CMSC 420 - 0201 - Fall 2019 Lecture 13

Point Quadtree and kd-Trees

Overview

- So far, we have studying data structure for 1-dimensional search problems
- Many data structure problems involve data in multi-dimensional spaces:
- Spatial databases, automated cartography (maps), and navigation
- Computer graphics
- Robotics and motion planning
- Solid modeling and industrial engineering
- Particle and fluid dynamics
- Molecular dynamics in computational biology
- Machine learning
- Image processing, pattern recognition, computer vision

Geometric Queries

Examples

- Nearest-neighbor searching - Find the closest point to a given query point q
- Range searching - Report/Count the points lying within a query region R
- Point location - Find the region of a subdivision (map) containing a query point q
- Intersection searching - Find all the objects that overlap a given query object R
- Ray shooting - Find the first (if any) object hit by shooting a ray from a point p

Geometric Queries

Similarities and differences

- Multi-dimensional data structures borrow many concepts from 1-dimensional search structure
- Tree-based structures based on hierarchical partitions
- Maintaining balance $O(\log n)$ height
- Use key/splitters to navigate the search space
- Many differences as well
- There is no natural total order in geometric space.
- What does it mean to say one point is smaller than another?

Geometric Data

Point Representation

- A point in a d-dimensional space is represented by a d-vector of reals:

$$
p=\left(p_{1}, p_{2}, \ldots, p_{d}\right)
$$

- In Java, this could be represented by a d-element array
float[] p = new float[d];
- While in linear algebra, indexing is from 1 ... d, in Java indexing is from 0 ... $d-1$
- A set of n points can be represented as a 2-dimensional array:
float[][] P = new float[n][d];

Geometric Data
 Point Representation

- A better approach is to encapsulate points in a class structure

```
public class Point {
    private float[] coord; // coordinate storage
    public Point(int dim) { /* construct a zero point */ }
    public int getDim() { return coord.length; }
    public float get(int i) { return coord[i]; }
    public void set(int i, float x) { coord[i] = x; }
    public boolean equals(Point other) { /* compare with another point */ }
    public String toString() { /* convert to string */ }
}
```


Point Quadtree

A Natural Generalization of Binary Search Trees

- How do we generalize a 1 -dimensional tree to d-dimensional space?
- Partition tree:
- Each node is associated with a region of space (e.g., a rectangle), its cell
- Each internal node contains a splitter, which subdivides space into smaller regions
- Data may be stored in the nodes (as the splitters) or in external nodes (as in extended binary search trees)
- Point Quadtree:
- Each node stores a point (both data and splitter)
- 2-dimensions: Horizontal and vertical lines through point subdivide cell into 4 quadrants
- d-dimensions: d axis-parallel hyperplanes passing through the point subdivide space into 2^{d} (generalized) orthants
- Each node has 2^{d} (possibly null) children

Point Quadtree

A Natural Generalization of Binary Search Trees

- In 2D, quadrants are labeled NW, NE, SW, and SE
- Example: $(35,40),(50,10),(60,75),(80,65),(85,15),(5,45),(25,35),(90,5)$
- To locate a point, we descend from the root, visiting the appropriate child

Point kd-Tree

A Binary Partition Tree

- The point quadtree works fine in low-dimensional space, but does not scale well to high dimensional space. For example, in $d=20$ space, each node has a fanout of $2^{d} \approx 1,048,576$
- Idea: Let's just split one dimension at a time
- Point kd-tree:
- Each node stores a point (both data and splitter)
- And an index $i, 0 \leq i \leq d-1$, the cutting dimension
- For any point $x=\left(x_{0}, \ldots, x_{d-1}\right)$:
- If $x_{i}<p_{i}, x$ goes in the left subtree
- If $x_{i} \geq p_{i}, x$ goes in the right subtree
- Cutting dimension varies by level (e.g., p.child.cutDim = (p.cutDim+1)\%dim)

Point kd-Tree

A Binary Partition Tree

- Example: $(35,40),(50,10),(60,75),(80,65),(85,15),(5,45),(25,35),(90,5)$
- Cutting dimension alternates between x and y

Point kd-Tree

Node structure

```
class KDNode { // node in a kd-tree
    Point point; // splitting point
    int cutDim; // cutting dimension
    KDNode left; // children
    KDNode right;
    KDNode(Point point, int cutDim) { // constructor
        this.point = point;
        this.cutDim = cutDim;
        left = right = null;
    }
    boolean inLeftSubtree(Point x) { // is x in left subtree?
        return x.get(cutDim) < point.get(cutDim);
    }
}
```


