
CMSC 420 – 0201 – Fall 2019
Lecture 12

Extended and Scapegoat Trees

CMSC 420 – Dave Mount2

 In today’s lecture, we will discuss two unrelated topics that arise in the
programming assignment:
− Extended Binary Search Trees

− Scapegoat Trees

 We will also discuss the SG Tree, which is featured in the Programming Project,
Part 1

Overview

CMSC 420 – Dave Mount3

 Extended Binary Tree (from Lecture 3)
− Internal nodes: Have exactly 2 children

− External nodes: Have 0 children

 Basic properties
− Any extended binary tree with 𝑛𝑛 internal nodes

has 𝑛𝑛 + 1 leaves

Extended Binary Search Trees

CMSC 420 – Dave Mount4

 Extended Binary Search Trees
− Each external node contains an entry, a key-value pair, (𝑥𝑥, 𝑣𝑣)
− Each internal node contains a splitter, 𝑠𝑠

− If 𝑥𝑥 ≤ 𝑠𝑠 → Left subtree

− If 𝑥𝑥 > 𝑠𝑠 → Right subtree

 Note that a key can be both a splitter and
part of a key-value pair

Extended Binary Search Trees

Contents: {2, 6, 7, 9, 11, 14, 17}

CMSC 420 – Dave Mount5

 Memory locality: We saw with B+ trees, we can store many splitters in a single
node, increasing fan-out, thus decreasing tree height

 Heterogenous data: In some applications the data and splitters are different
− Example: Binary-space partition tree

− Data are points

− Splitters are lines

Why?

Extended Binary Search Trees

CMSC 420 – Dave Mount6

 find(x):
− Descend to the external node, as directed by internal nodes

− If key matches – then found, else not

− Warning: Matching a splitter means nothing!

 Example:
− find(7) – yes

− find(15) – no

− find(10) – no! (even though root matches)

Differences with standard (unbalanced) binary search trees

Extended Binary Search Trees

CMSC 420 – Dave Mount7

 insert(x,v):
− Descend to the external node. Let 𝑦𝑦 be its key. If 𝑥𝑥 = 𝑦𝑦 – duplicate-key error

− Create a new external node for 𝑥𝑥 and internal node to split between 𝑥𝑥 and 𝑦𝑦
− Splitter 𝑠𝑠 satisfies: min(𝑥𝑥,𝑦𝑦) ≤ 𝑠𝑠 < max(𝑥𝑥,𝑦𝑦)

Differences with standard (unbalanced) binary search trees

Extended Binary Search Trees

CMSC 420 – Dave Mount8

 delete(x):
− Descend to the external node. Let 𝑦𝑦 be its key. If 𝑥𝑥 ≠ 𝑦𝑦 – key-not-found error

− Replace this node and its parent with its sibling

Differences with standard (unbalanced) binary search trees

Extended Binary Search Trees

CMSC 420 – Dave Mount9

 Amortized cost –
− The total cost divided by the number of operations

− Splay trees – Amortized cost 𝑂𝑂(log𝑛𝑛) for dictionary operations, even though any single
operation may take 𝑂𝑂(𝑛𝑛) time

 Are there other efficient dictionaries in the amortized sense? Scapegoat trees!
 Origins:

− Original idea by Arne Andersson (of AA-Tree fame), 1989

− Rediscovered by Galperin and Rivest, 1993 (gave the name “Scapegoat Tree”)

 Resources:
− http://opendatastructures.org/versions/edition-0.1g/ods-python/8_Scapegoat_Trees.html

− http://opendatastructures.org/newhtml/ods/latex/scapegoat.html

Another Amortized Dictionary Data Structure

Scapegoat Trees

http://opendatastructures.org/versions/edition-0.1g/ods-python/8_Scapegoat_Trees.html
http://opendatastructures.org/newhtml/ods/latex/scapegoat.html

CMSC 420 – Dave Mount10

 Why should we care?
− Amortized structures are often simpler than worst-case efficient structures

