
CMSC 420 – 0201 – Fall 2019
Lecture 13

Point Quadtree and kd-Trees

CMSC 420 – Dave Mount2

 So far, we have studying data structure for 1-dimensional search problems
 Many data structure problems involve data in multi-dimensional spaces:

− Spatial databases, automated cartography (maps), and navigation

− Computer graphics

− Robotics and motion planning

− Solid modeling and industrial engineering

− Particle and fluid dynamics

− Molecular dynamics in computational biology

− Machine learning

− Image processing, pattern recognition, computer vision

Overview

CMSC 420 – Dave Mount3

 Nearest-neighbor searching – Find the closest point to a given query point q
 Range searching – Report/Count the points lying within a query region R
 Point location – Find the region of a subdivision (map) containing a query point q
 Intersection searching – Find all the objects that overlap a given query object R
 Ray shooting – Find the first (if any) object hit by shooting a ray from a point p

Examples

Geometric Queries

CMSC 420 – Dave Mount4

 Multi-dimensional data structures borrow many concepts from 1-dimensional
search structure
− Tree-based structures based on hierarchical partitions

− Maintaining balance O(log n) height

− Use key/splitters to navigate the search space

 Many differences as well
− There is no natural total order in geometric space.

− What does it mean to say one point is smaller than another?

Similarities and differences

Geometric Queries

CMSC 420 – Dave Mount5

 A point in a d-dimensional space is represented by a d-vector of reals:
𝑝𝑝 = 𝑝𝑝1,𝑝𝑝2, … , 𝑝𝑝𝑑𝑑

 In Java, this could be represented by a d-element array
float[] p = new float[d];

 While in linear algebra, indexing is from 1 …𝑑𝑑, in Java indexing is from 0 …𝑑𝑑 − 1
 A set of 𝑛𝑛 points can be represented as a 2-dimensional array:

float[][] P = new float[n][d];

Point Representation

Geometric Data

CMSC 420 – Dave Mount6

 A better approach is to encapsulate points in a class structure
public class Point {

private float[] coord; // coordinate storage

public Point(int dim) { /* construct a zero point */ }
public int getDim() { return coord.length; }

public float get(int i) { return coord[i]; }
public void set(int i, float x) { coord[i] = x; }

public boolean equals(Point other) { /* compare with another point */ }
public String toString() { /* convert to string */ }

}

Point Representation
Geometric Data

CMSC 420 – Dave Mount7

 How do we generalize a 1-dimensional tree to d-dimensional space?
 Partition tree:

− Each node is associated with a region of space (e.g., a rectangle), its cell

− Each internal node contains a splitter, which subdivides space into smaller regions

− Data may be stored in the nodes (as the splitters) or in external nodes (as in extended
binary search trees)

 Point Quadtree:
− Each node stores a point (both data and splitter)

− 2-dimensions: Horizontal and vertical lines through point subdivide cell into 4 quadrants

− 𝑑𝑑-dimensions: 𝑑𝑑 axis-parallel hyperplanes passing through the point subdivide space into
2𝑑𝑑 (generalized) orthants

− Each node has 2𝑑𝑑 (possibly null) children

A Natural Generalization of Binary Search Trees

Point Quadtree

CMSC 420 – Dave Mount8

 In 2D, quadrants are labeled NW, NE, SW, and SE
− Example: (35,40), (50,10), (60,75), (80,65), (85,15), (5,45), (25,35), (90,5)

 To locate a point, we descend from the root, visiting the appropriate child

A Natural Generalization of Binary Search Trees

Point Quadtree

CMSC 420 – Dave Mount9

 The point quadtree works fine in low-dimensional space, but does not scale well
to high dimensional space. For example, in 𝑑𝑑 = 20 space, each node has a
fanout of 2𝑑𝑑 ≈ 1,048,576

 Idea: Let’s just split one dimension at a time
 Point kd-tree:

− Each node stores a point (both data and splitter)

