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 When you do: Node p = new Node(), what is the operating system doing?
 Memory management:

− Used by operating systems and run-time systems for programming languages

− How are variables stored?
− static: Fixed memory location

− stack: Local variables and parameters for functions - Transient
− Pushed when function is invoked / Popped when function returns

− heap: Objects created via new (in Java, C++, …) and malloc (in C) – Persistent
− C/C++ - Object exists until explicitly deleted (or freed)

− Java/Python – Object exists until no longer referenced (and then subject to garbage collection)

Memory Management
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 Memory is allocated via new (in object-oriented languages) or block allocation 
function like malloc (non object-oriented languages)

 …and released via delete (C++) or free (C).
 Issues:

− Provides programmer with more control (good)

− Memory leak: Forgetting to delete – Allocated memory block with no way of access (bad)

− Dangling pointers: (bad)
− A pointer that references a deleted block of memory

−Often the result of aliasing (two pointers referring to the same object) and/or shallow 
copying (copying pointers, not contents)

Explicit Memory Allocation

Memory Management Approaches
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 Memory is allocated via new (as in Java) or just pops into existence (Python)
 When an object is unreachable (directly or indirectly), its space is reclaimed via 

garbage collection
 Issues:

− No dangling pointers/memory leaks (good)

− Compact memory to improve memory locality (good)

− Less control for the programmer (may be bad)

− Garbage collection takes time and occurs unpredictably
− Problematic for real-time systems

− Ameliorated by incremental garbage collection

Implicit Memory Allocation

Memory Management Approaches
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 Memory is divided into variable-sized blocks
 Blocks are marked as either available or in-use (allocated)

− Initially there is one huge available block

− As blocks are allocated/deallocated, memory becomes fragmented, like swiss cheese

− Available blocks are maintained in a doubly linked list: avail

Explicit Memory Allocation - Overview
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 Which available block to select?
− First-fit: The first block on the available list that is large enough

− Best-fit: The block that most closely fits the requested size (and is large enough)

 Which is better?
− First-fit usually wins: Faster and tends to avoid small residual fragments (slivers)

− Sliver avoidance: If block is just slightly larger than request, don’t split it

Explicit Memory Allocation - Overview
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 Blocks are often aligned at word (32-bit) or double-word (64-bit) boundaries
− Can be used for storing any type of data (byte, int, float, double)

 Pointers and pointer arithmetic:
− A pointer to a generic word of memory of type: void*
− Given pointer p:

− p+i: is i words beyond p’s location

− *p: is the value at this memory location

Notation and Assumptions
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Available Block

Block Structure

 Each available block stores:
size: The size of the block, including these additional fields

inUse: A bit set to 0 (false)

prevInUse: A bit set to 1 (true) if the immediately preceding 
block in memory (not the same as prev) is in-use

prev: A pointer to the head of the previous available block

next: A pointer to the head of the next available block

size2: Stores the same value as size

 Notes: 
− prev and next need not be previous and next according to 

the physical memory layout

− p.size2 can be accessed as *(p + p.size – 1)
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Allocated Block

Block Structure

 Each allocated block stores:
size: The size of the block, including these additional fields

inUse: A bit set to 1 (true)

prevInUse: A bit set to 1 (true) if the immediately preceding 
block in memory (not the same as prev) is in-use

 Note:
− We incur an overhead of just one word for each allocated 

block

− What’s to keep the user from altering the header fields and 
undermining the system’s integrity?
−Usually nothing! – Segmentation fault soon follows

− Buffer-overflow is a major security risk
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 Allocate a block of size 𝑏𝑏:
− Increase 𝑏𝑏 by one to account for header

− p ← Search avail list for appropriate block (by either First- or Best-fit)

− If (p’s size matches 𝑏𝑏 (or is sufficiently close)):

−Use entire block (unlink from available list)

− Else:
− Trim off a subblock of size 𝑏𝑏 from the back of this block

− Initialize its header

− Adjust the size of the remaining block (and leave in available list)

Allocation
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(void*) alloc(int b) {                      // allocate block with b words
b += 1;                                 // extra space for system overhead
p = search available space list for block of size at least b;
if (p == null) { ...Error! Insufficient memory...}
if (p.size - b < TOO_SMALL) {           // remaining fragment too small?

avail.unlink(p);                    // remove entire block from avail list
q = p;                              // this is block to return

}
else {                                  // split the block

p.size -= b;                        // decrease size by b
*(p + p.size - 1) = p.size;         // set new block's size2 field
q = p + p.size;                     // offset of start of new block
q.size = b;                         // size of new block
q.prevInUse = 0;                    // previous block is unused

}
q.inUse = 1;                            // new block is used
(q + q.size).prevInUse = 1;             // adjust prevInUse for following block
return q + 1;                           // offset the link (to avoid header)

}

Allocation
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Allocation Example
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 Deallocate a block p:
− Decrement p by one so it points to the header

− If (immediately following block is not in-use):
−Merge with this block (we are now in the available list)

− Else:
− Insert ourselves into the available list

− If (immediately preceding block is not in-use):
−Merge with this block, and adjust headers

− Remove ourselves from the available list

Deallocation
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delete(void* p) {                           // delete block at p
p--;                                    // back up to the header
q = p + p.size;                         // the immediately following block
if (!q.inUse) {                         // is it available?

p.size += q.size;                   // …merge q into p
avail.move(q, p);                   // move q to p in avail space list

}
else avail.insert(p);                   // insert p into avail space list
p.inUse = 0;                            // p is now available
*(p + p.size - 1) = p.size;             // set our size2 value

if (!p.prevInUse) {                     // previous is available?
q = p - *(p-1);                    // get previous block using size2
q.size += p.size;                  // merge p into q
*(q + q.size - 1) = q.size;        // store new size2 value
avail.unlink(p);                   // unlink p from avail space list
(q + q.size).prevInUse = 0;        // notify next that we are avail