− The update rules for scapegoat trees can be adapted to many other search trees where
rotations cannot be applied (e.g., spatial decomposition trees)

− The SG Tree in the programming assignment
is a variant of the scapegoat tree

Another Amortized Dictionary Data Structure

Scapegoat Trees

CMSC 420 – Dave Mount11

 Insertion:
− Insert just as in a standard (unbalanced) binary tree

− Monitor the depth of the inserted node after each insertion

− If it is too high, then there must be at least one node on the search path that has poor
weight balance (left and right children have very different sizes)

− Find such a node – it’s the scapegoat! (It is given the blame for the high depth)

− Rebuild the subtree rooted at this node so that it is perfectly balanced

 Deletion:
− Delete as in a standard (unbalanced) binary tree

− Once the number of deletions is sufficiently large relative to the entire tree size,
rebuild the entire tree so it is perfectly balanced

Overview – Balance through Rebuilding

Scapegoat Trees

CMSC 420 – Dave Mount12

 How to rebuild a subtree?
− Perform an inorder traversal of the subtree, and copy the 𝑛𝑛 elements to a (sorted) array
𝐴𝐴[0 …𝑛𝑛 − 1]

− Take the median of the array as the root, and recursively build left and right subtrees
from the two halves of the array

 buildSubtree(A,i,k): Build subtree for 𝑘𝑘-element subarray 𝐴𝐴[𝑖𝑖… 𝑖𝑖 + 𝑘𝑘 − 1]
− If 𝑘𝑘 = 0, return null

− Otherwise, let 𝑚𝑚 = 𝑘𝑘
2

. Create new node 𝑝𝑝 with median key, 𝐴𝐴[𝑖𝑖 + 𝑚𝑚]

− p.left = buildSubtree(A,i,m)
− p.right = buildSubtree(A,i+m+1,k-m-1)

 A subtree with 𝑛𝑛 nodes can be rebuilt in 𝑂𝑂(𝑛𝑛) time

Overview – Balance through Rebuilding

Scapegoat Trees

CMSC 420 – Dave Mount13

 A scapegoat tree stores no balance or height information with the nodes
 In addition to the tree we maintain:

− 𝑛𝑛 – the current number of nodes in the tree

− 𝑚𝑚 – an upper bound on the tree size (we maintain: 𝑛𝑛 ≤ 𝑚𝑚 ≤ 2𝑛𝑛)

 Height condition: never exceeds log ⁄3 2
𝑚𝑚 (⇒Tree height is 𝑂𝑂(log𝑛𝑛))

 Size condition:
− Initially: 𝑛𝑛 = 𝑚𝑚 = 0
− After insertion: 𝑛𝑛++, 𝑚𝑚++
− After deletion: 𝑛𝑛 − − (but do not change 𝑚𝑚)

− If 2𝑛𝑛 < 𝑚𝑚, rebuild the entire tree, and set 𝑚𝑚 = 𝑛𝑛

Overview – Details

Scapegoat Trees

CMSC 420 – Dave Mount14

 find(x):
− Identical to any binary search time (time: 𝑂𝑂(log𝑛𝑛))

 delete(x):
− Identical to delete for an unbalanced binary tree

− Decrement 𝑛𝑛 (but do not change 𝑚𝑚)

− If 2𝑛𝑛 < 𝑚𝑚, rebuild the entire tree, and set 𝑚𝑚 = 𝑛𝑛

Overview – More Details

Scapegoat Trees

CMSC 420 – Dave Mount15

 insert(x):
− Same as standard binary search tree insertion, keep track of inserted node’s depth

(number of edges from the root)

− Increment both 𝑛𝑛 and 𝑚𝑚
− If inserted depth exceeds log ⁄3 2

𝑚𝑚:

−Walk back up the search path until we find the first node 𝑢𝑢 such that
size(𝑢𝑢. child)

size(𝑢𝑢)
>

2
3

−Here size(𝑢𝑢) is the number of nodes in 𝑢𝑢’s subtree and 𝑢𝑢. child is 𝑢𝑢’s child on search path

− A node on the insertion path satisfying this is called a candidate scapegoat

− Rebuild the subtree rooted at 𝑢𝑢

Overview – More Details

Scapegoat Trees

CMSC 420 – Dave Mount16

 insert(5):

Overview – More Details

Scapegoat Trees

CMSC 420 – Dave Mount17

 Will we always find a scapegoat node? Yes!
 Is it unique? No! (9, 12, and 13 are all candidate scapegoats)
 Lemma: If there exists a node 𝑝𝑝 such that depth 𝑝𝑝 > log ⁄3 2

𝑚𝑚, then 𝑝𝑝 has an
ancestor 𝑢𝑢 that is a candidate scapegoat, that is,

size(𝑢𝑢. child)
size(𝑢𝑢) >

2
3

 Proof: By contradiction.
− Suppose that for every node 𝑢𝑢 along the path to 𝑝𝑝, size(𝑢𝑢. 𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐) ≤ ⁄2 3 size(𝑢𝑢)
− Letting 𝑘𝑘 = depth 𝑝𝑝 , by induction have size 𝑝𝑝 ≤ ⁄2 3

𝑘𝑘 𝑛𝑛
− Since size(𝑝𝑝) ≥ 1, this implies ⁄3 2

𝑘𝑘 ≤ 𝑛𝑛, implies 𝑘𝑘 ≤ log ⁄3 2
𝑛𝑛 ≤ log ⁄3 2

𝑚𝑚, contradiction

Overview – More Details

Scapegoat Trees

CMSC 420 – Dave Mount18

 How do we compute size(𝑢𝑢) for each node 𝑢𝑢?
 Two methods:

1. Maintain a separate field, u.size, for each node storing the size of 𝑢𝑢’s subtree (and
update as needed)

2. Compute it on the fly, after each insertion that requires rebalancing:
−Walk up the search path toward the root

− Let 𝑢𝑢 be any ancestor of the inserted node. Assume we know size 𝑢𝑢 .
−We want to compute size 𝑢𝑢. parent :

− Let 𝑢𝑢′ be 𝑢𝑢’s sibling. Traverse the subtree rooted at 𝑢𝑢′ and count the number of nodes.

− Set size 𝑢𝑢. parent = 1 + size 𝑢𝑢 + size 𝑢𝑢′

− This may seem costly, but it can all be done within the amortized time bound!

Overview – More Details

Scapegoat Trees

CMSC 420 – Dave Mount19

 Theorem: Starting with an empty tree, any sequence of 𝑘𝑘 dictionary operations
costs a total of 𝑂𝑂(𝑘𝑘 log𝑘𝑘)

 Proof: (Sketch)
− Find: Cost is 𝑂𝑂(log𝑛𝑛) always (by height bound)

− Delete: In order to rebuild a tree due to deletions, at least half the entries have been
deleted. A token-based analyses (recall stacks and rehashing from earlier lectures) can
be applied here.

− Insert: This is analyzed by a potential argument. Intuitively, after any subtree of size 𝑘𝑘
is rebuilt it takes 𝑂𝑂(𝑘𝑘) insertions to force this subtree to be rebuilt again. Charge the
rebuilding time against these “cheap” insertions.