− And an index 𝑖𝑖, 0 ≤ 𝑖𝑖 ≤ 𝑑𝑑 − 1, the cutting dimension

− For any point 𝑥𝑥 = 𝑥𝑥0, … , 𝑥𝑥𝑑𝑑−1 :
− If 𝑥𝑥𝑖𝑖 < 𝑝𝑝𝑖𝑖, 𝑥𝑥 goes in the left subtree

− If 𝑥𝑥𝑖𝑖 ≥ 𝑝𝑝𝑖𝑖, 𝑥𝑥 goes in the right subtree

− Cutting dimension varies by level (e.g., p.child.cutDim = (p.cutDim+1)%dim)

A Binary Partition Tree

Point kd-Tree

CMSC 420 – Dave Mount10

 Example: (35,40), (50,10), (60,75), (80,65), (85,15), (5,45), (25,35), (90,5)
 Cutting dimension alternates between x and y

A Binary Partition Tree

Point kd-Tree

CMSC 420 – Dave Mount11

class KDNode { // node in a kd-tree
Point point; // splitting point
int cutDim; // cutting dimension
KDNode left; // children
KDNode right;

KDNode(Point point, int cutDim) { // constructor
this.point = point;
this.cutDim = cutDim;
left = right = null;

}

boolean inLeftSubtree(Point x) { // is x in left subtree?
return x.get(cutDim) < point.get(cutDim);

}
}

Node structure

Point kd-Tree

CMSC 420 – Dave Mount12

 To insert a point, descend the tree to find the leaf cell containing the point
 Create a new cell and assign its cutting dimension

KDNode insert(Point x, KDNode p, int cutDim) {
if (p == null) { // fell out of tree

p = new KDNode(x, cutDim); // create new leaf
} else if (p.point.equals(x)) {

throw Exception("duplicate"); // duplicate data point!
} else if (p.inLeftSubtree(x)) { // insert into left

p.left = insert(x, p.left, (p.cutDim + 1) % x.getDim());
} else { // insert into right

p.right = insert(x, p.right, (p.cutDim + 1) % x.getDim());
}
return p;

}

Point insertion

Point kd-tree

CMSC 420 – Dave Mount13

 Insert(50,90):

Point insertion

Point kd-Tree

CMSC 420 – Dave Mount14

 Deletion is more complicated – Need a s node
 How to choose the replacement?

− Can’t just take the inorder successor (inorder doesn’t make geometric sense)

− Depends on the current cutting dimension 𝑖𝑖
− Want the point of the right subtree with the minimum 𝑖𝑖 coordinate 𝑝𝑝[𝑖𝑖]

 Utility: Select the point with the smaller 𝑖𝑖th coordinate
Point minAlongDim(Point p1, Point p2, int i) { // return smaller point on dim i

if (p2 == null || p1[i] <= p2[i])
return p1;

else
return p2;

}

Point deletion

Point kd-tree

CMSC 420 – Dave Mount15

 Utility: Find the point that minimizes 𝑖𝑖th coordinate in subtree 𝑝𝑝
− if (p.cutDim == i):

− The subtrees are ordered by the 𝑖𝑖th coordinate

− Look recursively in 𝑝𝑝’s left subtree, if it exists

− If not, take p.point

− if (p.cutDim != i):
− The subtrees are ordered arbitrarily with respect to I

− Compute the minima from p’s left and right subtrees recursively

−Use findMin to select the overall minimum from left-min, right-min, and p.point

Utility for finding replacement nodes

Point kd-tree

CMSC 420 – Dave Mount16

 Utility: Find the point that minimizes 𝑖𝑖th coordinate in subtree 𝑝𝑝
Point findMin(KDNode p, int i) { // get min point along dim i

if (p == null) { // fell out of tree?
return null;

}
if (p.cutDim == i) { // cutting dimension matches i?

if (p.left == null) // no left child?
return p.point; // use this point

else
return findMin(p.left, i); // get min from left subtree

} else { // it may be in either side
Point q = minAlongDim(p.point, findMin(p.left, i), i);
return minAlongDim(q, findMin(p.right, i), i);

}
}

Utility for finding replacement nodes

Point kd-tree

CMSC 420 – Dave Mount17

 Example: Find minimum along x
− If cut dim = x: Try left child (or p itself)

− If cut dim = y: Try both children

Utility for finding replacement nodes

Point kd-tree

CMSC 420 – Dave Mount18

 Overview: Delete x from subtree p
− if (p == null):

− Fell out of the tree – Error: attempt to delete nonexistent point!

