
CMSC 420 – 0201 – Fall 2019
Lecture 09

B Trees

CMSC 420 – Dave Mount2

 Binary trees are the method of choice for ordered dictionaries stored in main
memory

 On external memory systems (disk), entire blocks (pages) are accessed at once
 We would like each node of our tree to fill a block of external memory
 Multiway search tree – Fan-out depends on block size (e.g., 100)

A Search Structure for External Memory

B-Trees

CMSC 420 – Dave Mount3

 B-Tree of order 𝑚𝑚:
− The root is either a leaf or has between 2 and 𝑚𝑚 children

− Each non-root node has between 𝑚𝑚/2 to 𝑚𝑚 children (and one fewer keys)

− All leaves are at the same level of the tree

 Example: B-tree of order 5

B-Trees

CMSC 420 – Dave Mount4

 Theorem: A B-tree of order 𝑚𝑚 with 𝑛𝑛 nodes has height at most (lg𝑛𝑛)/𝛾𝛾, where
𝛾𝛾 = lg𝑚𝑚

2
.

 Proof:
− With each level, fan-out is at least 𝑚𝑚/2.

− Number of nodes in a tree of height ℎ is roughly 𝑛𝑛 = 𝑚𝑚
2

ℎ
.

− Solving for ℎ as function of 𝑛𝑛, implies ℎ = �lg𝑛𝑛 lg𝑚𝑚
2

 If 𝑚𝑚 = 100, height ≤ ⁄lg𝑛𝑛 5.6

Height

B Trees

CMSC 420 – Dave Mount5

 Because number of keys/children may vary, we allocate the maximum allowed
storage for each node:
const int M = ... // order of the B-tree

class BTreeNode {
int nChildren; // number of children (from M/2 to M)
BTreeNode child[M]; // children pointers
Key key[M-1]; // keys
Value value[M-1]; // values

}

 Setting M=3 yields a 2-3 tree, M=4 yields a 2-3-4 tree

Node structure

B-Trees

CMSC 420 – Dave Mount6

 If node overflows (underflows), and sibling can take (give) a key, rotate the key
through the parent out of (into) this node

 Example (𝑀𝑀 = 5): Node p needs a key and sibling q can give one

Key Rotation (Adoption)

B-Trees – Rebalancing operations

pq

CMSC 420 – Dave Mount7

 If a node has too many children (𝑚𝑚 + 1), split the node in half and promote extra
key to parent

 New nodes have 𝑚𝑚′ = 𝑚𝑚
2

and 𝑚𝑚′′ = (𝑚𝑚 + 1) −𝑚𝑚𝑚 children, respectively

Node splitting

B-Trees – Rebalancing operations

CMSC 420 – Dave Mount8

 Need to prove that new node sizes are valid

 Lemma 1: For all 𝑚𝑚 ≥ 2, 𝑚𝑚
2
≤ 𝑚𝑚𝑚,𝑚𝑚𝑚𝑚 ≤ 𝑚𝑚

 Proof: This is clearly true for 𝑚𝑚𝑚. Suffices to consider just 𝑚𝑚𝑚𝑚.
− Case 1 (𝑚𝑚 is even):

− ⟹ 𝑚𝑚
2

= 𝑚𝑚
2
⟹ 𝑚𝑚′′ = 𝑚𝑚 + 1 − 𝑚𝑚

2
= 𝑚𝑚

2
+ 1.

− The lemma reduces to proving that 𝑚𝑚
2
≤ 𝑚𝑚

2
+ 1 ≤ 𝑚𝑚, which is clearly true for any 𝑚𝑚 ≥ 2.

− Case 2 (𝑚𝑚 is odd):

−⟹ 𝑚𝑚
2

= 𝑚𝑚+1
2

⟹ 𝑚𝑚′′= 𝑚𝑚 + 1 − 𝑚𝑚+1
2

= 𝑚𝑚+1
2

.

− The lemma reduces to proving that 𝑚𝑚+1
2

≤ 𝑚𝑚+1
2

≤ 𝑚𝑚, which is clearly true for any 𝑚𝑚 ≥ 1.

Node splitting

B-Trees – Rebalancing operations

CMSC 420 – Dave Mount9

 If a node has too few children (𝑚𝑚
2
− 1), and both siblings have the minimum

(𝑚𝑚
2

), merge node with sibling and demote one key from parent.

 The new node has size 𝑚𝑚′′′ = 𝑚𝑚
2
− 1 + 𝑚𝑚

2
= 2 𝑚𝑚

2
− 1

Node merging

B-Trees – Rebalancing operations

CMSC 420 – Dave Mount10

 Need to prove that new node size is valid

 Lemma 2: For all 𝑚𝑚 ≥ 2, 𝑚𝑚
2

≤ 𝑚𝑚𝑚𝑚𝑚 ≤ 𝑚𝑚

 Proof:
− Case 1 (𝑚𝑚 is even):

− ⟹ 𝑚𝑚
2

= 𝑚𝑚
2
⟹ 𝑚𝑚′′′ = 2 𝑚𝑚

2
− 1 = 𝑚𝑚 − 1.