 Corollary: The amortized complexity of the scapegoat tree with at most 𝑛𝑛 nodes
is 𝑂𝑂(log𝑛𝑛)

Amortized Complexity

Scapegoat Trees

CMSC 420 – Dave Mount20

 Overview - An SG Tree is:
− An extended binary search tree that is rebalanced like a scapegoat tree

− Updated concepts:
− The size of an internal node is the number of external nodes in its subtree

− The height of a node is the maximum number of edges to any external node

− Similarities with the scapegoat tree:
−Maintain total size 𝑛𝑛 and upper bound 𝑚𝑚, where 𝑛𝑛 ≤ 𝑚𝑚 ≤ 2𝑛𝑛
−Height condition: Rebuild if tree height exceeds log ⁄3 2

𝑚𝑚 (⇒Tree height is 𝑂𝑂(log𝑛𝑛))

− Candidate scapegoat: Any node on search path such that ⁄size(𝑢𝑢. child) size(𝑢𝑢) > 2
3

− Deletion condition: If 2𝑛𝑛<𝑚𝑚, rebuild the entire tree, and set 𝑚𝑚=𝑛𝑛

A data structure invented just for the programming assignment

SG Tree

CMSC 420 – Dave Mount21

 Differences from the scapegoat tree:
− Nodes: Two types of nodes:

− External – store data only (a city for the programming assignment)

− Internal – store splitter, left, right, subtree height, and subtree size

− Scapegoat Node:
−When insertion causes the tree’s height to exceed log ⁄3 2

𝑚𝑚, if multiple nodes satisfy the
scapegoat condition, we chose the one closest to the root

−Why? By rebuilding the largest subtree, we make the overall tree more balanced

SG Tree

CMSC 420 – Dave Mount22

 Conventions:
− To avoid floating-point round-off errors, use integer arithmetic to test the scapegoat

condition:

2 � size 𝑢𝑢 < 3 � size 𝑢𝑢. child ⟹ 𝑢𝑢 is candidate scapegoat

− When inserting a new external node, the parent’s splitter is taken from its left child

SG Tree

CMSC 420 – Dave Mount23

 More conventions:
− When rebuilding a subtree with 𝑘𝑘 external nodes:

− If 𝑘𝑘 is even, split the internal nodes evenly among the left and right subtrees

− If 𝑘𝑘 is odd, the left subtree gets ⁄𝑘𝑘 2 external nodes and the right subtree gets ⁄𝑘𝑘 2

−More formally: When splitting the 𝑘𝑘-element subarray 𝐴𝐴 𝑖𝑖… 𝑖𝑖 + 𝑘𝑘 − 1 :
− Set 𝑚𝑚 = ⁄𝑘𝑘 2

− Build left subtree with 𝑚𝑚 keys: 𝐴𝐴 𝑖𝑖… 𝑖𝑖 + 𝑚𝑚− 1

− The splitter is 𝐴𝐴 𝑖𝑖 + 𝑚𝑚− 1

− Build right subtree with 𝑘𝑘 − 𝑚𝑚 keys: 𝐴𝐴 𝑖𝑖 + 𝑚𝑚… 𝑖𝑖 + 𝑘𝑘 − 1

− This convention results in the most even split and most balanced splitter value

SG Tree

CMSC 420 – Dave Mount24

 Abstract class Node and two derived classes
− ExternalNode – stores just a city object

− InternalNode – stores splitter (a city), left, right, size, and height

 Take advantage of virtual functions when defining node operations
− Don’t do this:

Node insert(Node p) {
if (p.isExternal) {

ExternalNode pe = (ExternalNode) p;
/* external node processing */

}
else {

InternalNode pi = (InternalNode) p;
/* internal node processing */

}
}

Implementation hints

SG Tree

CMSC 420 – Dave Mount25

 Instead, do this:
abstract class Node {

// …
abstract Node insert(Key x);

}
class InternalNode extends Node {

// …
Node insert(Key x) { … } // insertion at internal node

}
class ExternalNode extends Node {

// …
Node insert(Key x) { … } // insertion at external node

}

Implementation hints

SG Tree

CMSC 420 – Dave Mount26

 Your SGTree class:
− Generic? It’s up to you.

−We don’t maintain key-value pairs. We store city objects.

