
CMSC 420 – 0201 – Fall 2019
Lecture 15

Memory Management

CMSC 420 – Dave Mount2

 When you do: Node p = new Node(), what is the operating system doing?
 Memory management:

− Used by operating systems and run-time systems for programming languages

− How are variables stored?
− static: Fixed memory location

− stack: Local variables and parameters for functions - Transient
− Pushed when function is invoked / Popped when function returns

− heap: Objects created via new (in Java, C++, …) and malloc (in C) – Persistent
− C/C++ - Object exists until explicitly deleted (or freed)

− Java/Python – Object exists until no longer referenced (and then subject to garbage collection)

Memory Management

CMSC 420 – Dave Mount3

 Memory is allocated via new (in object-oriented languages) or block allocation
function like malloc (non object-oriented languages)

 …and released via delete (C++) or free (C).
 Issues:

− Provides programmer with more control (good)

− Memory leak: Forgetting to delete – Allocated memory block with no way of access (bad)

− Dangling pointers: (bad)
− A pointer that references a deleted block of memory

−Often the result of aliasing (two pointers referring to the same object) and/or shallow
copying (copying pointers, not contents)

Explicit Memory Allocation

Memory Management Approaches

CMSC 420 – Dave Mount4

 Memory is allocated via new (as in Java) or just pops into existence (Python)
 When an object is unreachable (directly or indirectly), its space is reclaimed via

garbage collection
 Issues:

− No dangling pointers/memory leaks (good)

− Compact memory to improve memory locality (good)

− Less control for the programmer (may be bad)

− Garbage collection takes time and occurs unpredictably
− Problematic for real-time systems

− Ameliorated by incremental garbage collection

Implicit Memory Allocation

Memory Management Approaches

CMSC 420 – Dave Mount5

 Memory is divided into variable-sized blocks
 Blocks are marked as either available or in-use (allocated)

− Initially there is one huge available block

− As blocks are allocated/deallocated, memory becomes fragmented, like swiss cheese

− Available blocks are maintained in a doubly linked list: avail

Explicit Memory Allocation - Overview

CMSC 420 – Dave Mount6

 Which available block to select?
− First-fit: The first block on the available list that is large enough

− Best-fit: The block that most closely fits the requested size (and is large enough)

 Which is better?
− First-fit usually wins: Faster and tends to avoid small residual fragments (slivers)

− Sliver avoidance: If block is just slightly larger than request, don’t split it

Explicit Memory Allocation - Overview

CMSC 420 – Dave Mount7

 Blocks are often aligned at word (32-bit) or double-word (64-bit) boundaries
− Can be used for storing any type of data (byte, int, float, double)

 Pointers and pointer arithmetic:
− A pointer to a generic word of memory of type: void*
− Given pointer p:

− p+i: is i words beyond p’s location

− *p: is the value at this memory location

Notation and Assumptions

CMSC 420 – Dave Mount8

Available Block

Block Structure

 Each available block stores:
size: The size of the block, including these additional fields

inUse: A bit set to 0 (false)

prevInUse: A bit set to 1 (true) if the immediately preceding
block in memory (not the same as prev) is in-use

prev: A pointer to the head of the previous available block

next: A pointer to the head of the next available block

size2: Stores the same value as size

 Notes:
− prev and next need not be previous and next according to

the physical memory layout

− p.size2 can be accessed as *(p + p.size – 1)

CMSC 420 – Dave Mount9

Allocated Block

Block Structure

 Each allocated block stores:
size: The size of the block, including these additional fields

inUse: A bit set to 1 (true)

prevInUse: A bit set to 1 (true) if the immediately preceding
block in memory (not the same as prev) is in-use

 Note:
− We incur an overhead of just one word for each allocated

block

− What’s to keep the user from altering the header fields and
undermining the system’s integrity?
−Usually nothing! – Segmentation fault soon follows

− Buffer-overflow is a major security risk

CMSC 420 – Dave Mount10

 Allocate a block of size 𝑏𝑏:
− Increase 𝑏𝑏 by one to account for header

− p ← Search avail list for appropriate block (by either First- or Best-fit)

− If (p’s size matches 𝑏𝑏 (or is sufficiently close)):

−Use entire block (unlink from available list)

− Else:
− Trim off a subblock of size 𝑏𝑏 from the back of this block

− Initialize its header

− Adjust the size of the remaining block (and leave in available list)

