CMSC 420 - 0201 - Fall 2019 ®
Lecture 09

B Trees . ‘ ‘ o
@

B-Trees
A Search Structure for External Memory

Binary trees are the method of choice for ordered dictionaries stored in main

memory

On external memory systems (disk), entire blocks (pages) are accessed at once
We would like each node of our tree to fill a block of external memory
Multiway search tree - Fan-out depends on block size (e.g., 100)

AN KRB

(2)

r<al a<zr<a wm<r<ay a3<<T

(b)

CMSC 420 — Dave Mount

B-Trees

= B-Tree of order m:
— The root is either a leaf or has between 2 and m children
— Each non-root node has between [m/2] to m children (and one fewer keys)
— All leaves are at the same level of the tree

= Example: B-tree of order 5 29[75]—-)

(07[20[31[40) (56(66|71|--) (81[89|--|--)
2 BN RN L1

02| |08| |23 |35] |42| |53 |58] |67 [72| |77] [84] |90
04| [09] [25] [38] [44| [54] [59] [68] [74]| [78] [85] |91

06| [13] [26] | [48] [[62] [70| [=] [80] [87] [94
—| [19] [30] | [-=| [=] [64] [=] [=] 97

CMSC 420 — Dave Mount

B Trees
Height
= Theorem: A B-tree of order m with n nodes has height at most (Ign)/y, where
y =1g—.
* Proof:
— With each level, fan-out is at least m/2.

h
— Number of nodes in a tree of height h is roughly n = (%) :

— Solving for h as function of n, implies h = lgn/lg%

. a9|75|--|--)
* [f m =100, height <lgn/5.6 / \

(07]2031[40) (s6l66[71|-) (81]s9l--|-)
/L 1N A /|l
02| (o8] [23| 35| |42| [53] [58| |67] (72| |[77] [84] |90

04| [09] [25] [38] [44]| [54] [59] [68] [74] [78| [85] [oL
06| [13] [26] [] [48] [[62| [70] [==| [80] [87] [94
—| [19] [30] [==] 7] [164 [=] [[97

CMSC 420 — Dave Mount

B-Trees
Node structure

= Because number of keys/children may vary, we allocate the maximum allowed

storage for each node:

const int M = ...

class BTreeNode {

int nChildren;
BTreeNode child[M];
Key key[M-1];
Value value[M-1];

// order of the B-tree

// number of children (from M/2 to M)

// children pointers

// keys
// values

= Setting M=3 yields a 2-3 tree, M=4 yields a 2-3-4 tree

CMSC 420 — Dave Mount

B-Trees - Rebalancing operations
Key Rotation (Adoption)

» |f node overflows (underflows), and sibling can take (give) a key, rotate the key
through the parent out of (into) this node

= Example (M = 5): Node p needs a key and sibling q can give one

e\ BT |7 7Y Key rotation e e T e et

...................................... S

q (16|27|a4|--|--| p|63|--|--|--|--| = [16]27|--|--|-- 57163[—=]—|--

CMSC 420 — Dave Mount

B-Trees - Rebalancing operations
Node splitting

» |f a node has too many children (m + 1), split the node in half and promote extra

key to parent

= New nodes have m’ = [ﬂ and m" = (m + 1) — m’ children, respectively

44

A

Promote

1

/
6/27|--|--|--

63 76\-- —|--

CMSC 420 — Dave Mount

B-Trees - Rebalancing operations
Node splitting

= Need to prove that new node sizes are valid
= Lemma 1: For all m > 2, [g <m',m'<m

= Proof: This is clearly true for m'. Suffices to consider just m".
— Case 1 (m is even):

m m "o _m_m
—ﬁ[zl—?ﬁm—m+1 2—2+1-
—The lemma reduces to proving that % < % + 1 < m, which is clearly true for any m > 2.
— Case 2 (m is odd):
N [m] :m_-l-l — m,,:m+1_m+1:m+1.
2 2 2 2

1

—The lemma reduces to proving that m2+ < m2+1 < m, which is clearly true for any m > 1.