− The print command assumes that the data object has a name and (x,y) coordinates

−We made ours generic, but the data type must support getName(), getX(), and getY()

− Use inner classes for nodes:
− Node, InternalNode, ExternalNode

− Private data:
Node root;
Comparator comparator; (Optional. Given with the constructor)
Document resultsDoc; (Needed by print command)
int n, m; (Used by the scapegoat functions)

Implementation hints

SG Tree

CMSC 420 – Dave Mount27

 insert(x):
− Insert the key using the standard recursive insertion algorithm

− Some modifications needed because we have an extended tree

− While backing out from recursion, update the size and height values for each node

− Increment both 𝑛𝑛 and 𝑚𝑚
− If the new tree height exceeds log ⁄3 2

𝑚𝑚:

− Traverse the search path from root down until finding the first candidate scapegoat

2 � size 𝑢𝑢 < 3 � size 𝑢𝑢. child
− Rebuild this subtree (Note: 𝑢𝑢 must be an internal node)

− (Be sure that your rebuilding function updates heights and sizes for all nodes)

Implementation hints

SG Tree

CMSC 420 – Dave Mount28

 delete(x):
− Delete the key using the standard recursive deletion algorithm

− Some modifications needed because we have an extended tree

− While backing out from recursion, update the size and height values for each node

− Decrement 𝑛𝑛 but not 𝑚𝑚
− If 2𝑛𝑛 < 𝑚𝑚:

− Rebuild the entire tree

− Set 𝑚𝑚 = 𝑛𝑛

Implementation hints

SG Tree

CMSC 420 – Dave Mount29

 Write utilities for handling size and height:
− getSize(Node p): return (p.isExternal ? 1 : p.size)
− getHeight(Node p): return (p.isExternal ? 0 : p.height)
− InternalNode.update():

size = getSize(left) + getSize(right);

height = 1 + max(getHeight(left), getHeight(right));

 Write a debugging utility for “pretty printing” your tree
− Call this function after each major operation (insert, delete, subtree rebuilding)

 Insert a boolean flag (e.g., DEBUG), which you can turn on and off for
debugging

Implementation hints

SG Tree

CMSC 420 – Dave Mount30

 Problem:
− My SG Tree is ordered by (𝑥𝑥,𝑦𝑦)-coordinates. How do I delete a city given just its name?

 Answer:
− This is why we have the binary-search tree (which is ordered by name)

− Create a “bogus city” with just a name (no coordinates)

− Find this city in your binary-search tree and save this “complete city”

− Delete this complete city from both data structures

Implementation hints

SG Tree

CMSC 420 – Dave Mount31

Example of a rebuild operation

Supplemental

CMSC 420 – Dave Mount32

Example of SG-Tree operations

Supplemental

CMSC 420 – Dave Mount33

Another example of SG-Tree operations

Supplemental

CMSC 420 – Dave Mount34

 Extended Binary Search Trees
− Data stored only at the leaves (external nodes)

− Internal nodes are used only for locating the data

 Scapegoat Trees
− Another amortized binary search tree data structure

− Rebalancing through rebuilding subtrees

− Unlike splay trees, height is guaranteed to be 𝑂𝑂(log𝑛𝑛)

 SG Tree
− An extended-tree variant of the scapegoat tree

Summary

	CMSC 420 – 0201 – Fall 2019�Lecture 12
	Overview
	Extended Binary Search Trees
	Extended Binary Search Trees
	Extended Binary Search Trees
	Extended Binary Search Trees
	Extended Binary Search Trees
	Extended Binary Search Trees
	Scapegoat Trees
	Scapegoat Trees
	Scapegoat Trees
	Scapegoat Trees
	Scapegoat Trees
	Scapegoat Trees
	Scapegoat Trees
	Scapegoat Trees
	Scapegoat Trees
	Scapegoat Trees
	Scapegoat Trees
	SG Tree
	SG Tree
	SG Tree
	SG Tree
	SG Tree
	SG Tree
	SG Tree
	SG Tree
	SG Tree
	SG Tree
	SG Tree
	Supplemental
	Supplemental
	Supplemental
	Summary

