Extended and Scapegoat Trees
Overview

- In today’s lecture, we will discuss two unrelated topics that arise in the programming assignment:
 - Extended Binary Search Trees
 - Scapegoat Trees
- We will also discuss the SG Tree, which is featured in the Programming Project, Part 1
Extended Binary Search Trees

- Extended Binary Tree (from Lecture 3)
 - Internal nodes: Have exactly 2 children
 - External nodes: Have 0 children

- Basic properties
 - Any extended binary tree with \(n \) internal nodes has \(n + 1 \) leaves
Extended Binary Search Trees

- Each external node contains an entry, a key-value pair, \((x, v)\)
- Each internal node contains a splitter, \(s\)
 - If \(x \leq s\) → Left subtree
 - If \(x > s\) → Right subtree

Note that a key can be both a splitter and part of a key-value pair.
Extended Binary Search Trees

Why?

- **Memory locality**: We saw with B+ trees, we can store many splitters in a single node, increasing fan-out, thus decreasing tree height

- **Heterogenous data**: In some applications the data and splitters are different
 - Example: *Binary-space partition tree*
 - Data are points
 - Splitters are lines

![Binary-space partition tree diagram](image)
Extended Binary Search Trees

Differences with standard (unbalanced) binary search trees

- **find(x):**
 - Descend to the external node, as directed by internal nodes
 - If key matches - then found, else not
 - **Warning:** Matching a splitter means nothing!

- **Example:**
 - find(7) - yes
 - find(15) - no
 - find(10) - no! (even though root matches)
Extended Binary Search Trees

Differences with standard (unbalanced) binary search trees

- **insert(x,v):**
 - Descend to the external node. Let y be its key. If $x = y$ - duplicate-key error
 - Create a new external node for x and internal node to split between x and y
 - Splitter s satisfies: $\min(x, y) \leq s < \max(x, y)$
Extended Binary Search Trees

Differences with standard (unbalanced) binary search trees

- **delete(x):**
 - Descend to the external node. Let y be its key. If $x \neq y$ - key-not-found error
 - Replace this node and its parent with its sibling

![Diagram showing delete(9) operation on a binary search tree]
Scapegoat Trees
Another Amortized Dictionary Data Structure

- **Amortized cost** -
 - The total cost divided by the number of operations
 - **Splay trees** - Amortized cost $O(\log n)$ for dictionary operations, even though any single operation may take $O(n)$ time

- **Are there other efficient dictionaries in the amortized sense?** **Scapegoat trees!**

- **Origins:**
 - Original idea by Arne Andersson (of AA-Tree fame), 1989
 - Rediscovered by Galperin and Rivest, 1993 (gave the name “Scapegoat Tree”)

- **Resources:**
 - http://opendatastructures.org/versions/edition-0.1g/ods-python/8_Scapegoat_Trees.html
 - http://opendatastructures.org/newhtml/ods/latex/scapegoat.html
Scapegoat Trees

Another Amortized Dictionary Data Structure

- Why should we care?
 - Amortized structures are often simpler than worst-case efficient structures
 - The update rules for scapegoat trees can be adapted to many other search trees where rotations cannot be applied (e.g., spatial decomposition trees)
 - The SG Tree in the programming assignment is a variant of the scapegoat tree
Scapegoat Trees
Overview - Balance through Rebuilding

- **Insertion:**
 - Insert just as in a standard (unbalanced) binary tree
 - Monitor the depth of the inserted node after each insertion
 - If it is too high, then there must be at least one node on the search path that has poor weight balance (left and right children have very different sizes)
 - Find such a node - it’s the scapegoat! (It is given the blame for the high depth)
 - Rebuild the subtree rooted at this node so that it is perfectly balanced

- **Deletion:**
 - Delete as in a standard (unbalanced) binary tree
 - Once the number of deletions is sufficiently large relative to the entire tree size, rebuild the entire tree so it is perfectly balanced
Scapegoat Trees

