
CMSC 420 – 0201 – Fall 2019
Lecture 11

Hashing – Handling Collisions



CMSC 420 – Dave Mount2

 We store the 𝑛𝑛 keys in a table containing 𝑚𝑚 entries
 We assume that the table size 𝑚𝑚 is at least a small constant factor larger than 𝑛𝑛
 We scatter the keys throughout the table using a pseudo-random hash function

− ℎ 𝑥𝑥 ∈ [0 …𝑚𝑚− 1]
− Store 𝑥𝑥 at entry ℎ(𝑥𝑥) in the table

 Sometimes different keys collide: 𝑥𝑥 ≠ 𝑦𝑦, but ℎ 𝑥𝑥 = ℎ 𝑦𝑦

Hashing - Recap



CMSC 420 – Dave Mount3

 What is the hash function? Recall common methods:
− Multiplicative hashing: ℎ(𝑥𝑥) = (𝑎𝑎𝑥𝑥) mod 𝑝𝑝 mod 𝑚𝑚 (for 𝑎𝑎 ≠ 0 and prime 𝑝𝑝)

− Linear hashing: ℎ(𝑥𝑥) = (𝑎𝑎𝑥𝑥 + 𝑏𝑏) mod 𝑝𝑝 mod 𝑚𝑚 (for 𝑎𝑎 ≠ 0 and prime 𝑝𝑝)

− Polynomial: 𝑥𝑥 = 𝑐𝑐0, 𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3 , … , , ℎ 𝑥𝑥 = (𝑐𝑐0 + 𝑐𝑐1 𝑝𝑝 + 𝑐𝑐2𝑝𝑝2 + 𝑐𝑐3𝑝𝑝3 + ⋯ ) mod 𝑚𝑚
− Universal hashing: ℎ𝑎𝑎,𝑏𝑏(𝑥𝑥) = ((𝑎𝑎𝑥𝑥 + 𝑏𝑏) mod 𝑝𝑝) mod 𝑚𝑚 (where, 𝑎𝑎 and 𝑏𝑏 are random and 𝑝𝑝

is prime) 

 How to resolve collisions? We will consider several methods:
− Separate chaining

− Linear probing

− Quadratic probing

− Double hashing

Defining issues

Hashing - Recap



CMSC 420 – Dave Mount4

 Given a hash table table[] with 𝑚𝑚 entries
 table[i] stores a linked list containing the keys 𝑥𝑥 such that ℎ(𝑥𝑥) = 𝑖𝑖

Separate Chaining



CMSC 420 – Dave Mount5

 insert(x, v): Compute i=h(x), invoke table[i].insert(x,v)
 delete(x): Compute i=h(x), invoke table[i].delete(x)
 find(x): Compute i=h(x), invoke table[i].find(x)

Separate Chaining
Hash operations reduce to linked-list operations



CMSC 420 – Dave Mount6

 Given a hash table table[m] containing 𝑛𝑛 entries

 Define load factor: 𝜆𝜆 = 𝑛𝑛
𝑚𝑚

 Assuming keys are uniformly distributed, there are on average 𝜆𝜆 entries per list
 Expected search times:

− Successful search (key found): Need to search half the list on average

𝑆𝑆𝑆𝑆𝑆𝑆 = 1 + ⁄𝜆𝜆 2

− Unsuccessful search (key not found): Need to search entire list

𝑈𝑈𝑆𝑆𝑆𝑆 = 1 + 𝜆𝜆

Separate Chaining
Load factor and running time



CMSC 420 – Dave Mount7

 Clearly, we want to keep load factors small, typically 0 < 𝜆𝜆 < 1
 Select min and max load factors, 𝜆𝜆𝑚𝑚𝑚𝑚𝑛𝑛 and 𝜆𝜆𝑚𝑚𝑎𝑎𝑚𝑚, where 0 < 𝜆𝜆𝑚𝑚𝑚𝑚𝑛𝑛 < 𝜆𝜆𝑚𝑚𝑚𝑚𝑛𝑛 < 1
 Define ideal load factor 𝜆𝜆0 = �(𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚+𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚)

