
bl0

Copyright © 1998 Hanan Samet

These notes may not be reproduced by any means (mechanical or elec-
tronic or any other) without the express written permission of Hanan Samet

SPEEDING UP BULK-LOADING
OF QUADTREES

GÍSLI R. HJALTASON
HANAN SAMET

YORAM J. SUSSMANN

COMPUTER SCIENCE DEPARTMENT AND
CENTER FOR AUTOMATION RESEARCH AND

INSTITUTE FOR ADVANCED COMPUTER STUDIES
UNIVERSITY OF MARYLAND

COLLEGE PARK, MARYLAND 20742-3411 USA

bl1

SPATIAL INDEX CONSTRUCTION

1. Typically a database system allows a user to designate
the attributes for which an index is to be built

2. Query optimizers also have the ability to create indexes
on un-indexed data or temporary results

• Index construction can not take too much time as
otherwise the operation could be executed more
efficiently without the index

• In other words, an index is not very useful if the
execution time of the operation without the index is
faster than the total time to execute it when the time
to build the index is included

• Indexes are used even though it takes long to build
them when the indexed data is queried many times
a. time to build the index is amortized over the

number of queries before having to build a new
index (on account of updates)

b. assume database is relatively static

Copyright © 1998 by Hanan Samet

bl2

DYNAMIC DATABASES

• Often neglected issue in design of spatial databases

• Factors in choosing an index:

1. speed to perform queries

2. amount of storage required

• Emphasis on retrieval efficiency may lead to a wrong
choice of an index when the operations are not limited to
retrieval (e.g., creation of new data)

Copyright © 1998 by Hanan Samet

bl3

SPATIAL JOIN

• Problem: given river and road relations, find the locations
where a river and a road meet (i.e., locations of bridges
and tunnels)

• Solution: compute a spatial join of the two relations
where the join condition results in extracting all tuples
whose spatial attribute have at least one point in common

• Spatial join operation has both a relational and spatial
component

1. we don’t just want the names of the object pairs that
satisfy the join condition (e.g., the names of the rivers
and roads that intersect)

2. we also want their actual locations so that they can
serve as input to subsequent spatial operations (e.g.,
a cascaded spatial join as would be common in a
spatial spreadsheet)

3. implies need to construct a map for the output as well
which means that we need a spatial index

4. implies that the time to build the index plays an
important role in the overall performance of the index
in addition to the time needed to perform the spatial
join itself whose output is not always required to be
spatial

5. most traditional studies on the efficiency of the spatial
join only focus on the relational component of the
output while very few include a spatial component in
the output

Copyright © 1998 by Hanan Samet

bl4

OVERVIEW

1. Techniques for speeding up construction of spatial
indexes

2. Focus on PMR quadtree

3. Bulk-loading is the process of building a disk-based
spatial index for an entire set of objects without any
intervening queries

4. Strategy: fill up memory with as much of the quadtree
as possible before writing some of its nodes to disk

Copyright © 1998 by Hanan Samet

bl5

a

PMR QUADTREE
1

Split a block once if upon insertion the number of
segments intersecting a block exceeds N

b

• Edge-based
• Avoids having to split many times when two vertices or

lines are very close as in PM1 quadtree
• Probabilistic splitting and merging rules
• Uses a splitting threshold value — say N

DECOMPOSITION RULE:

Merge a block with its siblings if the total number of line
segments intersecting them is less than N
• Merges can be performed more than once
• Does not guarantee that each block will contain at

most N line segments
• Splitting threshold is not the same as bucket capacity
• Shape depends on order of insertion

Ex: N = 2

2
r

b

3
z

c

d

4
g

5
v

e

f

6
r

g

7
z

h

8
g

i

9
v

Copyright © 1998 by Hanan Samet

bl6

QUADTREE IMPLEMENTATION

• Makes use of the Morton Block Index (MBI)

• MBI is a linear quadtree which is a collection of location
codes for the leaf nodes of the quadtree

