
CMSC 420 – 0201 – Fall 2019
Lecture 10

Hashing – Basics and Hash Functions

CMSC 420 – Dave Mount2

 So far, we have discussed a variety of structures for dictionaries:
− insert

− delete

− find

 We have assumed a comparison-based model (e.g, x < p.key)
 Finding a key among 𝑛𝑛 elements requires 𝑂𝑂(log𝑛𝑛) time, cannot hope for better

 Hashing: if we abandon comparisons, we can find keys in 𝑂𝑂(1) expected time!

Recap

Hashing

CMSC 420 – Dave Mount3

 We store the 𝑛𝑛 keys in a table containing 𝑚𝑚 entries
 We assume that the table size 𝑚𝑚 is at least a constant factor larger than 𝑛𝑛

− E.g., 𝑚𝑚 > 𝑐𝑐 𝑛𝑛, where 𝑐𝑐 = 1.25

 We scatter the keys throughout the table using a pseudo-random hash function
− ℎ 𝑥𝑥 ∈ [0 …𝑚𝑚− 1]
− Store 𝑥𝑥 at entry ℎ(𝑥𝑥) in the table

 Sometimes different keys will map to the same location, 𝑥𝑥 ≠ 𝑦𝑦, but ℎ 𝑥𝑥 = ℎ 𝑦𝑦
 This is a collision, and we will need strategies for resolving them (next time)
 If the number of keys colliding with 𝑥𝑥 is small (𝑂𝑂(1)), then we can access 𝑥𝑥 in
𝑂𝑂(1) time.

Intuition

Hashing

CMSC 420 – Dave Mount4

 A good hash function h should:
− Should be efficiently computable (constant time)

− Should produce few collisions
−Use every bit of the input key

− Break up (scatter) naturally occurring clusters of keys

 For example, keys “temp1”, “temp2”, and “temp3” should not be stored in
consecutive entries of the hash table

Desirable properties

Hash Functions

CMSC 420 – Dave Mount5

 Some popular functions:
− Division Hashing: ℎ(𝑥𝑥) = 𝑥𝑥 mod 𝑚𝑚 (Simple, but not very strong)

− Multiplicative Hashing: ℎ(𝑥𝑥) = (𝑎𝑎 � 𝑥𝑥) mod 𝑚𝑚 or ℎ(𝑥𝑥) = (𝑎𝑎𝑎𝑎 mod 𝑝𝑝) mod 𝑚𝑚, where 𝑎𝑎
and 𝑝𝑝 are large primes

− Linear Hashing: ℎ 𝑥𝑥 = 𝑎𝑎 � 𝑥𝑥 + 𝑏𝑏 mod 𝑚𝑚 or ℎ(𝑥𝑥) = ((𝑎𝑎𝑎𝑎 + 𝑏𝑏) mod 𝑝𝑝) mod 𝑚𝑚, where 𝑎𝑎, 𝑏𝑏
and 𝑝𝑝 are large primes

 Why mod with both 𝑝𝑝 and 𝑚𝑚?
− 𝑚𝑚 is often a power of 2, and so 𝑥𝑥 mod 𝑚𝑚 is just the lower-order bits of 𝑥𝑥
− Taking mod 𝑝𝑝 is much more “random”. Then do “mod 𝑚𝑚” to reduce to table size.

Popular Hash Functions

Hash Functions

CMSC 420 – Dave Mount6

 Polynomial Hashing:
− Compute a polynomial function of the key. Convenient when the key is a sequence of

numbers (e.g., a character string)

− Let: 𝑥𝑥 = 𝑐𝑐0, 𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3 , … , , and let 𝑝𝑝 be a suitable prime

− Then: ℎ 𝑥𝑥 = 𝑐𝑐0 + 𝑐𝑐1 𝑝𝑝 + 𝑐𝑐2𝑝𝑝2 + 𝑐𝑐3𝑝𝑝3 + ⋯ mod 𝑚𝑚

 Computing polynomial functions efficiently – Horner’s rule
− 𝑐𝑐0 + 𝑐𝑐1 𝑝𝑝 + 𝑐𝑐2𝑝𝑝2 + 𝑐𝑐3𝑝𝑝3 + ⋯ = 𝑐𝑐0 + 𝑝𝑝(𝑐𝑐1 + 𝑝𝑝(𝑐𝑐2 + 𝑝𝑝 𝑐𝑐3 + ⋯))

Polynomial Hashing - Finer Points

Hash Functions

CMSC 420 – Dave Mount7

 Computing polynomial functions efficiently – Horner’s rule
− 𝑐𝑐0 + 𝑐𝑐1 𝑝𝑝 + 𝑐𝑐2𝑝𝑝2 + 𝑐𝑐3𝑝𝑝3 + ⋯ = 𝑐𝑐0 + 𝑝𝑝(𝑐𝑐1 + 𝑝𝑝(𝑐𝑐2 + 𝑝𝑝 𝑐𝑐3 + ⋯))

public int hash(String c, int m) { // polynomial hash of a string
final int P = 37; // replace this with whatever you like
int hashValue = 0;
for (int i = c.length()-1; i >= 0; i--) { // Horner's rule

hashValue = P * hashValue + Character.getNumericValue(c.charAt(i));
}
return hashValue % m; // take the final result mod m

}

Polynomial Hashing - Finer Points

Hash Functions

CMSC 420 – Dave Mount8

 Assuming the keys are not known in advance, no hashing function is “perfect” –
collisions are inevitable

 But randomness can help
 Intuition: By selecting the hash function randomly, it will be good (in

expectation) for any given pair of keys

Randomization and Universal Hashing

CMSC 420 – Dave Mount9

 Universal Hashing:
− A “bag” of possible hash functions H

− Select one function ℎ from the bag at random

− The system is universal if, for any 𝑥𝑥, 𝑦𝑦, the probability that ℎ(𝑥𝑥) = ℎ(𝑦𝑦) for a randomly
chosen function ℎ is 1

𝑚𝑚

 Carter & Wegman (1977): There exist universal hash functions
− Pick a large prime 𝑝𝑝 (larger than any possible key)

− Pick 𝑎𝑎 at random from {1, 2, … ,𝑝𝑝 − 1}
− Pick 𝑏𝑏 at random from {0, 1, 2, … ,𝑝𝑝 − 1}
− Hash function: ℎ𝑎𝑎,𝑏𝑏(𝑥𝑥) = ((𝑎𝑎𝑎𝑎 + 𝑏𝑏) mod 𝑝𝑝) mod 𝑚𝑚

Randomization and Universal Hashing

CMSC 420 – Dave Mount10

 Theorem: Consider any two integers 𝑥𝑥 and 𝑦𝑦, where 0 ≤ 𝑦𝑦 < 𝑥𝑥 < 𝑝𝑝. Let ℎ𝑎𝑎,𝑏𝑏 be
a random hash function described in the previous slide. Then the probability
that ℎ𝑎𝑎,𝑏𝑏 𝑥𝑥 = ℎ𝑎𝑎,𝑏𝑏(𝑦𝑦) is at most 1/𝑚𝑚.

 Proof: (See full lecture notes)

Randomization and Universal Hashing

CMSC 420 – Dave Mount11

 Hashing –
− Basic concept

− Hash functions

 Stay tuned –
− Collision resolution methods

Summary

	CMSC 420 – 0201 – Fall 2019�Lecture 10
	Hashing
	Hashing
	Hash Functions
	Hash Functions
	Hash Functions
	Hash Functions
	Randomization and Universal Hashing
	Randomization and Universal Hashing
	Randomization and Universal Hashing
	Summary