Overview - Balance through Rebuilding

- **How to rebuild a subtree?**
 - Perform an inorder traversal of the subtree, and **copy** the n elements to a (sorted) array $A[0 \ldots n - 1]$
 - Take the **median** of the array as the root, and **recursively** build left and right subtrees from the two halves of the array

- **buildSubtree(A, i, k):** Build subtree for k-element subarray $A[i \ldots i + k - 1]$
 - If $k = 0$, return null
 - Otherwise, let $m = \left\lfloor \frac{k}{2} \right\rfloor$. Create new node p with median key, $A[i + m]$
 - p.left = buildSubtree(A, i, m)
 - p.right = buildSubtree(A, i+m+1, k-m-1)

- A subtree with n nodes can be rebuilt in $O(n)$ time
A scapegoat tree stores **no balance or height information** with the nodes.

In addition to the tree we maintain:
- n - the current number of nodes in the tree
- m - an upper bound on the tree size (we maintain: $n \leq m \leq 2n$)

Height condition: never exceeds $\log_{3/2} m$ (\Rightarrow Tree height is $O(\log n)$)

Size condition:
- Initially: $n = m = 0$
- After insertion: $n++, m++$
- After deletion: $n --$ (but do not change m)
- If $2n < m$, rebuild the entire tree, and set $m = n$
Scapegoat Trees

Overview - More Details

- **find(x):**
 - Identical to any binary search time (time: $O(\log n)$)

- **delete(x):**
 - Identical to delete for an unbalanced binary tree
 - Decrement n (but do not change m)
 - If $2n < m$, rebuild the entire tree, and set $m = n$
Scapegoat Trees
Overview - More Details

- **insert(x):**
 - Same as standard binary search tree insertion, keep track of inserted node’s depth (number of edges from the root)
 - Increment both n and m
 - If inserted depth exceeds $\log_{3/2} m$:
 - Walk back up the search path until we find the first node u such that
 \[
 \frac{\text{size}(u.\child)}{\text{size}(u)} > \frac{2}{3}
 \]
 - Here $\text{size}(u)$ is the number of nodes in u’s subtree and $u.\child$ is u’s child on search path
 - A node on the insertion path satisfying this is called a **candidate scapegoat**
 - Rebuild the subtree rooted at u
Scapegoat Trees
Overview - More Details

- insert(5):

```
13  
 /  
12 15  
 /  
9 17  
 /  
2  
 /  
1 7  
 /  
0 4  
```

```
13  
 /  
12 15  
 /  
9 17  
 /  
2  
 /  
1 7  
 /  
0 4  
```

```
13  
 /  
12 15  
 /  
4 17  
 /  
1 7  
 /  
0 2  
```

6 > log_3^11 ≈ 5.9!!
Scapegoat Trees
Overview - More Details

- Will we always find a **scapegoat node**? Yes!
- Is it **unique**? No! (9, 12, and 13 are all **candidate scapegoats**)
- **Lemma**: If there exists a node p such that $\text{depth}(p) > \log^{3/2} m$, then p has an ancestor u that is a **candidate scapegoat**, that is,
 \[
 \frac{\text{size}(u.\text{child})}{\text{size}(u)} > \frac{2}{3}
 \]
- **Proof**: By contradiction.
 - Suppose that for every node u along the path to p, $\text{size}(u.\text{child}) \leq \left(\frac{2}{3}\right)\text{size}(u)$
 - Letting $k = \text{depth}(p)$, by induction have $\text{size}(p) \leq \left(\frac{2}{3}\right)^k n$
 - Since $\text{size}(p) \geq 1$, this implies $\left(\frac{3}{2}\right)^k \leq n$, implies $k \leq \log_{3/2} n \leq \log_{3/2} m$, contradiction
Scapegoat Trees