− else:
− If both of p’s children are null – Simply unlink p (return null)

− If p’s right child exists:
− Invoke findMin(p.right, p.cutDim) to compute replacement node

− Copy its contents to p

− Recursively delete the replacement node from p.right

− Else:
− Tricky!

Point deletion

Point kd-tree

CMSC 420 – Dave Mount19

 Overview: Delete x from subtree p, where p has a left child but no right child:
− In the 1D case, we just unlinked p

− But this has the effect of promoting p’s child up a level

− The cutting dimensions no longer cycle from parent to child. (Do we care? Suppose we do)

− How about picking the maximum point in p’s left subtree?
−Our tie-breaking rule assumed that points in the left subtree have coordinates strictly

smaller than the splitter

− This will cause problems if there are duplicate coordinates in p’s left subtree

− Final answer (very sneaky!)
− Compute the minimum from p’s left subtree as replacement (But it’s on the wrong side!)

−Make the left subtree the new right subtree. (Amazingly, this works!)

Point deletion

Point kd-tree

CMSC 420 – Dave Mount20

KDNode delete(Point x, KDNode p) {
if (p == null) { // fell out of tree?

throw Exception("point does not exist");
} else if (p.point.equals(x)) { // found it

if (p.right != null) { // take replacement from right
p.point = findMin(p.right, p.cutDim);
p.right = delete(p.point, p.right);

} else if (p.left != null) { // take replacement from left
p.point = findMin(p.left, p.cutDim);
p.right = delete(p.point, p.left); // move left subtree to right!
p.left = null; // left subtree is now empty

} else { // deleted point in leaf
p = null; // remove this leaf

}
} else if (p.inLeftSubtree(x)) {

p.left = delete(x, p.left); // delete from left subtree
} else { // delete from right subtree

p.right = delete(x, p.right);
}
return p;

}

Point deletion

Point kd-tree

CMSC 420 – Dave Mount21

Point deletion - Example

Point kd-tree

CMSC 420 – Dave Mount22

 Analogous to unbalanced binary search trees
− Storage space linear in 𝑛𝑛, the number of points

− All dictionary operations (insert, delete, find) take time proportional to tree’s height

− Theorem: If 𝑛𝑛 points are inserted in random order, the expected height of the kd-tree is
𝑂𝑂(log𝑛𝑛)

− I’d conjecture that deletion suffers from the same systematic bias, which would lead to
heights of 𝑛𝑛 after long sequences of random insertions and deletions, but I know of no
results from the literature

Analysis

Point kd-tree

CMSC 420 – Dave Mount23

 Geometric Search
− Point representation

 Point Quadtree
 Point kd-Trees

− Node representation (point and cutting dimension)

− Insertion

− Deletion
− FindMin utility

− Sneaky trick to compute replacement nodes

− Analysis: 𝑂𝑂(log𝑛𝑛) time assuming random insertions

Summary

	CMSC 420 – 0201 – Fall 2019�Lecture 13
	Overview
	Geometric Queries
	Geometric Queries
	Geometric Data
	Geometric Data
	Point Quadtree
	Point Quadtree
	Point kd-Tree
	Point kd-Tree
	Point kd-Tree
	Point kd-tree
	Point kd-Tree
	Point kd-tree
	Point kd-tree
	Point kd-tree
	Point kd-tree
	Point kd-tree
	Point kd-tree
	Point kd-tree
	Point kd-tree
	Point kd-tree
	Summary