• Each location code is a pair of numbers

1. size of the side of a block (or log of the size)

2. bit-interleaved value of lower-left corner of block
termed its Morton code
• provide a mapping from d dimensions to one

dimension
• when points are sorted on the basis of their Morton

codes, the result is known as Z-order

• MBI uses a B-tree to organize the locational codes
(known as Morton block values) employing a
lexicographic sorting order on the Morton code and the
block side length

• A quadtree leaf node with k objects is represented k times
in the B-tree, once for each object

Copyright © 1998 by Hanan Samet

bl7

BUILDING AN MBI

• Loading an MBI with a large number of objects
simultaneously (i.e., bulk loading) was slow due to the
cost of node splits

1. when splitting a quadtree node, references to the
objects must be deleted from the B-tree, and then
reinserted with Morton block value identifiers of the
newly created quadtree nodes

2. deletions from the B-tree may cause merging of B-tree
nodes, and subsequent reinsertions of the objects with
their new Morton values will cause splitting of the
same nodes thereby causing much disk activity

• Our approaches:

1. attack problem on B-tree level
• based on dramatically increasing the amount of

buffering done by the B-tree (termed B-tree
buffering)

2. attack problem on quadtree level
• based on reducing the number of accesses to the B-

tree as much as possible by storing parts of the PMR
quadtree in main memory (termed quadtree
buffering)

Copyright © 1998 by Hanan Samet

bl8

B-TREE BUFFERING

1. Experiments with a buffer and an LRU (least recently
used) node replacement policy

• a node locking mechanism insures that nodes on the
path from the root to the current node are not
replaced

2. Existing implementation only buffered the B-tree nodes
on the path from the root to the current node

• found to be adequate for most applications

• another policy (e.g., LRU) did not seem to be much
benefit as most testing involved dynamic updates of
isolated objects and other query types

• problem was that for such use, even with LRU, most
B-tree nodes were found to have been replaced by
the time they are needed again as the quadtree
blocks were accessed in a random manner

3. Try to increase the likelihood that the nodes where the
insertions are taking place are already in the buffer

• sort the objects prior to insertion in Z-order based on
their centroid
a. sorting is a small price to pay in comparison to

cost of building a spatial index
b. commonly used technique for static databases

(e.g., Hilbert Packed R-trees)

• tends to localize insertions within the B-tree nodes
with the highest Morton block values

Copyright © 1998 by Hanan Samet

bl9

QUADTREE BUFFERING

• Key: build a pointer-based quadtree in memory thereby
bypassing the costly updates of the B-tree of the Morton
Block Index (MBI)

• Once entire quadtree has been built, output into the
Morton Block Index (MBI) which resides on disk

• If memory is limited, then can’t build the whole quadtree
in memory

• Once exhaust available memory, invoke a node flushing
algorithm that attempts to free up memory by writing parts
of the memory resident pointer-based quadtree to disk

• Flushing algorithm uses a set of heuristics to decide what
parts of the pointer-based quadtree to flush to disk

1. goal: flush nodes of the tree that will not be needed
later on for insertions

2. impossible to satisfy for arbitrary insertion patterns

3. presorting the data set in Z-order makes it possible to
approach our goal
• such an ordering tends localize the insertion activity
• thus if a node has not been inserted into for a while,

then it will probably not be inserted into again

• Flushing a quadtree node n to disk:

1. insert the leaves in the subtree rooted atn into the
Morton Block Index (MBI)

2. free all nodes (and q-objects) in the subtree, except n,
which is retained to indicate that the subtree is on disk

Copyright © 1998 by Hanan Samet

bl10

QUADTREE BUFFERING: FLUSHING NODES

• Choosing which part of the memory resident pointer-
based quadtree to flush to disk is complicated by two
conflicting goals:

1. choosing a reasonably large part of the tree so as to
avoid flushing too often

2. not choosing too large a part of the tree so as not to
flush to disk nodes whose region intersects many of
the objects that are later inserted