Overview - More Details

- How do we compute \(\text{size}(u)\) for each node \(u\)?
- Two methods:
 1. Maintain a separate field, \(u\.size\), for each node storing the size of \(u\)'s subtree (and update as needed)
 2. Compute it on the fly, after each insertion that requires rebalancing:
 - Walk up the search path toward the root
 - Let \(u\) be any ancestor of the inserted node. Assume we know \(\text{size}(u)\).
 - We want to compute \(\text{size}(u\.parent)\):
 - Let \(u'\) be \(u\)'s sibling. Traverse the subtree rooted at \(u'\) and count the number of nodes.
 - Set \(\text{size}(u\.parent) = 1 + \text{size}(u) + \text{size}(u')\)
 - This may seem costly, but it can all be done within the amortized time bound!
Theorem: Starting with an empty tree, any sequence of \(k \) dictionary operations costs a total of \(O(k \log k) \)

Proof: (Sketch)
- **Find**: Cost is \(O(\log n) \) always (by height bound)
- **Delete**: In order to rebuild a tree due to deletions, *at least half* the entries have been deleted. A *token-based analyses* (recall stacks and rehashing from earlier lectures) can be applied here.
- **Insert**: This is analyzed by a *potential argument*. Intuitively, after any subtree of size \(k \) is rebuilt it takes \(O(k) \) insertions to force this subtree to be rebuilt again. Charge the rebuilding time against these “cheap” insertions.

Corollary: The amortized complexity of the scapegoat tree with at most \(n \) nodes is \(O(\log n) \)
SG Tree

A data structure invented just for the programming assignment

- **Overview - An SG Tree is:**
 - An extended binary search tree that is rebalanced like a scapegoat tree
 - Updated concepts:
 - The size of an internal node is the number of external nodes in its subtree
 - The height of a node is the maximum number of edges to any external node
 - **Similarities** with the scapegoat tree:
 - Maintain total size n and upper bound m, where $n \leq m \leq 2n$
 - **Height condition**: Rebuild if tree height exceeds $\log_{3/2} m$ (\Rightarrow Tree height is $O(\log n)$)
 - **Candidate scapegoat**: Any node on search path such that $\frac{\text{size}(u.\text{child})}{\text{size}(u)} > \frac{2}{3}$
 - **Deletion condition**: If $2n < m$, rebuild the entire tree, and set $m = n$
SG Tree

- Differences from the scapegoat tree:
 - **Nodes:** Two types of nodes:
 - **External** - store data only (a city for the programming assignment)
 - **Internal** - store splitter, left, right, subtree height, and subtree size
 - **Scapegoat Node:**
 - When insertion causes the tree’s height to exceed $\log_{3/2} m$, if multiple nodes satisfy the scapegoat condition, we chose the one **closest to the root**
 - Why? By rebuilding the **largest subtree**, we make the overall tree **more balanced**
SG Tree

- Conventions:
 - To avoid floating-point round-off errors, use integer arithmetic to test the scapegoat condition:
 \[2 \cdot \text{size}(u) < 3 \cdot \text{size}(u.\text{child}) \Rightarrow u \text{ is candidate scapegoat} \]
 - When inserting a new external node, the parent’s splitter is taken from its left child
SG Tree

- More conventions:
 - When rebuilding a subtree with k external nodes:
 - If k is even, split the internal nodes evenly among the left and right subtrees
 - If k is odd, the left subtree gets $\lfloor k/2 \rfloor$ external nodes and the right subtree gets $\lceil k/2 \rceil$
 - More formally: When splitting the k-element subarray $A[i \ldots i + k - 1]$:
 - Set $m = \lfloor k/2 \rfloor$
 - Build left subtree with m keys: $A[i \ldots i + m - 1]$
 - The splitter is $A[i + m - 1]$
 - Build right subtree with $k - m$ keys: $A[i + m \ldots i + k - 1]$
 - This convention results in the most even split and most balanced splitter value
SG Tree

Implementation hints

- Abstract class Node and two derived classes
 - `ExternalNode` - stores just a city object
 - `InternalNode` - stores splitter (a city), left, right, size, and height

- Take advantage of virtual functions when defining node operations
 - Don’t do this:
    ```
    Node insert(Node p) {
      if (p.isExternal) {
        ExternalNode pe = (ExternalNode) p;
        /* external node processing */
      }
      else {
        InternalNode pi = (InternalNode) p;
        /* internal node processing */
      }
    }
    ```
SG Tree

