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Answering Queries with kd-Trees
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 Previously, we introduced the kd-tree, a spatial binary partition tree:
− Stores a set of points in 𝑑𝑑-dimensional real space, where each point 𝑝𝑝 is represented as 

a 𝑑𝑑-element Java vector p[0,…,d-1]

− Each node stores a point 𝑝𝑝 and a cutting dimension 𝑖𝑖, where 0 ≤ 𝑖𝑖 ≤ 𝑑𝑑 − 1
− The left subtree contains points 𝑥𝑥 such 

that 𝑥𝑥[𝑖𝑖] < 𝑝𝑝[𝑖𝑖] and the right contains 
points such that 𝑥𝑥[𝑖𝑖] ≥ 𝑝𝑝[𝑖𝑖]

− Cutting dimension varies from node to
node (e.g., cycles from 0 through
𝑑𝑑 − 1, but other strategies are
possible)

− What other queries can we answer?

Overview
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 Orthogonal range query:
− Given a point set 𝑃𝑃 stored in a kd-tree, a query consists of a d-dimensional axis parallel 

rectangle 𝑅𝑅
− Range counting query: How many points of 𝑃𝑃 lie within 𝑅𝑅?

− Range reporting query: Report all the points of 𝑃𝑃 that lie within 𝑅𝑅. (Java: Return an 
iterator for the set 𝑃𝑃 ∩ 𝑅𝑅)

 Nearest-neighbor query:
− Given a point set 𝑃𝑃 stored in a kd-tree, a query consists of a point 𝑞𝑞
− Nearest-distance query: What is the distance to 𝑞𝑞’s closest point in 𝑃𝑃
− Nearest-neighbor query: Report the point that is closest to 𝑞𝑞
− 𝑘𝑘-th Nearest-neighbor query: Report the 𝑘𝑘 closest points of 𝑃𝑃 to 𝑞𝑞

Queries

Overview
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 Orthogonal range queries
− Given a medical database. Each patient associated with a vector of biomedical statistics 

(weight, height, blood pressure,…)

− Want to count the number of patients whose weight, height, BP, etc. are within a given 
range of values

− This is range counting query

Queries

Overview
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 Nearest-neighbor queries
− In a large database of documents, each document is encoded as a vector describing 

document properties (e.g., trigrams: number of occurrences of triples of characters)

− Given a sample document 𝑞𝑞, we want to find similar documents in the database

− This is a nearest-neighbor query

Queries

Overview
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 𝑑𝑑-dimensional axis-aligned (hyper-)rectangles are useful geometric objects
 Rectangle class:

− Defined by two 𝑑𝑑-dimensional points, low and high
− The rectangle consists of the points 𝑞𝑞, such that low 𝑖𝑖 ≤ 𝑞𝑞[𝑖𝑖] ≤ high[𝑖𝑖], for 0 ≤ 𝑖𝑖 ≤ 𝑑𝑑 − 1

A Rectangle Class

Orthogonal Range Queries
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 Some useful functions:
− r.contains(Point q): true if 𝑟𝑟 contains point 𝑞𝑞
− r.contains(Rectangle c): true if 𝑟𝑟 contains rectangle 𝑐𝑐

− Test 𝑟𝑟. low 𝑖𝑖 ≤ 𝑐𝑐. low[𝑖𝑖] and 𝑐𝑐. high 𝑖𝑖 ≤ 𝑟𝑟. high[𝑖𝑖], for all 𝑖𝑖
− r.isDisjointFrom(Rectangle c): true if 𝑟𝑟 has no overlap

with rectangle 𝑐𝑐
− Test 𝑟𝑟. high 𝑖𝑖 < 𝑐𝑐. low[𝑖𝑖] or 𝑟𝑟. low 𝑖𝑖 > 𝑐𝑐. high[𝑖𝑖], for any 𝑖𝑖
− (Not the same as !r.contains(c))

r.distanceFrom(Point q)
− Min distance from 𝑞𝑞, or 0 if 𝑞𝑞 lies within 𝑟𝑟

A Rectangle Class

Orthogonal Range Queries
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 For manipulating kd-tree cells:
− Given a rectangle 𝑟𝑟, a point 𝑠𝑠 lying within 𝑟𝑟, and a cutting dimension 𝑐𝑐𝑐𝑐