2

 Rehashing (after insertion):
− If insertion causes load factor to exceed 𝜆𝜆𝑚𝑚𝑎𝑎𝑚𝑚:

− Allocate a new hash table of size 𝑚𝑚′ = 𝑛𝑛
𝜆𝜆0

− Create a new hash function ℎ′ for this table

− Rehash all old entries into the new table using ℎ′

− After rehashing, the load factor is now ⁄𝑛𝑛 𝑚𝑚′ = 𝜆𝜆0, that is, “ideal”

Rehashing

Controlling the Load Factor



CMSC 420 – Dave Mount8

Example: 𝜆𝜆𝑚𝑚𝑚𝑚𝑛𝑛 = 1
4

, 𝜆𝜆𝑚𝑚𝑎𝑎𝑚𝑚 = 3
4

and 𝜆𝜆0 = 1
2

Rehashing



CMSC 420 – Dave Mount9

 Underflow: Rehashing can also be applied when the load factor is too small
 Rehashing (after deletion):

− If deletion causes load factor to be smaller than 𝜆𝜆𝑚𝑚𝑚𝑚𝑛𝑛:

− Allocate a new hash table of size 𝑚𝑚′ = 𝑛𝑛
𝜆𝜆0

− Create a new hash function ℎ′ for this table

− Rehash all old entries into the new table using ℎ′

− After rehashing, the load factor is now ⁄𝑛𝑛 𝑚𝑚′ = 𝜆𝜆0, that is, “ideal”

Rehashing

Controlling the Load Factor



CMSC 420 – Dave Mount10

 Rehashing takes time – How bad is it?
 Rehashing takes O(n) time, but once done we are good for a while
 Example:

− Suppose 𝑚𝑚 = 1000, 𝜆𝜆𝑚𝑚𝑚𝑚𝑛𝑛 = 1
4

and 𝜆𝜆𝑚𝑚𝑎𝑎𝑚𝑚 = 3
4
, 𝜆𝜆0 = 1

2

− After insertion, if 𝑛𝑛 > 𝜆𝜆𝑚𝑚𝑎𝑎𝑚𝑚 = 750, then we allocate a new table of size 𝑚𝑚′ = 𝑛𝑛/𝜆𝜆0 ≈
1500, and rehash the entries here

− In order to overflow again, we need 𝑛𝑛′/𝑚𝑚′ > 𝜆𝜆𝑚𝑚𝑎𝑎𝑚𝑚
− That is, we need 𝑛𝑛′ = 1125 keys, or equivalently at least 1125 − 750 = 375 insertions

− Amortization: We charge the (expensive) work of rehashing to these (cheap) insertions

How expensive is rehashing?

Rehashing – Amortized Analysis



CMSC 420 – Dave Mount11

 Theorem: Assuming that individual hashing operations take 𝑂𝑂(1) time each, if we 
start with an empty hash table, the amortized complexity of hashing using the 
above rehashing method with load factors of 𝜆𝜆𝑚𝑚𝑚𝑚𝑛𝑛 and 𝜆𝜆𝑚𝑚𝑎𝑎𝑚𝑚, respectively, is at 
most 1 + ⁄2𝜆𝜆𝑚𝑚𝑎𝑎𝑚𝑚 (𝜆𝜆𝑚𝑚𝑎𝑎𝑚𝑚 − 𝜆𝜆𝑚𝑚𝑚𝑚𝑛𝑛)

 Proof:
− Token-based argument: Each time we perform a hash-table operation, we assess 1 unit 

for the actual operation and save ⁄2𝜆𝜆𝑚𝑚𝑎𝑎𝑚𝑚 (𝜆𝜆𝑚𝑚𝑎𝑎𝑚𝑚 − 𝜆𝜆𝑚𝑚𝑚𝑚𝑛𝑛) work tokens for future use

− Two cases: Overflow and underflow

How expensive is rehashing?