}
}

Deallocation
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Deallocation Example
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 No theoretical analysis of performance
 Empirical studies show:

− First-fit usually outperforms best-fit (faster and less fragmentation)

− User has ultimate control 
− You can allocate a huge chunk of memory and do your own memory allocation

 External Fragmentation:
− Wastage between blocks due to memory being cut up like swiss cheese

− Can ameliorate this by forcing blocks to be of uniform sizes that merge nicely (e.g., 
powers of 2), but this leads to…

 Internal Fragmentation:
− Wastage within blocks due to forcing blocks to have uniform sizes

Analysis
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 The memory-management system described above suffers from fragmentation:
− Small residual blocks of available memory that are too small to fulfill requests

− Scattered like holes in a block of swiss cheese

 Alternative:
− Force blocks to be a given allowed set of sizes (e.g., powers of 2)

− Now, blocks split and merge nicely (e.g., 8 → 4 + 4 and 4 + 4 → 8)
− Reduces external fragmentation

− If a request is not of this size, round it up to the next larger allowed size
− Induces internal fragmentation

Coping with external fragmentation

Buddy System
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 Start with a large block of size 2𝑚𝑚

 Blocks are formed by repeated bisection
 Blocks at level 𝑘𝑘 have size 2𝑘𝑘

 A block of size 2𝑘𝑘 starts at an address 
that is a multiple of 2𝑘𝑘

Coping with external fragmentation

Buddy System
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 The sibling of a block is called its buddy
 Can be computed arithmetically

buddy𝑘𝑘 𝑥𝑥 = �𝑥𝑥 + 2𝑘𝑘 if 2𝑘𝑘+1divides 𝑥𝑥
𝑥𝑥 − 2𝑘𝑘 otherwise

 Toggle the 𝑘𝑘th bit of 𝑥𝑥 in binary:
− buddy2 12 = buddy2 001100 =

001000 = 8
− buddy3 80 = buddy3 1010000 =

1011000 = 88
− Java: buddy(k,x)=(1<<k)^x

Coping with external fragmentation

Buddy System
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 All allocation requests are rounded up to size 2𝑘𝑘

 Array of doubly linked lists of available blocks: avail[k] has blocks of size 2𝑘𝑘

 p←alloc 2𝑘𝑘 : Find block of sufficiently large size. Subdivide if needed.

 dealloc(p): Make block available. Merge (repeatedly) with buddies. 

The Bigger Picture

Buddy System
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Example of Allocation: alloc(2)
Buddy System
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 alloc(b):
− Let 𝑘𝑘 = lg(𝑏𝑏 + 1) . Allow 1 word for header, and round to next higher power of 2.

− Targe size: 2𝑘𝑘

− Find smallest 𝑗𝑗 ≥ 𝑘𝑘 such that avail[j] is nonempty and remove any block: size 2𝑗𝑗

− Repeatedly split until we have a block of size 2𝑘𝑘. 

− E.g., if 2𝑘𝑘 = 2 and 2𝑗𝑗 = 16, we split to sizes: 16 = 8 + 4 + 2 + 2
− Keep one block 𝑝𝑝 of size 2𝑘𝑘 and insert the others in the appropriate avail lists

− Return a pointer to block 𝑝𝑝

Allocation

Buddy System
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Example of Deallocation

Buddy System
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 dealloc(p):
− Let 𝑘𝑘 = lg(𝑝𝑝. size), that is, 𝑝𝑝. size = 2𝑘𝑘

− Mark block 𝑝𝑝 as available

− Repeat:
− Let 𝑝𝑝′ = buddy𝑘𝑘 𝑝𝑝
− If block 𝑝𝑝′ is allocated, break (merge is not possible)

−Otherwise (merge is possible)
− Remove 𝑝𝑝′ from avail[k]

− Merge 𝑝𝑝 and 𝑝𝑝′ into a new block of size 2𝑘𝑘+1

− Let 𝑝𝑝 point to this new block

− Insert p into appropriate avail list

Deallocation

Buddy System
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 Variant: Fibonacci Buddy System
− Uses Fibonacci numbers, rather than powers of 2

− 𝐹𝐹 0 = 0, 𝐹𝐹 1 = 1, 𝐹𝐹 𝑖𝑖 = 𝐹𝐹 𝑖𝑖 − 1 + 𝐹𝐹(𝑖𝑖 − 2)
− avail[k] stores available blocks of size 𝐹𝐹(𝑘𝑘)
− Round each request up to next larger Fibonacci number

− If no available block of this size, find next larger available size 𝐹𝐹(𝑗𝑗)
− Split this block repeatedly:

− E.g., Want a block of size 𝐹𝐹(3) = 2 but next available block is of size 𝐹𝐹(9) = 34. Split it 
into 34 = 2 + 3 + 8 + 21 = 𝐹𝐹 3 + 𝐹𝐹 4 + 𝐹𝐹 6 + 𝐹𝐹(8). Return block 𝐹𝐹(3), and add others 
to avail[4], avail[6], and avail[8], respectively.

− Intuition: Less fragmentation because Fibonacci numbers are denser

Summary
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 We have seen two common memory allocation systems
 Standard allocator

− Uses blocks of arbitrary sizes

− Maintains a linked list of available blocks

− Small residual blocks can clog things up, causing external fragmentation

 Buddy system
− Allocates blocks in a binary hierarchy, uses only blocks of size 2𝑘𝑘

− Requests must be rounded up to next larger power of 2: Causes internal fragmentation

− Reduces external fragmentation

− Variant: Fibonacci Buddy

Summary
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