
CMSC 420 – 0201 – Fall 2019
Lecture 09

B Trees

CMSC 420 – Dave Mount2

 Binary trees are the method of choice for ordered dictionaries stored in main
memory

 On external memory systems (disk), entire blocks (pages) are accessed at once
 We would like each node of our tree to fill a block of external memory
 Multiway search tree – Fan-out depends on block size (e.g., 100)

A Search Structure for External Memory

B-Trees

CMSC 420 – Dave Mount3

 B-Tree of order 𝑚𝑚:
− The root is either a leaf or has between 2 and 𝑚𝑚 children

− Each non-root node has between 𝑚𝑚/2 to 𝑚𝑚 children (and one fewer keys)

− All leaves are at the same level of the tree

 Example: B-tree of order 5

B-Trees

CMSC 420 – Dave Mount4

 Theorem: A B-tree of order 𝑚𝑚 with 𝑛𝑛 nodes has height at most (lg𝑛𝑛)/𝛾𝛾, where
𝛾𝛾 = lg𝑚𝑚

2
.

 Proof:
− With each level, fan-out is at least 𝑚𝑚/2.

− Number of nodes in a tree of height ℎ is roughly 𝑛𝑛 = 𝑚𝑚
2

ℎ
.

− Solving for ℎ as function of 𝑛𝑛, implies ℎ = �lg𝑛𝑛 lg𝑚𝑚
2

 If 𝑚𝑚 = 100, height ≤ ⁄lg𝑛𝑛 5.6

Height

B Trees

CMSC 420 – Dave Mount5

 Because number of keys/children may vary, we allocate the maximum allowed
storage for each node:
const int M = ... // order of the B-tree

class BTreeNode {
int nChildren; // number of children (from M/2 to M)
BTreeNode child[M]; // children pointers
Key key[M-1]; // keys
Value value[M-1]; // values

}

 Setting M=3 yields a 2-3 tree, M=4 yields a 2-3-4 tree

Node structure

B-Trees

CMSC 420 – Dave Mount6

 If node overflows (underflows), and sibling can take (give) a key, rotate the key
through the parent out of (into) this node

 Example (𝑀𝑀 = 5): Node p needs a key and sibling q can give one

Key Rotation (Adoption)

B-Trees – Rebalancing operations

pq

CMSC 420 – Dave Mount7

 If a node has too many children (𝑚𝑚 + 1), split the node in half and promote extra
key to parent

 New nodes have 𝑚𝑚′ = 𝑚𝑚
2

and 𝑚𝑚′′ = (𝑚𝑚 + 1) −𝑚𝑚𝑚 children, respectively

Node splitting

B-Trees – Rebalancing operations

CMSC 420 – Dave Mount8

 Need to prove that new node sizes are valid

 Lemma 1: For all 𝑚𝑚 ≥ 2, 𝑚𝑚
2
≤ 𝑚𝑚′,𝑚𝑚′′ ≤ 𝑚𝑚

 Proof: This is clearly true for 𝑚𝑚′. Suffices to consider just 𝑚𝑚′′.
− Case 1 (𝑚𝑚 is even):

− ⟹ 𝑚𝑚
2

= 𝑚𝑚
2
⟹ 𝑚𝑚′′ = 𝑚𝑚 + 1 − 𝑚𝑚

2
= 𝑚𝑚

2
+ 1.

− The lemma reduces to proving that 𝑚𝑚
2
≤ 𝑚𝑚

2
+ 1 ≤ 𝑚𝑚, which is clearly true for any 𝑚𝑚 ≥ 2.

− Case 2 (𝑚𝑚 is odd):

−⟹ 𝑚𝑚
2

= 𝑚𝑚+1
2

⟹ 𝑚𝑚′′= 𝑚𝑚 + 1 − 𝑚𝑚+1
2

= 𝑚𝑚+1
2

.

− The lemma reduces to proving that 𝑚𝑚+1
2

≤ 𝑚𝑚+1
2

≤ 𝑚𝑚, which is clearly true for any 𝑚𝑚 ≥ 1.

Node splitting

B-Trees – Rebalancing operations

CMSC 420 – Dave Mount9

 If a node has too few children (𝑚𝑚
2
− 1), and both siblings have the minimum

(𝑚𝑚
2

), merge node with sibling and demote one key from parent.

 The new node has size 𝑚𝑚′′′ = 𝑚𝑚
2
− 1 + 𝑚𝑚

2
= 2 𝑚𝑚

2
− 1

Node merging

B-Trees – Rebalancing operations

CMSC 420 – Dave Mount10

 Need to prove that new node size is valid

 Lemma 2: For all 𝑚𝑚 ≥ 2, 𝑚𝑚
2

≤ 𝑚𝑚𝑚𝑚𝑚 ≤ 𝑚𝑚

 Proof:
− Case 1 (𝑚𝑚 is even):

− ⟹ 𝑚𝑚
2

= 𝑚𝑚
2
⟹ 𝑚𝑚′′′ = 2 𝑚𝑚

2
− 1 = 𝑚𝑚 − 1.