− r.leftPart(int cd, Point s): Portion of 𝑟𝑟 left of (below) s 𝑐𝑐𝑐𝑐
low is unchanged; high is same except high[cd] = s[cd]

− r.rightPart(int cd, Point s): Portion of 𝑟𝑟 right of (above) 𝑠𝑠[𝑐𝑐𝑐𝑐]
high is unchanged; low is the same except low[cd] = s[cd]

A Rectangle Class

Orthogonal Range Queries
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 Basic signature of the Rectangle class:
public class Rectangle {

Point low;                                  // lower left corner
Point high;                                 // upper right corner

public Rectangle(Point low, Point high)     // constructor
public boolean contains(Point q)            // do we contain q? 
public boolean contains(Rectangle c)        // do we contain rectangle c?
public boolean isDisjointFrom(Rectangle c)  // disjoint from rectangle c?
public float distanceTo(Point q)            // min distance to point q
public Rectangle leftPart(int cd, Point s)  // left part from s
public Rectangle rightPart(int cd, Point s) // right part from s

}

A Rectangle Class

Orthogonal Range Queries
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 Intuition:
− Each node of the kd-tree is associated with a cell, a rectangular region of space based 

on the intersection of the cuts of its ancestors

− As a starting point, assume that there is a bounding box, the root’s cell

− Use the cell-range relationship to avoid visiting subtrees whenever possible

Answering Queries

Orthogonal Range Queries



CMSC 420 – Dave Mount11

 Cases:
− Cell disjoint from range: No overlap with range. Return 0

− Cell contained in range: All the points in this subtree lie in the range. Count them all. 
(Assume each node p stores its subtree size, p.size)

− Cell partially overlaps range:
− Check whether the node’s point lies in the range – if so count it

− Recurse on both children

Answering Queries

Orthogonal Range Queries
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int rangeCount(Rectangle r, KDNode p, Rectangle cell) {
if (p == null) return 0;            // empty subtree
else if (r.isDisjointFrom(cell))    // no overlap?

return 0;
else if (r.contains(cell))          // range contains our entire cell?

return p.size;                  // …include all points in the count
else {                              // partial overlap?

int count = 0;
if (r.contains(p.point))        // check this point

count++;
// apply recursively to children

count += rangeCount(r, p.left,  cell.leftPart(p.cutDim, p.point));
count += rangeCount(r, p.right, cell.rightPart(p.cutDim, p.point));
return count;

}
}

Answering Queries

Orthogonal Range Queries
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Example

Orthogonal Range Queries
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 Theorem: Given a balanced kd-tree with n points in 2D, range counting queries 
can be answered in 𝑂𝑂( 𝑛𝑛) time.

 Terminology:
− A node p is stabbed by a line if the line intersects the interior of p’s cell

− Observe that if a node is not stabbed by any of the four lines bounding the range, we 
will never recurse into this node

 Lemma: Given a balanced kd-tree with n points in 2D, the number of nodes 
stabbed by any axis-parallel line is 𝑂𝑂( 𝑛𝑛).

 The above theorem follows directly from this.

Analysis

Orthogonal Range Queries
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 Useful observation: 
− In 2D, if an axis-parallel line stabs a node 𝑢𝑢, then it stabs at most 2 of 𝑢𝑢’s grandchildren

− Therefore, the number of nodes stabbed at level 2𝑖𝑖 is at most 2𝑖𝑖

Analysis

Orthogonal Range Queries
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 Lemma: Given a balanced kd-tree with 𝑛𝑛 points in 2D, the number of nodes 
stabbed by any axis-parallel line is 𝑂𝑂( 𝑛𝑛).

