
CMSC 420 – 0201 – Fall 2019
Lecture 14

Answering Queries with kd-Trees



CMSC 420 – Dave Mount2

 Previously, we introduced the kd-tree, a spatial binary partition tree:
− Stores a set of points in 𝑑𝑑-dimensional real space, where each point 𝑝𝑝 is represented as 

a 𝑑𝑑-element Java vector p[0,…,d-1]

− Each node stores a point 𝑝𝑝 and a cutting dimension 𝑖𝑖, where 0 ≤ 𝑖𝑖 ≤ 𝑑𝑑 − 1
− The left subtree contains points 𝑥𝑥 such 

that 𝑥𝑥[𝑖𝑖] < 𝑝𝑝[𝑖𝑖] and the right contains 
points such that 𝑥𝑥[𝑖𝑖] ≥ 𝑝𝑝[𝑖𝑖]

− Cutting dimension varies from node to
node (e.g., cycles from 0 through
𝑑𝑑 − 1, but other strategies are
possible)

− What other queries can we answer?

Overview



CMSC 420 – Dave Mount3

 Orthogonal range query:
− Given a point set 𝑃𝑃 stored in a kd-tree, a query consists of a d-dimensional axis parallel 

rectangle 𝑅𝑅
− Range counting query: How many points of 𝑃𝑃 lie within 𝑅𝑅?

− Range reporting query: Report all the points of 𝑃𝑃 that lie within 𝑅𝑅. (Java: Return an 
iterator for the set 𝑃𝑃 ∩ 𝑅𝑅)

 Nearest-neighbor query:
− Given a point set 𝑃𝑃 stored in a kd-tree, a query consists of a point 𝑞𝑞
− Nearest-distance query: What is the distance to 𝑞𝑞’s closest point in 𝑃𝑃
− Nearest-neighbor query: Report the point that is closest to 𝑞𝑞
− 𝑘𝑘-th Nearest-neighbor query: Report the 𝑘𝑘 closest points of 𝑃𝑃 to 𝑞𝑞

Queries

Overview



CMSC 420 – Dave Mount4

 Orthogonal range queries
− Given a medical database. Each patient associated with a vector of biomedical statistics 

(weight, height, blood pressure,…)

− Want to count the number of patients whose weight, height, BP, etc. are within a given 
range of values

− This is range counting query

Queries

Overview



CMSC 420 – Dave Mount5

 Nearest-neighbor queries
− In a large database of documents, each document is encoded as a vector describing 

document properties (e.g., trigrams: number of occurrences of triples of characters)

− Given a sample document 𝑞𝑞, we want to find similar documents in the database

− This is a nearest-neighbor query

Queries

Overview



CMSC 420 – Dave Mount6

 𝑑𝑑-dimensional axis-aligned (hyper-)rectangles are useful geometric objects
 Rectangle class:

− Defined by two 𝑑𝑑-dimensional points, low and high
− The rectangle consists of the points 𝑞𝑞, such that low 𝑖𝑖 ≤ 𝑞𝑞[𝑖𝑖] ≤ high[𝑖𝑖], for 0 ≤ 𝑖𝑖 ≤ 𝑑𝑑 − 1

A Rectangle Class

Orthogonal Range Queries



CMSC 420 – Dave Mount7

 Some useful functions:
− r.contains(Point q): true if 𝑟𝑟 contains point 𝑞𝑞
− r.contains(Rectangle c): true if 𝑟𝑟 contains rectangle 𝑐𝑐

− Test 𝑟𝑟. low 𝑖𝑖 ≤ 𝑐𝑐. low[𝑖𝑖] and 𝑐𝑐. high 𝑖𝑖 ≤ 𝑟𝑟. high[𝑖𝑖], for all 𝑖𝑖
− r.isDisjointFrom(Rectangle c): true if 𝑟𝑟 has no overlap

with rectangle 𝑐𝑐
− Test 𝑟𝑟. high 𝑖𝑖 < 𝑐𝑐. low[𝑖𝑖] or 𝑟𝑟. low 𝑖𝑖 > 𝑐𝑐. high[𝑖𝑖], for any 𝑖𝑖
− (Not the same as !r.contains(c))

r.distanceFrom(Point q)
− Min distance from 𝑞𝑞, or 0 if 𝑞𝑞 lies within 𝑟𝑟

A Rectangle Class

Orthogonal Range Queries



CMSC 420 – Dave Mount8

 For manipulating kd-tree cells:
− Given a rectangle 𝑟𝑟, a point 𝑠𝑠 lying within 𝑟𝑟, and a cutting dimension 𝑐𝑐𝑐𝑐