Rehashing – Amortized Analysis



CMSC 420 – Dave Mount12

− Token-based argument: Each time we perform a hash-table operation, we assess 1 unit 
for the actual operation and save ⁄2𝜆𝜆𝑚𝑚𝑎𝑎𝑚𝑚 (𝜆𝜆𝑚𝑚𝑎𝑎𝑚𝑚 − 𝜆𝜆𝑚𝑚𝑚𝑚𝑛𝑛) work tokens for future use

− Overflow:
− Current table has 𝑛𝑛 ≈ 𝜆𝜆𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚 entries. This is the cost of rehashing

− Just after the previous rehash, table contained 𝑛𝑛′ = 𝜆𝜆0𝑚𝑚 entries

− Since then, we performed at least 𝑛𝑛 − 𝑛𝑛′ = 𝜆𝜆𝑚𝑚𝑎𝑎𝑚𝑚 − 𝜆𝜆0 𝑚𝑚 insertions

− By simple math, we have 𝜆𝜆𝑚𝑚𝑎𝑎𝑚𝑚 − 𝜆𝜆0 = 𝜆𝜆𝑚𝑚𝑎𝑎𝑚𝑚 −
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚+𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

2
= (𝜆𝜆𝑚𝑚𝑎𝑎𝑚𝑚 − 𝜆𝜆𝑚𝑚𝑚𝑚𝑛𝑛)/2

− Thus, the number of tokens collected is at least
( ⁄2𝜆𝜆𝑚𝑚𝑎𝑎𝑚𝑚 (𝜆𝜆𝑚𝑚𝑎𝑎𝑚𝑚 − 𝜆𝜆𝑚𝑚𝑚𝑚𝑛𝑛)) � 𝜆𝜆𝑚𝑚𝑎𝑎𝑚𝑚 − 𝜆𝜆0 𝑚𝑚 = 𝜆𝜆𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚 ≈ 𝑛𝑛

− In summary, we have enough tokens to pay for rehashing!

− Underflow: (Similar…see lecture notes)

How expensive is rehashing?

Rehashing – Amortized Analysis



CMSC 420 – Dave Mount13

 Separate chaining requires additional storage. Can we avoid this?
 Store everything in the table
 Requires that 𝑛𝑛 ≤ 𝑚𝑚, that is, λ ≤ 1.
 Open Addressing:

− Special entry “empty” indicates that this table entry is unused

− To insert x, first check table[h(x)]. If empty, then store here

− Otherwise, probe subsequent table entries until finding an empty location

− Which entries to probe? Does it matter? 

− Yes! As the load factor approaches 1, some probe methods have good performance and 
others do not

Open Addressing



CMSC 420 – Dave Mount14

 Linear probing:
− If table[h(x)] is not empty, try h(x)+1, h(x)+2, …, h(x)+j, until finding the first 

empty entry 
− Wrap around if needed: table[(h(x)+j) % m]

 Example:

Open Addressing – Linear Probing
Quick and dirty (maybe too quick and dirty)



CMSC 420 – Dave Mount15

Secondary clustering

Open Addressing – Linear Probing

 Primary clustering: Clusters that occurs due to many keys hashing to the same 
location. (Should not occur if you use a good hash function)

 Secondary clustering:  Clustering that occurs because collision resolution fails to 
disperse keys effectively

 Bad news: Linear probing is highly susceptible to secondary clustering



CMSC 420 – Dave Mount16

Secondary clustering

Open Addressing – Linear Probing

 Expected search times:

− Successful search (key found): 𝑆𝑆𝐿𝐿𝐿𝐿 = 1
2

1 + 1
1−𝜆𝜆

− Unsuccessful search (key not found): 𝑈𝑈𝐿𝐿𝐿𝐿 = 1
2

1 + 1
1−𝜆𝜆

2

− A table becomes full, 𝜆𝜆 → 1, 𝑈𝑈𝐿𝐿𝐿𝐿 grows very rapidly



CMSC 420 – Dave Mount17

An attempt to avoid secondary clustering

Open Addressing – Quadratic Probing

 Linear probing: ℎ 𝑥𝑥 + 1, 2, 3, … , 𝑖𝑖 clusters keys very close to the insertion point

