CMSC 420 - 0201 - Fall 2019 ®

Lecture 13 -

Point Quadtree and kd-Trees . ‘ ‘ O
O

Overview

= So far, we have studying data structure for 1-dimensional search problems

= Many data structure problems involve data in multi-dimensional spaces:
— Spatial databases, automated cartography (maps), and navigation
— Computer graphics
— Robotics and motion planning
— Solid modeling and industrial engineering
— Particle and fluid dynamics
— Molecular dynamics in computational biology
— Machine learning
— Image processing, pattern recognition, computer vision

CMSC 420 — Dave Mount

Geometric Queries
Examples

= Nearest-neighbor searching - Find the closest point to a given query point q

= Range searching - Report/Count the points lying within a query region R

Point location - Find the region of a subdivision (map) containing a query point q
Intersection searching - Find all the objects that overlap a given query object R
Ray shooting - Find the first (if any) object hit by shooting a ray from a point p

n|
DDR]%H
= i

=

]

%
oy
=
— |

[

(2) (b) (c) (d)

CMSC 420 — Dave Mount

Geometric Queries

Similarities and differences
= Multi-dimensional data structures borrow many concepts from 1-dimensional
search structure
— Tree-based structures based on hierarchical partitions
— Maintaining balance O(log n) height
— Use key/splitters to navigate the search space
= Many differences as well
— There is no natural total order in geometric space.
— What does it mean to say one point is smaller than another?

CMSC 420 — Dave Mount

Geometric Data
Point Representation

= A point in a d-dimensional space is represented by a d-vector of reals:
p = (P1, P2 -+ Da)
* |n Java, this could be represented by a d-element array
float[] p = new float[d];
= While in linear algebra, indexing is from 1 ...d, in Java indexing is from 0 ...d — 1
= Aset of n points can be represented as a 2-dimensional array:
float[][] P = new float[n][d];

CMSC 420 — Dave Mount

Geometric Data
Point Representation

» A better approach is to encapsulate points in a class structure

public class Point {
private float[] coord; // coordinate storage

public Point(int dim) { /* construct a zero point */ }
public int getDim() { return coord.length; }

public float get(int i) { return coord[i]; }
public void set(int i, float x) { coord[i] = x; }

public boolean equals(Point other) { /* compare with another point */ }
public String toString() { /* convert to string */ }

CMSC 420 — Dave Mount

Point Quadtree
A Natural Generalization of Binary Search Trees

» How do we generalize a 1-dimensional tree to d-dimensional space?

= Partition tree:
— Each node is associated with a region of space (e.g., a rectangle), its cell
— Each internal node contains a splitter, which subdivides space into smaller regions

— Data may be stored in the nodes (as the splitters) or in external nodes (as in extended
binary search trees)

= Point Quadtree:
— Each node stores a point (both data and splitter)
— 2-dimensions: Horizontal and vertical lines through point subdivide cell into 4 quadrants

— d-dimensions: d axis-parallel hyperplanes passing through the point subdivide space into
29 (generalized) orthants

— Each node has 2¢ (possibly null) children

CMSC 420 — Dave Mount

Point Quadtree
A Natural Generalization of Binary Search Trees

* |n 2D, quadrants are labeled NW, NE, SW, and SE
— Example: (35,40), (50,10), (60,75), (80,65), (85,15), (5,45), (25,35), (90,5)
» To locate a point, we descend from the root, visiting the appropriate child

(z,y)
(60, 75)
? NW NE SW SE
(30, 65) (35, 40)
{5:8) 35 49)
A (5,45) /((60,75) /((25,35))\ (50, 10)
" L) R ER
85,15 (80, 65) (85,15)) ((90,5)
150, 100 — o
(90, 5)

(2) (b)

8 CMSC 420 — Dave Mount

Point kd-Tree

A Binary Partition Tree

* The point quadtree works fine in low-dimensional space, but does not scale well

to high dimensional space. For example, in d = 20 space, each node has a
fanout of 2¢ ~ 1,048,576

= |dea: Let’s just split one dimension at a time
= Point kd-tree:

— Each node stores a point (both data and splitter)
— And anindex i, 0 <i <d — 1, the cutting dimension
— For any point x = (xg, ..., X4_1):
—If x; < p;, x goes in the left subtree
—If x; = p;, x goes in the right subtree
— Cutting dimension varies by level (e.g., p.child.cutDim = (p.cutDim+1)%dim)

CMSC 420 — Dave Mount

Point kd-Tree

A Binary Partition Tree

= Example: (35,40), (50,10), (60,75), (80,65), (85,15), (5,45), (25,35), (90,5)
= Cutting dimension alternates between x and y

cut on x
| (60,75)
(80, 65) |

(5,45) .(35’4()) mzt on)y
(25, 35) -
(85, 15)?
*(50,10) &
90, 5)

10 CMSC 420 — Dave Mount

Point kd-Tree

Node structure

class KDNode { node
Point point;
int cutDim;
KDNode left;

KDNode right;

//
//
//
//

this.point = point;
this.cutDim = cutDim;
left = right = null;

}

boolean inLeftSubtree(Point x) {
return x.get(cutDim) < point
}

splitting point
cutting dimension
children

KDNode(Point point, int cutDim) {

in a kd-tree

// constructor

// 1s X in left subtree?
.get(cutDim);

11

CMSC 420 — Dave Mount

Point kd-tree

Point insertion

» To insert a point, descend the tree to find the leaf cell containing the point

= Create a new cell and assign its cutting dimension

KDNode insert(Point x, KDNode p, int cutDim) {

if (p == null) { // fell out of tree
p = new KDNode(x, cutDim); // create new leaf
} else if (p.point.equals(x)) {
throw Exception("duplicate"); // duplicate data point!
} else if (p.inLeftSubtree(x)) { // insert into left
p.left = insert(x, p.left, (p.cutDim + 1) % x.getDim());
} else { // insert into right
p.right = insert(x, p.right, (p.cutDim + 1) % x.getDim());
}
return p;

12

CMSC 420 — Dave Mount

Point kd-Tree

Point insertion

* Tnsert(50,90):

13

lnsert
(60, 75) (50,90)
(80, 65)
= 5,45) (35, 40)
(25,35)'
(85, 15)
. ?
(50,10) &,

(90, 5)

(50.90) | (60, 75)
(80, 63)
(5,45) {(35,40)
(85, 15)
. ¢
ERUNKY

CMSC 420 — Dave Mount

Point kd-tree

Point deletion

= Deletion is more complicated - Need a s node

= How to choose the replacement?
— Can’t just take the inorder successor (inorder doesn’t make geometric sense)

— Depends on the current cutting dimension i
— Want the point of the right subtree with the minimum i coordinate p[i]

= Utility: Select the point with the smaller ith coordinate

14

Point minAlongDim(Point pl, Point p2, int i) { // return smaller point on dim i

if (p2 == null || p1[i] <= p2[i])
return pl;

else
return p2;

CMSC 420 — Dave Mount

Point kd-tree

Utility for finding replacement nodes

= Utility: Find the point that minimizes ith coordinate in subtree p
— if (p.cutDim == 1i):
—The subtrees are ordered by the ith coordinate
—Look recursively in p’s left subtree, if it exists
—If not, take p.point
— if (p.cutDim != 1i):
—The subtrees are ordered arbitrarily with respect to |
— Compute the minima from p’s left and right subtrees recursively

—Use findMin to select the overall minimum from left-min, right-min, and p.point

15

CMSC 420 — Dave Mount

Point kd-tree

Utility for finding replacement nodes

= Utility: Find the point that minimizes ith coordinate in subtree p

16

Point findMin(KDNode p, int i) { //
if (p == null) { //
return null;
}
if (p.cutbim == i) { //
if (p.left == null) //
return p.point; //
else
return findMin(p.left, 1i); //
} else { //
Point g = minAlongDim(p.point, findMin(p.left,
return minAlongDim(q, findMin(p.right, i), 1i);
}

get min point along dim 1
fell out of tree?

cutting dimension matches 1i?
no left child?
use this point

get min from left subtree
it may be in either side

i), i);

CMSC 420 — Dave Mount

Point kd-tree

Utility for finding replacement nodes

= Example: Find minimum along x
— If cut dim = x: Try left child (or p itself)
— If cut dim = y: Try both children