CMSC 420 — Dave Mount

B-Trees - Rebalancing operations

Node merging

» |f a node has too few children ([g — 1), and both siblings have the minimum

([%b, merge node with sibling and demote one key from parent.

= The new node has size m'"' = ([ﬂ — 1) + [g =2 [%} -1

24| Demote
16[27]--[--[--] * [63]--]--]--
15 13 1y 15

(m

16|27

44

CMSC 420 — Dave Mount

B-Trees - Rebalancing operations
Node merging

= Need to prove that new node size is valid
= Lemma 2: For all m > 2, [%} <m"”" <m

= Proof:
— Case 1 (m is even):

-= [F=2=mr=2(3)-1=m-1.

—The lemma reduces to proving that % < m — 1 < m, which is clearly true for any m > 2.
— Case 2 (m is odd):

= 2] =" s mr=2F]-1=22"—1=m.

—The lemma reduces to proving that Tl em< m, which is clearly true for any m > 1.
2

10 CMSC 420 — Dave Mount

B-Trees - Dictionary operations
Find operation

» Find(Key x):
— Finding a key is analogous to 2-3 trees

11

Descend the tree from the root

Let a; < a, < - <aj_; be keys of current node (convention: a, = —, a; = +x)

Let Ty, Ty, ..., Tj be children

Find i such that aq;_; < x < a;: 4975 —|--)
—If a; = x, found it \
—Else, if node is leaf, not found (()7 20(31 40) (56 66l71 ——) (81 39|-- ——)
—Else, search T; / / \ \ / / \ / /
02| |08] [23]| [35] |42 53| |58 [67] |72 77 |184] |90
04| [09] |25] |38| (44 54| [59] |68]| |74 78| |185] |91
06| [13] |26/ |——| (48 -—| 62| [70]| |—— 80| |87| 194
—| [19] [30] [==| [-=| || [64] [--|][] [|o7

CMSC 420 — Dave Mount

B-Trees - Dictionary operations
Insertion operation

» insert(Key x, Value v):

— Find the leaf hode where x belongs

— If x is already here - Error

— Else, insert new (x,v) pair in this leaf

— If node is overfull, attempt key rotation with siblings

— |If siblings are both full, split this node

— One key is promoted to parent, rebalance the parent recursively

= Note: Key rotation and splitting are both options. Key rotation is preferred

12

because it is less costly and improves space utilization

CMSC 420 — Dave Mount

B-Trees - Dictionary operations
Insertion operation

= Example: insert(29) (M=5)

/////<49._.____) insert(29)))
(07|20[31|40) (s6|66|71|75 (o7 (5666|7175
L AN A A AR NN A
02| |os| [23| (32| [42| [53] |58] |67] |72| |[77] [02] |og| [23| 32| 42| [s3| (58| 67| 72| |77
04| [09] [25] [34] (44| [54] [59] [68] [74] [78] [04] [09] [25] [34] [44] [54] [B9]| [68| 74| [78
06| [13| [26] [35] [48] [-] [62] [70] [-=] [80] |[06] [13] [26] [35] [48] [[62] [70] [==| [BO /
—| [19] [30] [38| || [[64] [-=] =] =] || [19] [29] [38] [--] [[64| [| [|- /
30 L
/26 49(-- __> oo eeeeee e Sp..:.lf.it /49 I __) e-Split
\ I
07[20|--|--) (31]40]--|--) (=6|66|71|75 (07/|20[26(31[40)" \(56 66|71|75
\ / A al N\ A

02| [o8] [23] [29] [32] [a2] [53| [s8| [67] [72] [77] [02] [o8] [23] [29] [32] [42] [s3] [s8| [67] [72] [77
04| [09] [25] [30| [34] [44| [54| [59] [68] [74] [78] [04] [09] [25] [30] [34] [44] [54] [59| [68] [74] [78
o6| [13] [-=] [[35] [48] [—] [62] [70] [=| [80| 06| [13]| [[-] [35] [48] [] [62] [70| [] [8O
—| 28]) [B8l 2] [64 [5) [) [B 38 [[164 [[==