 Quadratic probing: ℎ 𝑥𝑥 + 1,4,9, … , 𝑖𝑖2 disperses keys better, reducing clustering



CMSC 420 – Dave Mount18

An attempt to avoid secondary clustering

Open Addressing – Quadratic Probing

 Quadratic probing: ℎ 𝑥𝑥 + 1, 4, 9, … , 𝑖𝑖2 disperses keys better, reducing clustering
 Let table[i].key and table[i].value be the key and value
 Cute trick: 𝑖𝑖2 = (𝑖𝑖 − 1)2+(2𝑖𝑖 − 1). For next offset, add 2𝑖𝑖 + 1 to previous offset
 Pseudo-code for find(x):

Value find(Key x) {
int c = h(x) // initial probe location
int i = 0 // probe offset
while (table[c].key != empty) && (table[c].key != x) {

c += 2*(++i) – 1 // next position
c = c % m // wrap around

}
return table[c].value // return associated value (or null if empty)

}



CMSC 420 – Dave Mount19

An attempt to avoid secondary clustering

Open Addressing – Quadratic Probing

 Quadratic probing: 
− More formally, the probe sequence is ℎ 𝑥𝑥 + 𝑓𝑓(𝑖𝑖), where 𝑓𝑓 𝑖𝑖 = 𝑖𝑖2

 Complete coverage?
− Does the probe sequence hit every possible table location?

− No! For example, if 𝑚𝑚 = 4, 𝑖𝑖2 mod 4 is either 0 or 1, never 2 or 3. (Try it!)

 Any hope? Can we select 𝑚𝑚 so that quadratic probing hits all entries?
− If 𝑚𝑚 is prime of the form 4 𝑘𝑘 + 3, quadratic probing will hit every table entry before 

repeating (source: Wikipedia – Related to quadratic residues)

− If 𝑚𝑚 is a power of 2, and we use 𝑓𝑓(𝑖𝑖) = 1
2
𝑖𝑖2 + 𝑖𝑖 , quadratic probing will hit every table 

entry before repeating (source: Wikipedia)



CMSC 420 – Dave Mount20

An attempt to avoid secondary clustering

Open Addressing – Quadratic Probing

 Theorem: If quadratic probing is used, and the table size m is a prime number, 
the first 𝑚𝑚

2
probe sequences are distinct.

 Proof:

− By contradiction. Suppose that there exist 𝑖𝑖, 𝑗𝑗, such that 0 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑚𝑚
2

and ℎ 𝑥𝑥 + 𝑖𝑖2

and ℎ 𝑥𝑥 + 𝑗𝑗2 are equivalent modulo 𝑚𝑚. 

− Then the following equivalences hold mod 𝑚𝑚:

𝑖𝑖2 ≡ 𝑗𝑗2 ⇔ 𝑖𝑖2 − 𝑗𝑗2 ≡ 0 ⇔ 𝑖𝑖 + 𝑗𝑗 𝑖𝑖 − 𝑗𝑗 ≡ 0 (mod 𝑚𝑚)

− Since 𝑚𝑚 is prime, both 𝑖𝑖 + 𝑗𝑗 and 𝑖𝑖 − 𝑗𝑗 must be multiples of 𝑚𝑚. But since 0 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑚𝑚
2

, 
both quantities are smaller than 𝑚𝑚, and hence cannot be multiples. Contradiction!