− The lemma reduces to proving that 𝑚𝑚
2
≤ 𝑚𝑚 − 1 ≤ 𝑚𝑚, which is clearly true for any 𝑚𝑚 ≥ 2.

− Case 2 (𝑚𝑚 is odd):

−⟹ 𝑚𝑚
2

= 𝑚𝑚+1
2

⟹ 𝑚𝑚′′′= 2 𝑚𝑚
2
− 1 = 2𝑚𝑚+1

2
− 1 = 𝑚𝑚.

− The lemma reduces to proving that 𝑚𝑚+1
2

≤ 𝑚𝑚 ≤ 𝑚𝑚, which is clearly true for any 𝑚𝑚 ≥ 1.

Node merging

B-Trees – Rebalancing operations

CMSC 420 – Dave Mount11

 Find(Key x):
− Finding a key is analogous to 2-3 trees

− Descend the tree from the root

− Let 𝑎𝑎1 < 𝑎𝑎2 < ⋯ < 𝑎𝑎𝑗𝑗−1 be keys of current node (convention: 𝑎𝑎0 = −∞,𝑎𝑎𝑗𝑗 = +∞)

− Let 𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝑗𝑗 be children

− Find 𝑖𝑖 such that 𝑎𝑎𝑖𝑖−1 < 𝑥𝑥 ≤ 𝑎𝑎𝑖𝑖:
− If 𝑎𝑎𝑖𝑖 = 𝑥𝑥, found it

− Else, if node is leaf, not found

− Else, search 𝑇𝑇𝑖𝑖

B-Trees – Dictionary operations
Find operation

CMSC 420 – Dave Mount12

 insert(Key x, Value v):
− Find the leaf node where x belongs

− If x is already here - Error

− Else, insert new (x,v) pair in this leaf

− If node is overfull, attempt key rotation with siblings

− If siblings are both full, split this node

− One key is promoted to parent, rebalance the parent recursively

 Note: Key rotation and splitting are both options. Key rotation is preferred
because it is less costly and improves space utilization

Insertion operation

B-Trees – Dictionary operations

CMSC 420 – Dave Mount13

 Example: insert(29) (M=5)

Insertion operation

B-Trees – Dictionary operations

CMSC 420 – Dave Mount14

 delete(Key x, Value v):
− Find the node containing x

− If not found – Error

− If not in leaf, find suitable replacement key from leaf level (largest in left subtree or
smallest in right subtree), and copy it here

− Delete the replacement key:
− If node is underfull, attempt key rotation with siblings

− If both siblings are minimal, merge this node with either sibling

−One key is demoted from parent, rebalance the parent recursively

Deletion operation

B-Trees – Dictionary operations

CMSC 420 – Dave Mount15

 Example: delete(20) (M=5)

Deletion operations

B-Trees – Dictionary operations

CMSC 420 – Dave Mount16

 Example: delete(30) (M=5)

Deletion operations

B-Trees – Dictionary operations

CMSC 420 – Dave Mount17

 There are a number of variants of B-trees.
 B+ trees: A popular variant, used in disk storage

− Key-value pairs are stored only at leaves

− Internal nodes need only store keys, not values. (Saves space, bigger fan-out implies
lower tree heigth, fewer disk accesses)

− Leaf nodes do not need to waste space for child pointers

− Each leaf node has a pointer to the next leaf node in the sequence. (Makes it easy to
efficiently list all keys in a given range [𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚]. Find the leaf containing 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 and
simply keep following next-leaf pointers until coming to 𝑥𝑥𝑚𝑚𝑎𝑎𝑎𝑎.

B+ Trees

B-Trees - Variants

CMSC 420 – Dave Mount18

 B-Trees
− Multiway search trees – Very popular for disk storage

− Fan-out m is controllable

− Height is O(log n / log m)

− Restructuring generalizes 2-3 tree:
−Node rotation (adoption)

− Split

−Merge

− Operations (insert, delete, find) run in time O(log n / log m)

 B+ Trees – A practical variant for disk storage

Summary

	CMSC 420 – 0201 – Fall 2019�Lecture 09
	B-Trees
	B-Trees
	B Trees
	B-Trees
	B-Trees – Rebalancing operations
	B-Trees – Rebalancing operations
	B-Trees – Rebalancing operations
	B-Trees – Rebalancing operations
	B-Trees – Rebalancing operations
	B-Trees – Dictionary operations
	B-Trees – Dictionary operations
	B-Trees – Dictionary operations
	B-Trees – Dictionary operations
	B-Trees – Dictionary operations
	B-Trees – Dictionary operations
	B-Trees - Variants
	Summary