13 CMSC 420 — Dave Mount

B-Trees - Dictionary operations
Deletion operation

" delete(Key x, Value v):

14

Find the node containing x
If not found - Error

If not in leaf, find suitable replacement key from leaf level (largest in left subtree or

smallest in right subtree), and copy it here

Delete the replacement key:

—If node is underfull, attempt key rotation with siblings

—If both siblings are minimal, merge this node with either sibling
—One key is demoted from parent, rebalance the parent recursively

CMSC 420 — Dave Mount

B-Trees - Dictionary operations
Deletion operations

= Example: delete(20) (M=5)

1 2 1 2
...delete(20) | —orro—) Copy, replacement (23) . (glagl— S

replacement

77

78

80

77

78

80

15

CMSC 420 — Dave Mount

B-Trees - Dictionary operations
Deletion operations

= Example: delete(30) (M=5)

/(26 49|--[--) delete(30) . /26 491----) e

07|19]--|--) (31a0]--|--) (=6|66|71|75 07|19]--|--) (31]40|--|--) (5666|71|75
I
02| o8] [20] [29] [35] [42] [s3] [58] [67] [72] [77] [02] [08] [20] [29] [35] 42| [53] [58] [67] [72] [77
04| [09] [25] [30| [38] [44| [54| [59] [68] [74| [78] [04] [09] [25] [——| [38| [44] [54| [59] [68] [74] [78] |
06| [13| [-| [==] [] [48] [=] [62] [70| [-=] [80] [o€]| [£3] [-=| [==| =] [48] [—] [62| [70] [=] [80Q]
—HHEBEEE BEEEEE HEEEEE B
ot kev e
26(56]-- __> roLatLe Aoy o 26|49|-- __>‘ ____________ merge
I
507 19|--|--) (4o0la9|--|--) (e6|71|75]--) o7[19]--[--) (40|--|--|--) (=6|66|71|75
02| o8| [20] [29] [42] [83| |58] |67] [72| |77 02| [og| [20] [29] [a2] |[s3| |58] 67| [72| |77
04| [09] [25] [31] [44] [54| [59] [68] |74 [78 04| [09] [25] [31] [44] [B4| [59] [68] [74]| [78
o6| [13| [.=] [35] [48] [-=] [62] [70] [==] [80 o6| 13| [.=| [35] [48] [[62] [70] [[80
— =1 [38| -] [-] [64] [[-=] |- —| =1 [B8 -] [[64] [-] [--

16 CMSC 420 — Dave Mount

B-Trees - Variants
B+ Trees

= There are a number of variants of B-trees.

= B+ trees: A popular variant, used in disk storage
— Key-value pairs are stored only at leaves

— Internal nodes need only store keys, not values. (Saves space, bigger fan-out implies
lower tree heigth, fewer disk accesses)

— Leaf nodes do not need to waste space for child pointers

— Each leaf node has a pointer to the next leaf node in the sequence. (Makes it easy to
efficiently list all keys in a given range [X,,in, Xmax]. Find the leaf containing x,,,;;, and
simply keep following next-leaf pointers until coming to x,,,,,.

17 CMSC 420 — Dave Mount

Summary

= B-Trees

Multiway search trees - Very popular for disk storage
Fan-out m is controllable

Height is O(log n / log m)

Restructuring generalizes 2-3 tree:

—Node rotation (adoption)

—Split

— Merge

Operations (insert, delete, find) run in time O(log n / log m)

» B+ Trees - A practical variant for disk storage

18

CMSC 420 — Dave Mount

	CMSC 420 – 0201 – Fall 2019�Lecture 09
	B-Trees
	B-Trees
	B Trees
	B-Trees
	B-Trees – Rebalancing operations
	B-Trees – Rebalancing operations
	B-Trees – Rebalancing operations
	B-Trees – Rebalancing operations
	B-Trees – Rebalancing operations
	B-Trees – Dictionary operations
	B-Trees – Dictionary operations
	B-Trees – Dictionary operations
	B-Trees – Dictionary operations
	B-Trees – Dictionary operations
	B-Trees – Dictionary operations
	B-Trees - Variants
	Summary