Allocation

CMSC 420 – Dave Mount11

(void*) alloc(int b) { // allocate block with b words
b += 1; // extra space for system overhead
p = search available space list for block of size at least b;
if (p == null) { ...Error! Insufficient memory...}
if (p.size - b < TOO_SMALL) { // remaining fragment too small?

avail.unlink(p); // remove entire block from avail list
q = p; // this is block to return

}
else { // split the block

p.size -= b; // decrease size by b
*(p + p.size - 1) = p.size; // set new block's size2 field
q = p + p.size; // offset of start of new block
q.size = b; // size of new block
q.prevInUse = 0; // previous block is unused

}
q.inUse = 1; // new block is used
(q + q.size).prevInUse = 1; // adjust prevInUse for following block
return q + 1; // offset the link (to avoid header)

}

Allocation

CMSC 420 – Dave Mount12

Allocation Example

CMSC 420 – Dave Mount13

 Deallocate a block p:
− Decrement p by one so it points to the header

− If (immediately following block is not in-use):
−Merge with this block (we are now in the available list)

− Else:
− Insert ourselves into the available list

− If (immediately preceding block is not in-use):
−Merge with this block, and adjust headers

− Remove ourselves from the available list

Deallocation

CMSC 420 – Dave Mount14

delete(void* p) { // delete block at p
p--; // back up to the header
q = p + p.size; // the immediately following block
if (!q.inUse) { // is it available?

p.size += q.size; // …merge q into p
avail.move(q, p); // move q to p in avail space list

}
else avail.insert(p); // insert p into avail space list
p.inUse = 0; // p is now available
*(p + p.size - 1) = p.size; // set our size2 value

if (!p.prevInUse) { // previous is available?
q = p - *(p-1); // get previous block using size2
q.size += p.size; // merge p into q
*(q + q.size - 1) = q.size; // store new size2 value
avail.unlink(p); // unlink p from avail space list
(q + q.size).prevInUse = 0; // notify next that we are avail

}
}

Deallocation

CMSC 420 – Dave Mount15

Deallocation Example

CMSC 420 – Dave Mount16

 No theoretical analysis of performance
 Empirical studies show:

− First-fit usually outperforms best-fit (faster and less fragmentation)

− User has ultimate control
− You can allocate a huge chunk of memory and do your own memory allocation

 External Fragmentation:
− Wastage between blocks due to memory being cut up like swiss cheese

− Can ameliorate this by forcing blocks to be of uniform sizes that merge nicely (e.g.,
powers of 2), but this leads to…

 Internal Fragmentation:
− Wastage within blocks due to forcing blocks to have uniform sizes

Analysis

CMSC 420 – Dave Mount17

 The memory-management system described above suffers from fragmentation:
− Small residual blocks of available memory that are too small to fulfill requests

− Scattered like holes in a block of swiss cheese

 Alternative:
− Force blocks to be a given allowed set of sizes (e.g., powers of 2)

− Now, blocks split and merge nicely (e.g., 8 → 4 + 4 and 4 + 4 → 8)
− Reduces external fragmentation

− If a request is not of this size, round it up to the next larger allowed size
− Induces internal fragmentation

Coping with external fragmentation

Buddy System

CMSC 420 – Dave Mount18

 Start with a large block of size 2𝑚𝑚

 Blocks are formed by repeated bisection
 Blocks at level 𝑘𝑘 have size 2𝑘𝑘

 A block of size 2𝑘𝑘 starts at an address
that is a multiple of 2𝑘𝑘

Coping with external fragmentation

Buddy System

CMSC 420 – Dave Mount19

 The sibling of a block is called its buddy
 Can be computed arithmetically

buddy𝑘𝑘 𝑥𝑥 = �𝑥𝑥 + 2𝑘𝑘 if 2𝑘𝑘+1divides 𝑥𝑥
𝑥𝑥 − 2𝑘𝑘 otherwise

 Toggle the 𝑘𝑘th bit of 𝑥𝑥 in binary:
− buddy2 12 = buddy2 001100 =

001000 = 8
− buddy3 80 = buddy3 1010000 =

1011000 = 88
− Java: buddy(k,x)=(1<<k)^x

Coping with external fragmentation

Buddy System

CMSC 420 – Dave Mount20

 All allocation requests are rounded up to size 2𝑘𝑘

 Array of doubly linked lists of available blocks: avail[k] has blocks of size 2𝑘𝑘

 p←alloc 2𝑘𝑘 : Find block of sufficiently large size. Subdivide if needed.

 dealloc(p): Make block available. Merge (repeatedly) with buddies.