• Node flushing algorithm makes use of following statistics,
maintained for each node n, to decide which nodes in the
pointer-based quadtree to flush

1. time stamp for the last insertion into n

2. total number of objects inserted into subtree rooted at
n (regardless of flushing)

3. number of q-objects currently present in subtree
rooted at n (not counting q-objects in leaf nodes that
have already been flushed)

4. number of nodes in the subtree rooted at n excluding n
(not counting nodes that already have been flushed)

• For each invocation of the flushing algorithm, the goal is
to free a certain percentage Q of the nodes and q-objects
in the pointer-based quadtree

1. Q is termed flushing quotient

2. experiments show 0.3 ≤ Q ≤ 0.6 give good results

Copyright © 1998 by Hanan Samet

bl11

QUADTREE BUFFERING: FLUSHING ALGORITHM

• Node flushing algorithm is applied recursively starting at
the root, say n, of the pointer-based quadtree

• Variables Nq and Nn indicate how many q-objects and
nodes, respectively, are yet to be freed from the pointer-
based quadtree by flushing parts of it to disk

• Algorithm:

1. if n is a leaf node, then it is flushed

2. if n is a non-leaf node, then
• if number of q-objects and nodes in the subtree

rooted at n is less than Nq and Nn, respectively, then
flush n

• otherwise, consider the unflushed child nodes of n in
order of their last time of insertion and apply the
flushing algorithm recursively to child nodes whose
subtrees contain an adequate number of objects:
a. the total number of objects that have been

inserted in the child node is at least 1/2d times
the total number of objects inserted into n, OR

b. the number of q-objects present in the subtree of
the child node is at least 1/2d times the number of
q-objects present in the subtree rooted at n

Copyright © 1998 by Hanan Samet

bl12

QUADTREE BUFFERING: FLUSHING CRITERIA

• Basing the decision process on both the total number of
inserted objects and the q-objects present in the pointer-
based tree results in a more stable overall performance

• Alternatives:

1. if only use number of q-objects in subtree, then
subtrees would be kept in memory too long
• if all objects have already been inserted into child n

of the root but number of q-objects in n is less than
1/2d of the number of q-objects in the whole
memory-based tree, then n stays in memory until
almost all of the objects have been inserted

2. if only use total number of inserted objects, then
nothing may get flushed
• if one of child nodes n of the root contains most of

the inserted objects so that none of the other child
nodes of the root satisfy the flushing criteria, and if n
has already been flushed, then no node can be
flushed (at least until more insertions take place)

• ignoring nodes that have been flushed already is
similar to just taking the q-objects into account

Copyright © 1998 by Hanan Samet

bl13

EXPERIMENTAL ENVIRONMENT

• TIGER/Line files

1. Washington DC: 19,185 lines

2. Prince George’s County, MD: 59,551 lines

3. roads in Washington DC metro area: 200,482 lines

4. randomly generated data sets with 64K, 128K, and
256K lines
• use random infinite lines
• clipped to embedding space
• subdivided at intersection points

• PMR quadtrees with splitting threshold of 8

• 215 × 215 embedding space

• SUN SPARCstation 5 Model 70 rated at 60 SPECint92
and 47 SPECfp92 with 32MB memory

Copyright © 1998 by Hanan Samet

bl14

EXPERIMENT: SPEEDUP FOR SORTED INPUT
• Assume data is already sorted in Z-order and cost for

sorting is not included
• Use B-tree buffering and/or quadtree buffering, with a

large (so entire tree for all but largest data sets fits in
memory) and small buffer size
1. small B-tree buffer is 100 nodes occupying 400K
2. small quadtree buffer is 100K

• Large buffer enables benchmark for maximum speedup
achievable with buffering

• Compared with existing MBI method

0

1

2

3

4

5

6

7

8

9

DC PG Roads R64K R128K R256K

S
pe

ed
up

BB-large
BB-small
QB-large
QB-small
Both-small

• Conclusions:
1. B-tree buffering provides modest speedup
2. quadtree buffering provides dramatic speedup, almost

one order of magnitude (factor of 7)
3. not worth using both B-tree and quadtree buffering as

the overhead of B-tree buffering may cancel some of
benefit of quadtree buffering