*(Qé, 85) (80, 90)‘ cut on x
1(35,75)
10, 65) (m0.60) M cut on y
(20, |50) (55, 40) __
(30,25) (60,30)
(15,10) ('25’ 15;45 20){ 70.15)

17

CMSC 420 — Dave Mount

Point kd-tree

Point deletion

= Overview: Delete x from subtree p
— if (p == null):
—Fell out of the tree - Error: attempt to delete nonexistent point!
— else:
—If both of p’s children are null - Simply unlink p (return null)
—If p’s right child exists:

— Invoke findMin(p.right, p.cutDim) to compute replacement node
— Copy its contents to p
— Recursively delete the replacement node from p.right
— Else:
— Tricky!

18

CMSC 420 — Dave Mount

Point kd-tree

Point deletion

= Overview: Delete x from subtree p, where p has a left child but no right child:
— In the 1D case, we just unlinked p
—But this has the effect of promoting p’s child up a level
—The cutting dimensions no longer cycle from parent to child. (Do we care? Suppose we do)
— How about picking the maximum point in p’s left subtree?

— Our tie-breaking rule assumed that points in the left subtree have coordinates strictly
smaller than the splitter

— This will cause problems if there are duplicate coordinates in p’s left subtree

— Final answer (very sneaky!)
— Compute the minimum from p’s left subtree as replacement (But it’s on the wrong side!)
— Make the left subtree the new right subtree. (Amazingly, this works!)

19 CMSC 420 — Dave Mount

Point kd-tree

Point deletion

20

KDNode delete(Point x, KDNode p) {
if (p == null) {
throw Exception("point does not exist");
} else if (p.point.equals(x)) {
if (p.right != null) {
p.point = findMin(p.right, p.cutDim);
p.right = delete(p.point, p.right);
} else if (p.left != null) {

p.point = findMin(p.left, p.cutDim);
p.right = delete(p.point, p.left);
p.left = null;

} else {
p = null;

}
} else if (p.inLeftSubtree(x)) {

p.left = delete(x, p.left);
} else {

p.right = delete(x, p.right);
}

return p;

//

//
//

//

//
//
//
//

//
//

fell out of tree?

found it
take replacement from right

take replacement from left

move left subtree to right!
left subtree is now empty
deleted point in leaf
remove this leaf

delete from left subtree
delete from right subtree

CMSC 420 — Dave Mount

Point kd-tree

Point deletion - Example

21

(60, 80)

(35, 60)
(20, 45)

10,35 (50, 30)

(90, 60)

e

(80, 40)

(20.20)| (60, 10)

(70, 20)

—
[
(=}
w
(a=)

=

(20,20) (60,10)

[

&
| A 4

Moved from left
i to right child

~((50,30))- ({90, 60))- A20200)- ~((50.30)) - @050)-
rcpl?;ccmont copy
""""""""""""" replacement

CMSC 420 — Dave Mount

Point kd-tree

Analysis

= Analogous to unbalanced binary search trees
— Storage space linear in n, the number of points
— All dictionary operations (insert, delete, find) take time proportional to tree’s height

— Theorem: If n points are inserted in random order, the expected height of the kd-tree is
O(logn)

— I’d conjecture that deletion suffers from the same systematic bias, which would lead to
heights of \/n after long sequences of random insertions and deletions, but | know of no
results from the literature

22 CMSC 420 — Dave Mount

Summary

= Geometric Search

Point representation

= Point Quadtree
Point kd-Trees

23

Node representation (point and cutting dimension)
Insertion

Deletion

— FindMin utility

—Sneaky trick to compute replacement nodes
Analysis: O(logn) time assuming random insertions

CMSC 420 — Dave Mount

	CMSC 420 – 0201 – Fall 2019�Lecture 13
	Overview
	Geometric Queries
	Geometric Queries
	Geometric Data
	Geometric Data
	Point Quadtree
	Point Quadtree
	Point kd-Tree
	Point kd-Tree
	Point kd-Tree
	Point kd-tree
	Point kd-Tree
	Point kd-tree
	Point kd-tree
	Point kd-tree
	Point kd-tree
	Point kd-tree
	Point kd-tree
	Point kd-tree
	Point kd-tree
	Point kd-tree
	Summary