Point kd-tree

Point insertion

- To insert a point, descend the tree to find the leaf cell containing the point
- Create a new cell and assign its cutting dimension

```
KDNode insert(Point x, KDNode p, int cutDim) {
    if (p == null) { // fell out of tree
        p = new KDNode(x, cutDim); // create new leaf
    } else if (p.point.equals(x)) {
        throw Exception("duplicate"); // duplicate data point!
    } else if (p.inLeftSubtree(x)) { // insert into left
        p.left = insert(x, p.left, (p.cutDim + 1) % x.getDim());
    } else { // insert into right
        p.right = insert(x, p.right, (p.cutDim + 1) % x.getDim());
    }
    return p;
}
```


Point kd-Tree

Point insertion

- Insert(50,90):

Point kd-tree

Point deletion

- Deletion is more complicated - Need a s node
- How to choose the replacement?
- Can't just take the inorder successor (inorder doesn't make geometric sense)
- Depends on the current cutting dimension i
- Want the point of the right subtree with the minimum i coordinate $p[i]$
- Utility: Select the point with the smaller i th coordinate

```
Point minAlongDim(Point p1, Point p2, int i) { // return smaller point on dim i
    if (p2 == null || p1[i] <= p2[i])
        return p1;
    else
        return p2;
}
```


Point kd-tree

Utility for finding replacement nodes

- Utility: Find the point that minimizes i th coordinate in subtree p
- if (p.cutDim == i):
- The subtrees are ordered by the i th coordinate
- Look recursively in p 's left subtree, if it exists
- If not, take p.point
- if (p.cutDim != i):
- The subtrees are ordered arbitrarily with respect to I
- Compute the minima from p's left and right subtrees recursively
- Use findMin to select the overall minimum from left-min, right-min, and p.point

Point kd-tree

Utility for finding replacement nodes

- Utility: Find the point that minimizes i th coordinate in subtree p

```
Point findMin(KDNode p, int i) { // get min point along dim i
    if (p == null) { // fell out of tree?
        return null;
    }
    if (p.cutDim == i) { // cutting dimension matches i?
        if (p.left == null) // no left child?
            return p.point; // use this point
        else
            return findMin(p.left, i); // get min from left subtree
    } else { // it may be in either side
        Point q = minAlongDim(p.point, findMin(p.left, i), i);
        return minAlongDim(q, findMin(p.right, i), i);
    }
}
```


Point kd-tree

Utility for finding replacement nodes

- Example: Find minimum along x
- If cut dim = x : Try left child (or p itself)
- If cut dim = y: Try both children

(a)

(b)

Point kd-tree

Point deletion

- Overview: Delete x from subtree p
- if (p == null):
-Fell out of the tree - Error: attempt to delete nonexistent point!
- else:
- If both of p's children are null - Simply unlink p (return null)
- If p's right child exists:
- Invoke findMin(p.right, p.cutDim) to compute replacement node
- Copy its contents to p
- Recursively delete the replacement node from p.right
- Else:
- Tricky!

Point kd-tree

Point deletion

- Overview: Delete x from subtree p , where p has a left child but no right child:
- In the 1D case, we just unlinked p
- But this has the effect of promoting p's child up a level
- The cutting dimensions no longer cycle from parent to child. (Do we care? Suppose we do)
- How about picking the maximum point in p's left subtree?
- Our tie-breaking rule assumed that points in the left subtree have coordinates strictly smaller than the splitter
- This will cause problems if there are duplicate coordinates in p's left subtree
- Final answer (very sneaky!)
- Compute the minimum from p's left subtree as replacement (But it's on the wrong side!)
- Make the left subtree the new right subtree. (Amazingly, this works!)

Point kd-tree

Point deletion

```
KDNode delete(Point x, KDNode p) {
    if (p == null) {
        throw Exception("point does not exist");
    } else if (p.point.equals(x)) {
            if (p.right != null) {
                p.point = findMin(p.right, p.cutDim);
                p.right = delete(p.point, p.right);
            } else if (p.left != null)
                p.point = findMin(p.left, p.cutDim);
                p.right = delete(p.point, p.left);
                p.left = null;
        } else {
                p = null;
        }
    } else if (p.inLeftSubtree(x)) {
            p.left = delete(x, p.left);
    } else {
        p.right = delete(x, p.right);
    }
    return p;
}
```


Point kd-tree

Point deletion - Example

Point kd-tree

Analysis

- Analogous to unbalanced binary search trees
- Storage space linear in n, the number of points
- All dictionary operations (insert, delete, find) take time proportional to tree's height
- Theorem: If n points are inserted in random order, the expected height of the kd-tree is $O(\log n)$
- I'd conjecture that deletion suffers from the same systematic bias, which would lead to heights of \sqrt{n} after long sequences of random insertions and deletions, but I know of no results from the literature

Summary

- Geometric Search
- Point representation
- Point Quadtree
- Point kd-Trees
- Node representation (point and cutting dimension)
- Insertion
- Deletion
- FindMin utility
- Sneaky trick to compute replacement nodes
- Analysis: $O(\log n)$ time assuming random insertions