The Bigger Picture

Buddy System

CMSC 420 – Dave Mount21

Example of Allocation: alloc(2)
Buddy System

CMSC 420 – Dave Mount22

 alloc(b):
− Let 𝑘𝑘 = lg(𝑏𝑏 + 1) . Allow 1 word for header, and round to next higher power of 2.

− Targe size: 2𝑘𝑘

− Find smallest 𝑗𝑗 ≥ 𝑘𝑘 such that avail[j] is nonempty and remove any block: size 2𝑗𝑗

− Repeatedly split until we have a block of size 2𝑘𝑘.

− E.g., if 2𝑘𝑘 = 2 and 2𝑗𝑗 = 16, we split to sizes: 16 = 8 + 4 + 2 + 2
− Keep one block 𝑝𝑝 of size 2𝑘𝑘 and insert the others in the appropriate avail lists

− Return a pointer to block 𝑝𝑝

Allocation

Buddy System

CMSC 420 – Dave Mount23

Example of Deallocation

Buddy System

CMSC 420 – Dave Mount24

 dealloc(p):
− Let 𝑘𝑘 = lg(𝑝𝑝. size), that is, 𝑝𝑝. size = 2𝑘𝑘

− Mark block 𝑝𝑝 as available

− Repeat:
− Let 𝑝𝑝′ = buddy𝑘𝑘 𝑝𝑝
− If block 𝑝𝑝′ is allocated, break (merge is not possible)

−Otherwise (merge is possible)
− Remove 𝑝𝑝′ from avail[k]

− Merge 𝑝𝑝 and 𝑝𝑝′ into a new block of size 2𝑘𝑘+1

− Let 𝑝𝑝 point to this new block

− Insert p into appropriate avail list

Deallocation

Buddy System

CMSC 420 – Dave Mount25

 Variant: Fibonacci Buddy System
− Uses Fibonacci numbers, rather than powers of 2

− 𝐹𝐹 0 = 0, 𝐹𝐹 1 = 1, 𝐹𝐹 𝑖𝑖 = 𝐹𝐹 𝑖𝑖 − 1 + 𝐹𝐹(𝑖𝑖 − 2)
− avail[k] stores available blocks of size 𝐹𝐹(𝑘𝑘)
− Round each request up to next larger Fibonacci number

− If no available block of this size, find next larger available size 𝐹𝐹(𝑗𝑗)
− Split this block repeatedly:

− E.g., Want a block of size 𝐹𝐹(3) = 2 but next available block is of size 𝐹𝐹(9) = 34. Split it
into 34 = 2 + 3 + 8 + 21 = 𝐹𝐹 3 + 𝐹𝐹 4 + 𝐹𝐹 6 + 𝐹𝐹(8). Return block 𝐹𝐹(3), and add others
to avail[4], avail[6], and avail[8], respectively.

− Intuition: Less fragmentation because Fibonacci numbers are denser

Summary

CMSC 420 – Dave Mount26

 We have seen two common memory allocation systems
 Standard allocator

− Uses blocks of arbitrary sizes

− Maintains a linked list of available blocks

− Small residual blocks can clog things up, causing external fragmentation

 Buddy system
− Allocates blocks in a binary hierarchy, uses only blocks of size 2𝑘𝑘

− Requests must be rounded up to next larger power of 2: Causes internal fragmentation

− Reduces external fragmentation

− Variant: Fibonacci Buddy

Summary

	CMSC 420 – 0201 – Fall 2019�Lecture 15
	Memory Management
	Memory Management Approaches
	Memory Management Approaches
	Explicit Memory Allocation - Overview
	Explicit Memory Allocation - Overview
	Notation and Assumptions
	Block Structure
	Block Structure
	Allocation
	Allocation
	Allocation Example
	Deallocation
	Deallocation
	Deallocation Example
	Analysis
	Buddy System
	Buddy System
	Buddy System
	Buddy System
	Buddy System
	Buddy System
	Buddy System
	Buddy System
	Summary
	Summary

