
CMSC 420 – 0201 – Fall 2019
Lecture 10

Hashing – Basics and Hash Functions

CMSC 420 – Dave Mount2

 So far, we have discussed a variety of structures for dictionaries:
− insert

− delete

− find

 We have assumed a comparison-based model (e.g, x < p.key)
 Finding a key among 𝑛𝑛 elements requires 𝑂𝑂(log𝑛𝑛) time, cannot hope for better

 Hashing: if we abandon comparisons, we can find keys in 𝑂𝑂(1) expected time!

Recap

Hashing

CMSC 420 – Dave Mount3

 We store the 𝑛𝑛 keys in a table containing 𝑚𝑚 entries
 We assume that the table size 𝑚𝑚 is at least a constant factor larger than 𝑛𝑛

− E.g., 𝑚𝑚 > 𝑐𝑐 𝑛𝑛, where 𝑐𝑐 = 1.25

 We scatter the keys throughout the table using a pseudo-random hash function
− ℎ 𝑥𝑥 ∈ [0 …𝑚𝑚− 1]
− Store 𝑥𝑥 at entry ℎ(𝑥𝑥) in the table

 Sometimes different keys will map to the same location, 𝑥𝑥 ≠ 𝑦𝑦, but ℎ 𝑥𝑥 = ℎ 𝑦𝑦
 This is a collision, and we will need strategies for resolving them (next time)
 If the number of keys colliding with 𝑥𝑥 is small (𝑂𝑂(1)), then we can access 𝑥𝑥 in
𝑂𝑂(1) time.

Intuition

Hashing

CMSC 420 – Dave Mount4

 A good hash function h should:
− Should be efficiently computable (constant time)

− Should produce few collisions
−Use every bit of the input key

− Break up (scatter) naturally occurring clusters of keys

 For example, keys “temp1”, “temp2”, and “temp3” should not be stored in
consecutive entries of the hash table

Desirable properties

Hash Functions

CMSC 420 – Dave Mount5

 Some popular functions:
− Division Hashing: ℎ(𝑥𝑥) = 𝑥𝑥 mod 𝑚𝑚 (Simple, but not very strong)

− Multiplicative Hashing: ℎ(𝑥𝑥) = (𝑎𝑎 � 𝑥𝑥) mod 𝑚𝑚 or ℎ(𝑥𝑥) = (𝑎𝑎𝑥𝑥 mod 𝑝𝑝) mod 𝑚𝑚, where 𝑎𝑎
and 𝑝𝑝 are large primes

− Linear Hashing: ℎ 𝑥𝑥 = 𝑎𝑎 � 𝑥𝑥 + 𝑏𝑏 mod 𝑚𝑚 or ℎ(𝑥𝑥) = ((𝑎𝑎𝑥𝑥 + 𝑏𝑏) mod 𝑝𝑝) mod 𝑚𝑚, where 𝑎𝑎, 𝑏𝑏
and 𝑝𝑝 are large primes

 Why mod with both 𝑝𝑝 and 𝑚𝑚?
− 𝑚𝑚 is often a power of 2, and so 𝑥𝑥 mod 𝑚𝑚 is just the lower-order bits of 𝑥𝑥
− Taking mod 𝑝𝑝 is much more “random”. Then do “mod 𝑚𝑚” to reduce to table size.

Popular Hash Functions

Hash Functions

CMSC 420 – Dave Mount6

 Polynomial Hashing:
− Compute a polynomial function of the key. Convenient when the key is a sequence of

numbers (e.g., a character string)

− Let: 𝑥𝑥 = 𝑐𝑐0, 𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3 , … , , and let 𝑝𝑝 be a suitable prime

− Then: ℎ 𝑥𝑥 = 𝑐𝑐0 + 𝑐𝑐1 𝑝𝑝 + 𝑐𝑐2𝑝𝑝2 + 𝑐𝑐3𝑝𝑝3 + ⋯ mod 𝑚𝑚

 Computing polynomial functions efficiently – Horner’s rule
− 𝑐𝑐0 + 𝑐𝑐1 𝑝𝑝 + 𝑐𝑐2𝑝𝑝2 + 𝑐𝑐3𝑝𝑝3 + ⋯ = 𝑐𝑐0 + 𝑝𝑝(𝑐𝑐1 + 𝑝𝑝(𝑐𝑐2 + 𝑝𝑝 𝑐𝑐3 + ⋯))

Polynomial Hashing - Finer Points

Hash Functions

CMSC 420 – Dave Mount7

 Computing polynomial functions efficiently – Horner’s rule
− 𝑐𝑐0 + 𝑐𝑐1 𝑝𝑝 + 𝑐𝑐2𝑝𝑝2 + 𝑐𝑐3𝑝𝑝3 + ⋯ = 𝑐𝑐0 + 𝑝𝑝(𝑐𝑐1 + 𝑝𝑝(𝑐𝑐2 + 𝑝𝑝 𝑐𝑐3 + ⋯))

public int hash(String c, int m) { // polynomial hash of a string
final int P = 37; // replace this with whatever you like
int hashValue = 0;
for (int i = c.length()-1; i >= 0; i--) { // Horner's rule

hashValue = P * hashValue + Character.getNumericValue(c.charAt(i));
}
return hashValue % m; // take the final result mod m

}

Polynomial Hashing - Finer Points

Hash Functions

CMSC 420 – Dave Mount8

 Assuming the keys are not known in advance, no hashing function is “perfect” –
collisions are inevitable

 But randomness can help
 Intuition: By selecting the hash function randomly, it will be good (in

expectation) for any given pair of keys

Randomization and Universal Hashing

CMSC 420 – Dave Mount9

 Universal Hashing:
− A “bag” of possible hash functions H

− Select one function ℎ from the bag at random

− The system is universal if, for any 𝑥𝑥, 𝑦𝑦, the probability that ℎ(𝑥𝑥) = ℎ(𝑦𝑦) for a randomly
chosen function ℎ is 1

𝑚𝑚

 Carter & Wegman (1977): There exist universal hash functions
− Pick a large prime 𝑝𝑝 (larger than any possible key)

− Pick 𝑎𝑎 at random from {1, 2, … ,𝑝𝑝 − 1}
− Pick 𝑏𝑏 at random from {0, 1, 2, … ,𝑝𝑝 − 1}
− Hash function: ℎ𝑎𝑎,𝑏𝑏(𝑥𝑥) = ((𝑎𝑎𝑥𝑥 + 𝑏𝑏) mod 𝑝𝑝) mod 𝑚𝑚

Randomization and Universal Hashing

CMSC 420 – Dave Mount10

 Theorem: Consider any two integers 𝑥𝑥 and 𝑦𝑦, where 0 ≤ 𝑦𝑦 < 𝑥𝑥 < 𝑝𝑝. Let ℎ𝑎𝑎,𝑏𝑏 be
a random hash function described in the previous slide. Then the probability
that ℎ𝑎𝑎,𝑏𝑏 𝑥𝑥 = ℎ𝑎𝑎,𝑏𝑏(𝑦𝑦) is at most 1/𝑚𝑚.

 Proof: (See full lecture notes)

Randomization and Universal Hashing

CMSC 420 – Dave Mount11

 Hashing –
− Basic concept

− Hash functions

 Stay tuned –
− Collision resolution methods

Summary

	CMSC 420 – 0201 – Fall 2019�Lecture 10
	Hashing
	Hashing
	Hash Functions
	Hash Functions
	Hash Functions
	Hash Functions
	Randomization and Universal Hashing
	Randomization and Universal Hashing
	Randomization and Universal Hashing
	Summary