 Proof:
− Let ℎ ≈ lg𝑛𝑛 be the tree height. Let 𝑙𝑙 be an axis parallel line

− If 𝑙𝑙 stabs a node 𝑢𝑢, then it stabs at most 2 of 𝑢𝑢’s grandchildren

− For every two levels of the tree, the number of stabbed nodes at most doubles

− Total number of stabbed nodes is roughly:

�
𝑖𝑖=0

ℎ/2
2𝑖𝑖 ≈ 2 ⁄ℎ 2 = 2ℎ �1 2 ≈ 2lg 𝑛𝑛 �1 2 = 𝑛𝑛 �1 2 = 𝑛𝑛

 Proof of Theorem:
− Each of the 4 sides of the range stabs 𝑂𝑂 𝑛𝑛 nodes. Total time ~𝑂𝑂 4 𝑛𝑛 = 𝑂𝑂 𝑛𝑛

Analysis

Orthogonal Range Queries
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 Nearest Neighbors
− Given a kd-tree and a query point 𝑞𝑞, compute the closest point in the kd-tree to 𝑞𝑞
− We assume that distances are measured using the Euclidean metric:

dist 𝑝𝑝, 𝑞𝑞 = 𝑝𝑝1 − 𝑞𝑞1 2 + ⋯+ 𝑝𝑝𝑑𝑑 − 𝑞𝑞𝑑𝑑 2

− Unfortunately, worst case is 𝑂𝑂 𝑛𝑛 , which happens if almost all points at same distance. 
In practice, much better

Nearest-Neighbor Searching
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 Overview:
− For simplicity, we will compute just the distance to the nearest neighbor

− Computing the actual point is a simple extension

− Search operates recursively, starting from the root
− Keep track of the minimum distance to the query seen so far - bestDist

− Minimize the number of nodes visited:
− Visit the subtree (left or right) that is closer to the query point first

− Don’t visit the other child if it cannot possibly contribute a closer point

Nearest-Neighbor Searching
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 float nearNeighbor(Point q, Node p, Rectangle cell, float bestDist)
− If p is null – return bestDist (empty subtree, no change in best)

− Else:
− Compute dist(q, p.point) and update bestDist if this is smaller

− Compute child cells, leftPart and rightPart

− Determine which child is closer to the query point (which side is q w.r.t. splitter)

− Recursively visit the closer child – Update bestDist

− Visit the farther child only if it is sufficiently close – Update bestDist

− Return bestDist

Answering Queries

Nearest-Neighbor Searching
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 float nearNeighbor(Point q, Node p, Rectangle cell, float bestDist)

Answering Queries

Nearest-Neighbor Searching
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float nearNeighbor(Point q, KDNode p, Rectangle cell, float bestDist) {
if (p != null) {

float thisDist = q.distanceTo(p.point);             // distance to p's point
bestDist = Math.min(thisDist,  bestDist);           // keep smaller distance

int cd = p.cutDim;                                  // cutting dimension
Rectangle leftCell = cell.leftPart(cd, p.point);   // left child's cell
Rectangle rightCell = cell.rightPart(cd, p.point);  // right child's cell

if (q[cd] < p.point[cd]) {                          // q is closer to left
bestDist = nearNeighbor(q, p.left, leftCell, bestDist);
if (rightCell.distanceTo(q) < bestDist) {       // worth visiting right?

bestDist = nearNeighbor(q, p.right, rightCell, bestDist);
}

} else {                                            // q is closer to right
/* … left-right symmetrical …  */

}
}
return bestDist;

}

Nearest-Neighbor Searching

s
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Example

Nearest-Neighbor Searching
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Example

Nearest-Neighbor Searching
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Example

Nearest-Neighbor Searching
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Example

Nearest-Neighbor Searching
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 Answering Queries with kd-trees
− Principles:

−Use recursion to visit subtrees

−Maintain intermediate results

− Avoid visiting subtrees whenever possible

− Orthogonal range (counting) queries

− Nearest-neighbor queries

Summary
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