Copyright © 1998 by Hanan Samet

bl15

EXPERIMENT: SPEEDUP FOR UN-SORTED INPUT

• Include cost of sorting the input before building the
quadtree with buffering

• Use B-tree buffering and/or quadtree buffering, with a
large (so entire tree for all but largest data sets fits in
memory) and small buffer size

1. small B-tree buffer is 100 nodes occupying 400K

2. small quadtree buffer is 100K

• Large buffer enables benchmark for maximum speedup
achievable with buffering

• Compared with existing MBI method

0

1

2

3

4

5

6

7

8

9

DC PG Roads R64K R128K R256K

S
pe

ed
up

BB-large
BB-small
QB-large
QB-small
Both-small

• Conclusion: same relative performance as when sorting
time is not taken into account although speedup is off by
less than 10%

Copyright © 1998 by Hanan Samet

bl16

EXPERIMENT: VARYING FLUSHING QUOTIENT

• Evaluate quadtree buffering using DC data set

• Vary flushing quotient from 0.05 to 0.95 and buffer size
from 100K to 2100K

• Only plot up to 42 seconds (highest time: 70 sec.)

0.
050.
150.
25

0.
350.
450.
55

0.
650.
75

0.
850.
95

100K
400K

1200K

2100K

32
33
34
35
36
37
38
39
40
41
42

Ti
m

e

Flush quotient
Buffer size

100K
200K
400K
800K
1200K
1600K
2100K

• Conclusions:

1. no single value of the flushing quotient appears to be
consistently the best for all buffer sizes

2. execution time fluctuates somewhat for different
values of the flushing quotient

3. nevertheless, for values between .3 and .6, difference
was only 4% for buffer size of 100K and 200K and 7%
for other buffer sizes

4. similar results with less fluctuation for other maps

Copyright © 1998 by Hanan Samet

bl17

EXPERIMENT: SPATIAL JOIN

• Ex: find intersections of roads (200,482) and rivers (37,495)

• Spatial join can be performed without any pre-existing
spatial indexes, with only one index, or with two indexes

• Spatial join can be performed by building additional
spatial indexes

• Results:

1. using no buffering to build one new index prior to
performing a join is slower than performing the join
without indexes

2. using B-tree buffering to build one new index prior to
performing a join provides very small improvement
over performing the join without indexes

3. if an index exists for roads but not rivers, it is 4.6 times
faster to build an index on rivers (71 seconds) using
quadtree buffering and perform join with both data sets
indexed (45 seconds more) than perform it with only
the index on rivers (116 seconds vs. 533 seconds)

4. if an index exists for rivers but not roads, the speedup
was over 4 times (542 seconds vs. 2212 seconds) as
building the roads index takes 497 seconds using
quadtree buffering to which we add the cost of the join
when both data sets are sorted which is 45 seconds

5. if no index exists, then it is at least an order of
magnitude faster to build new indexes using quadtree
buffering (71+497 seconds) and then perform join (45
more seconds) than to perform a nested loop join
(over 6000 seconds even when all data in memory)

Copyright © 1998 by Hanan Samet

bl18

CONCLUSIONS

• Quadtree buffering offers almost an order of magnitude
speedup for building PMR quadtrees

• B-tree buffering provided a modest speedup, suggesting
that insertions in a linear quadtree are highly CPU
intensive

1. bit manipulation on Morton Block values takes time

2. avoided this cost by storing the values in the pointer-
based structure when evaluating quadtree buffering

• Future work:

1. investigate whether dynamic insertions and queries
may be sped up through buffering

2. exploit the faster building of spatial indexes by
constructing a query processor that builds temporary
spatial indexes when responding to queries

Copyright © 1998 by Hanan Samet