− The lemma reduces to proving that 𝑚𝑚
2
≤ 𝑚𝑚 − 1 ≤ 𝑚𝑚, which is clearly true for any 𝑚𝑚 ≥ 2.

− Case 2 (𝑚𝑚 is odd):

−⟹ 𝑚𝑚
2

= 𝑚𝑚+1
2

⟹ 𝑚𝑚′′′= 2 𝑚𝑚
2
− 1 = 2𝑚𝑚+1

2
− 1 = 𝑚𝑚.

− The lemma reduces to proving that 𝑚𝑚+1
2

≤ 𝑚𝑚 ≤ 𝑚𝑚, which is clearly true for any 𝑚𝑚 ≥ 1.

Node merging

B-Trees – Rebalancing operations

CMSC 420 – Dave Mount11

 Find(Key x):
− Finding a key is analogous to 2-3 trees

− Descend the tree from the root

− Let 𝑎𝑎1 < 𝑎𝑎2 < ⋯ < 𝑎𝑎𝑗𝑗−1 be keys of current node (convention: 𝑎𝑎0 = −∞,𝑎𝑎𝑗𝑗 = +∞)

− Let 𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝑗𝑗 be children

− Find 𝑖𝑖 such that 𝑎𝑎𝑖𝑖−1 < 𝑥𝑥 ≤ 𝑎𝑎𝑖𝑖:
− If 𝑎𝑎𝑖𝑖 = 𝑥𝑥, found it

− Else, if node is leaf, not found

− Else, search 𝑇𝑇𝑖𝑖

B-Trees – Dictionary operations
Find operation

CMSC 420 – Dave Mount12

 insert(Key x, Value v):
− Find the leaf node where x belongs

− If x is already here - Error

− Else, insert new (x,v) pair in this leaf

− If node is overfull, attempt key rotation with siblings

− If siblings are both full, split this node

− One key is promoted to parent, rebalance the parent recursively

 Note: Key rotation and splitting are both options. Key rotation is preferred
because it is less costly and improves space utilization

Insertion operation

B-Trees – Dictionary operations

CMSC 420 – Dave Mount13

 Example: insert(29) (M=5)

Insertion operation

B-Trees – Dictionary operations

CMSC 420 – Dave Mount14

 delete(Key x, Value v):
− Find the node containing x

− If not found – Error

− If not in leaf, find suitable replacement key from leaf level (largest in left subtree or
smallest in right subtree), and copy it here

− Delete the replacement key:
− If node is underfull, attempt key rotation with siblings

− If both siblings are minimal, merge this node with either sibling

−One key is demoted from parent, rebalance the parent recursively

Deletion operation

B-Trees – Dictionary operations

CMSC 420 – Dave Mount15

 Example: delete(20) (M=5)

Deletion operations

B-Trees – Dictionary operations

CMSC 420 – Dave Mount16

 Example: delete(30) (M=5)

Deletion operations

B-Trees – Dictionary operations

CMSC 420 – Dave Mount17

 There are a number of variants of B-trees.
 B+ trees: A popular variant, used in disk storage

− Key-value pairs are stored only at leaves

− Internal nodes need only store keys, not values. (Saves space, bigger fan-out implies
lower tree heigth, fewer disk accesses)

− Leaf nodes do not need to waste space for child pointers

− Each leaf node has a pointer to the next leaf node in the sequence. (Makes it easy to
efficiently list all keys in a given range [𝑥𝑥𝑚𝑚𝑖𝑖𝑚𝑚, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚]. Find the leaf containing 𝑥𝑥𝑚𝑚𝑖𝑖𝑚𝑚 and
simply keep following next-leaf pointers until coming to 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚.

B+ Trees

B-Trees - Variants

CMSC 420 – Dave Mount18

 B-Trees
− Multiway search trees – Very popular for disk storage

− Fan-out m is controllable

− Height is O(log n / log m)

− Restructuring generalizes 2-3 tree:
−Node rotation (adoption)

− Split

−Merge

− Operations (insert, delete, find) run in time O(log n / log m)

 B+ Trees – A practical variant for disk storage

Summary

	CMSC 420 – 0201 – Fall 2019�Lecture 09
	B-Trees
	B-Trees
	B Trees
	B-Trees
	B-Trees – Rebalancing operations
	B-Trees – Rebalancing operations
	B-Trees – Rebalancing operations
	B-Trees – Rebalancing operations
	B-Trees – Rebalancing operations
	B-Trees – Dictionary operations
	B-Trees – Dictionary operations
	B-Trees – Dictionary operations
	B-Trees – Dictionary operations
	B-Trees – Dictionary operations
	B-Trees – Dictionary operations
	B-Trees - Variants
	Summary