Implementation hints

- Instead, do this:

```java
abstract class Node {
    // ...
    abstract Node insert(Key x);
}
class InternalNode extends Node {
    // ...
    Node insert(Key x) { ... } // insertion at internal node
}
class ExternalNode extends Node {
    // ...
    Node insert(Key x) { ... } // insertion at external node
}
```
SG Tree

Implementation hints

- **Your SGTree class:**
 - **Generic**? It’s up to you.
 - We don’t maintain key-value pairs. We store city objects.
 - The print command assumes that the data object has a name and (x,y) coordinates.
 - We made ours generic, but the data type must support getName(), getX(), and getY().
 - Use inner classes for nodes:
 - Node, InternalNode, ExternalNode
 - **Private data:**

    ```java
    Node root;
    Comparator comparator; (Optional. Given with the constructor)
    Document resultsDoc; (Needed by print command)
    int n, m; (Used by the scapegoat functions)
    ```
SG Tree

Implementation hints

- **insert(x):**
 - Insert the key using the *standard recursive insertion algorithm*
 - Some modifications needed because we have an extended tree
 - While backing out from recursion, *update the size and height values for each node*
 - Increment both n and m
 - If the new tree height *exceeds* $\log_{3/2} m$:
 - Traverse the search path from root down until finding the first candidate scapegoat
 \[2 \cdot \text{size}(u) < 3 \cdot \text{size}(u.\text{child}) \]
 - **Rebuild** this subtree (Note: u must be an internal node)
 - (Be sure that your rebuilding function updates heights and sizes for all nodes)
SG Tree

Implementation hints

- **delete(x):**
 - Delete the key using the *standard recursive deletion* algorithm
 - Some modifications needed because we have an extended tree
 - While backing out from recursion, *update the size and height* values for each node
 - **Decrement** n but not m
 - If $2n < m$:
 - **Rebuild** the entire tree
 - Set $m = n$
SG Tree

Implementation hints

- Write utilities for handling size and height:
 - getSize(Node p): return (p.isExternal ? 1 : p.size)
 - getHeight(Node p): return (p.isExternal ? 0 : p.height)
 - InternalNode.update():
 size = getSize(left) + getSize(right);
 height = 1 + max(getHeight(left), getHeight(right));

- Write a debugging utility for “pretty printing” your tree
 - Call this function after each major operation (insert, delete, subtree rebuilding)

- Insert a boolean flag (e.g., DEBUG), which you can turn on and off for debugging
SG Tree

Implementation hints

- **Problem:**
 - My SG Tree is ordered by \((x, y)\)-coordinates. How do I delete a city given just its name?

- **Answer:**
 - This is why we have the binary-search tree (which is ordered by name)
 - Create a “bogus city” with just a name (no coordinates)
 - Find this city in your binary-search tree and save this “complete city”
 - Delete this complete city from both data structures
Example of a rebuild operation

Supplemental
Example of SG-Tree operations

- Insertion of 13, 15, 17, 12, 16, 5, 2, 7, 9, 14, 16, 20

Initial tree:

- Insertion of 13:
 - $3 \leq \log_2 5 \approx 3.97$

- Insertion of 9:
 - $5 \leq \log_2 9 \approx 5.42$

- Insertion of 14:
 - $6 \leq \log_2 13 \approx 6.33$

Final tree:

- Rebuilding after insertion of 12

- Scapegoat candidates:

- Insertion of 7:
 - $7 > \log_2 14 \approx 6.5!!$
Another example of SG-Tree operations

$3 \leq \log_2 4 \approx 3.42$

$4 > \log_3 5 \approx 1.66$f

$5 \leq \log_2 10 \approx 3.32$
Summary

- **Extended Binary Search Trees**
 - Data stored only at the leaves (external nodes)
 - Internal nodes are used only for locating the data

- **Scapegoat Trees**
 - Another amortized binary search tree data structure
 - Rebalancing through rebuilding subtrees
 - Unlike splay trees, height is guaranteed to be $O(\log n)$

- **SG Tree**
 - An extended-tree variant of the scapegoat tree