− r.leftPart(int cd, Point s): Portion of 𝑟𝑟 left of (below) s 𝑐𝑐𝑐𝑐
low is unchanged; high is same except high[cd] = s[cd]

− r.rightPart(int cd, Point s): Portion of 𝑟𝑟 right of (above) 𝑠𝑠[𝑐𝑐𝑐𝑐]
high is unchanged; low is the same except low[cd] = s[cd]

A Rectangle Class

Orthogonal Range Queries



CMSC 420 – Dave Mount9

 Basic signature of the Rectangle class:
public class Rectangle {

Point low;                                  // lower left corner
Point high;                                 // upper right corner

public Rectangle(Point low, Point high)     // constructor
public boolean contains(Point q)            // do we contain q? 
public boolean contains(Rectangle c)        // do we contain rectangle c?
public boolean isDisjointFrom(Rectangle c)  // disjoint from rectangle c?
public float distanceTo(Point q)            // min distance to point q
public Rectangle leftPart(int cd, Point s)  // left part from s
public Rectangle rightPart(int cd, Point s) // right part from s

}

A Rectangle Class

Orthogonal Range Queries



CMSC 420 – Dave Mount10

 Intuition:
− Each node of the kd-tree is associated with a cell, a rectangular region of space based 

on the intersection of the cuts of its ancestors

− As a starting point, assume that there is a bounding box, the root’s cell

− Use the cell-range relationship to avoid visiting subtrees whenever possible

Answering Queries

Orthogonal Range Queries



CMSC 420 – Dave Mount11

 Cases:
− Cell disjoint from range: No overlap with range. Return 0

− Cell contained in range: All the points in this subtree lie in the range. Count them all. 
(Assume each node p stores its subtree size, p.size)

− Cell partially overlaps range:
− Check whether the node’s point lies in the range – if so count it

− Recurse on both children

Answering Queries

Orthogonal Range Queries



CMSC 420 – Dave Mount12

int rangeCount(Rectangle r, KDNode p, Rectangle cell) {
if (p == null) return 0;            // empty subtree
else if (r.isDisjointFrom(cell))    // no overlap?

return 0;
else if (r.contains(cell))          // range contains our entire cell?

return p.size;                  // …include all points in the count
else {                              // partial overlap?

int count = 0;
if (r.contains(p.point))        // check this point

count++;
// apply recursively to children

count += rangeCount(r, p.left,  cell.leftPart(p.cutDim, p.point));
count += rangeCount(r, p.right, cell.rightPart(p.cutDim, p.point));
return count;

}
}

Answering Queries

Orthogonal Range Queries



CMSC 420 – Dave Mount13

Example

Orthogonal Range Queries



CMSC 420 – Dave Mount14

 Theorem: Given a balanced kd-tree with n points in 2D, range counting queries 
can be answered in 𝑂𝑂( 𝑛𝑛) time.

 Terminology:
− A node p is stabbed by a line if the line intersects the interior of p’s cell

− Observe that if a node is not stabbed by any of the four lines bounding the range, we 
will never recurse into this node

 Lemma: Given a balanced kd-tree with n points in 2D, the number of nodes 
stabbed by any axis-parallel line is 𝑂𝑂( 𝑛𝑛).

 The above theorem follows directly from this.

Analysis

Orthogonal Range Queries



CMSC 420 – Dave Mount15

 Useful observation: 
− In 2D, if an axis-parallel line stabs a node 𝑢𝑢, then it stabs at most 2 of 𝑢𝑢’s grandchildren

− Therefore, the number of nodes stabbed at level 2𝑖𝑖 is at most 2𝑖𝑖

Analysis

Orthogonal Range Queries



CMSC 420 – Dave Mount16

 Lemma: Given a balanced kd-tree with 𝑛𝑛 points in 2D, the number of nodes 
stabbed by any axis-parallel line is 𝑂𝑂( 𝑛𝑛).

