
of accesses 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚, the running time of 𝑆𝑆 is 𝑂𝑂(𝑚𝑚 + ∑𝑖𝑖 log |𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1 +1 )

 Working-Set Theorem: Each time we access 𝑥𝑥, let 𝑟𝑟(𝑥𝑥) denote the number of 
accesses since the last time 𝑥𝑥 was accessed, then the running time of 𝑆𝑆 is 𝑂𝑂(𝑚𝑚 +
∑𝑖𝑖 log(𝑟𝑟 𝑥𝑥 + 1))

 Scanning Theorem: The time to access all elements in order is 𝑂𝑂(𝑛𝑛)

Splay trees have an amazing set of properties

Splay Trees



CMSC 420 – Dave Mount18

 Splay Trees
− Self-adjusting binary search tree

− Basic operation splay(x) – Brings x to root and reorganizes the tree
− Zig-zig

− Zig-zag

− Zig

− Splay has the effect of turning long stringing search paths into bushier ones

− Amortized cost is O(log n) per dictionary operations (find, insert, delete)

− Splay trees satisfy an impressive set of optimality properties

− Not widely used, however, because constant factors are high

Summary


	CMSC 420 – 0201 – Fall 2019�Lecture 08
	Recap
	Recap
	Recap
	Splay Trees
	Splay Trees
	Splay Trees
	Splay Trees
	Splay Trees
	Splay Trees
	Splay Trees
	Splay Trees
	Splay Trees
	Splay Trees
	Splay Trees
	Splay Trees
	Splay Trees
	Summary