CMSC 420 – Dave Mount21

Saved the best for last

Open Addressing – Double Hashing

 Linear probing suffers from secondary clustering
 Quadratic probing may fail to hit all cells
 Double hashing: 

− Probe offset is based on a second hash function 𝑔𝑔(𝑥𝑥)
− Probe sequence: ℎ(𝑥𝑥), ℎ(𝑥𝑥) + 𝑔𝑔(𝑥𝑥), ℎ(𝑥𝑥) + 2𝑔𝑔(𝑥𝑥), ℎ(𝑥𝑥) + 3𝑔𝑔(𝑥𝑥), …



CMSC 420 – Dave Mount22

Saved the best for last

Open Addressing – Double Hashing

 Double hashing: 
− Probe offset is based on a second hash function 𝑔𝑔(𝑥𝑥)
− Probe sequence: ℎ(𝑥𝑥), ℎ(𝑥𝑥) + 𝑔𝑔(𝑥𝑥), ℎ(𝑥𝑥) + 2𝑔𝑔(𝑥𝑥), ℎ(𝑥𝑥) + 3𝑔𝑔(𝑥𝑥), …

 Will this hit all entries before cycling?
− Yes! If 𝑚𝑚 and 𝑔𝑔(𝑥𝑥) are relatively prime, share no common factors. (E.g., Making 𝑔𝑔(𝑥𝑥) a 

prime greater than 𝑚𝑚 guarantees this)



CMSC 420 – Dave Mount23

Saved the best for last

Open Addressing – Double Hashing

 Double hashing has the best search times among all the methods covered so far:

− Successful search (key found): 𝑆𝑆𝐷𝐷𝐷𝐷 = 1
𝜆𝜆

ln 1
1−𝜆𝜆

− Unsuccessful search (key not found): 𝑈𝑈𝐷𝐷𝐷𝐷 = 1
1−𝜆𝜆

 Some sample values:

𝝀𝝀 0.5 0.75 0.9 0.95 0.99

𝑈𝑈(𝜆𝜆) 2.00 4.00 10.0 20.0 100

𝑆𝑆(𝜆𝜆) 1.39 1.89 2.56 3.15 4.65



CMSC 420 – Dave Mount24

Open Addressing – Deletion

 Deleted entries can create the illusion we are at the end of the probe sequence

Deletion requires care!



CMSC 420 – Dave Mount25

Open Addressing – Deletion

 Special entry “deleted”: The item at this location has been deleted
− When searching: don’t stop here

− When inserting: a key can be placed here

Quick and dirty fix



CMSC 420 – Dave Mount26

 Hashing has been around a long time, and numerous refinements have been 
proposed

 Example: Brent’s Method
− When using double hashing, multiple probe sequences (with different values of g(x)) 

may overlap at a common cell of the hash table, say table[i]
− One of these sequence places its key in table[i], and for the other, this wasted cell 

just adds to the search times

− To improve average search times, we should give ownership of the cell to the longer of 
the two probe sequences (and move the other key later in its probe sequence)

− Brent’s algorithm optimizes the placement of keys in overlapping probe sequences

Hashing – Further Refinements



CMSC 420 – Dave Mount27

 Hashing – The fastest implementation of the dictionary data type
− Does not support ordered operations (min, max, range query, kth smallest, …)

− Key elements:
−Hash function - Linear, Polynomial, Universal hashing

− Collision resolution
− Separate chaining

− Open Addressing:

− Linear probing

− Quadratic probing

− Double hashing

− Analysis: Load factors, rehashing and amortized efficiency

Summary


	CMSC 420 – 0201 – Fall 2019�Lecture 11
	Hashing - Recap
	Hashing - Recap
	Separate Chaining
	Separate Chaining
	Separate Chaining
	Controlling the Load Factor
	Rehashing	
	Controlling the Load Factor
	Rehashing – Amortized Analysis	
	Rehashing – Amortized Analysis	
	Rehashing – Amortized Analysis	
	Open Addressing
	Open Addressing – Linear Probing
	Open Addressing – Linear Probing
	Open Addressing – Linear Probing
	Open Addressing – Quadratic Probing
	Open Addressing – Quadratic Probing
	Open Addressing – Quadratic Probing
	Open Addressing – Quadratic Probing
	Open Addressing – Double Hashing
	Open Addressing – Double Hashing
	Open Addressing – Double Hashing
	Open Addressing – Deletion
	Open Addressing – Deletion
	Hashing – Further Refinements
	Summary