 Proof:
− Let ℎ ≈ lg𝑛𝑛 be the tree height. Let 𝑙𝑙 be an axis parallel line

− If 𝑙𝑙 stabs a node 𝑢𝑢, then it stabs at most 2 of 𝑢𝑢’s grandchildren

− For every two levels of the tree, the number of stabbed nodes at most doubles

− Total number of stabbed nodes is roughly:

�
𝑖𝑖=0

ℎ/2
2𝑖𝑖 ≈ 2 ⁄ℎ 2 = 2ℎ �1 2 ≈ 2lg 𝑛𝑛 �1 2 = 𝑛𝑛 �1 2 = 𝑛𝑛

 Proof of Theorem:
− Each of the 4 sides of the range stabs 𝑂𝑂 𝑛𝑛 nodes. Total time ~𝑂𝑂 4 𝑛𝑛 = 𝑂𝑂 𝑛𝑛

Analysis

Orthogonal Range Queries



CMSC 420 – Dave Mount17

 Nearest Neighbors
− Given a kd-tree and a query point 𝑞𝑞, compute the closest point in the kd-tree to 𝑞𝑞
− We assume that distances are measured using the Euclidean metric:

dist 𝑝𝑝, 𝑞𝑞 = 𝑝𝑝1 − 𝑞𝑞1 2 + ⋯+ 𝑝𝑝𝑑𝑑 − 𝑞𝑞𝑑𝑑 2

− Unfortunately, worst case is 𝑂𝑂 𝑛𝑛 , which happens if almost all points at same distance. 
In practice, much better

Nearest-Neighbor Searching



CMSC 420 – Dave Mount18

 Overview:
− For simplicity, we will compute just the distance to the nearest neighbor

− Computing the actual point is a simple extension

− Search operates recursively, starting from the root
− Keep track of the minimum distance to the query seen so far - bestDist

− Minimize the number of nodes visited:
− Visit the subtree (left or right) that is closer to the query point first

− Don’t visit the other child if it cannot possibly contribute a closer point

Nearest-Neighbor Searching



CMSC 420 – Dave Mount19

 float nearNeighbor(Point q, Node p, Rectangle cell, float bestDist)
− If p is null – return bestDist (empty subtree, no change in best)

− Else:
− Compute dist(q, p.point) and update bestDist if this is smaller

− Compute child cells, leftPart and rightPart

− Determine which child is closer to the query point (which side is q w.r.t. splitter)

− Recursively visit the closer child – Update bestDist

− Visit the farther child only if it is sufficiently close – Update bestDist

− Return bestDist

Answering Queries

Nearest-Neighbor Searching



CMSC 420 – Dave Mount20

 float nearNeighbor(Point q, Node p, Rectangle cell, float bestDist)

Answering Queries

Nearest-Neighbor Searching



CMSC 420 – Dave Mount21

float nearNeighbor(Point q, KDNode p, Rectangle cell, float bestDist) {
if (p != null) {

float thisDist = q.distanceTo(p.point);             // distance to p's point
bestDist = Math.min(thisDist,  bestDist);           // keep smaller distance

int cd = p.cutDim;                                  // cutting dimension
Rectangle leftCell = cell.leftPart(cd, p.point);   // left child's cell
Rectangle rightCell = cell.rightPart(cd, p.point);  // right child's cell

if (q[cd] < p.point[cd]) {                          // q is closer to left
bestDist = nearNeighbor(q, p.left, leftCell, bestDist);
if (rightCell.distanceTo(q) < bestDist) {       // worth visiting right?

bestDist = nearNeighbor(q, p.right, rightCell, bestDist);
}

} else {                                            // q is closer to right
/* … left-right symmetrical …  */

}
}
return bestDist;

}

Nearest-Neighbor Searching

s



CMSC 420 – Dave Mount22

Example

Nearest-Neighbor Searching



CMSC 420 – Dave Mount23

Example

Nearest-Neighbor Searching



CMSC 420 – Dave Mount24

Example

Nearest-Neighbor Searching



CMSC 420 – Dave Mount25

Example

Nearest-Neighbor Searching



CMSC 420 – Dave Mount26

 Answering Queries with kd-trees
− Principles:

−Use recursion to visit subtrees

−Maintain intermediate results

− Avoid visiting subtrees whenever possible

− Orthogonal range (counting) queries

− Nearest-neighbor queries

Summary


	CMSC 420 – 0201 – Fall 2019�Lecture 14
	Overview
	Overview
	Overview
	Overview
	Orthogonal Range Queries
	Orthogonal Range Queries
	Orthogonal Range Queries
	Orthogonal Range Queries
	Orthogonal Range Queries
	Orthogonal Range Queries
	Orthogonal Range Queries
	Orthogonal Range Queries
	Orthogonal Range Queries
	Orthogonal Range Queries
	Orthogonal Range Queries
	Nearest-Neighbor Searching
	Nearest-Neighbor Searching
	Nearest-Neighbor Searching
	Nearest-Neighbor Searching
	Nearest-Neighbor Searching
	Nearest-Neighbor Searching
	Nearest-Neighbor Searching
	Nearest-Neighbor Searching
	Nearest-Neighbor Searching
	Summary

