
ds0

Copyright © 1997 Hanan Samet

These notes may not be reproduced by any means (mechanical or elec-
tronic or any other) without the express written permission of Hanan Samet

DYNAMIC STORAGE ALLOCATION

Hanan Samet

Computer Science Department and
Center for Automation Research and

Institute for Advanced Computer Studies
University of Maryland

College Park, Maryland 20742
e-mail:  hjs@umiacs.umd.edu



ds181
b

DYNAMIC STORAGE ALLOCATION

• Explicit allocation and deallocation (‘freeing’ or ‘liberating’)
 of blocks of contiguous storage locations

• Issues:

 1. how to keep track of available space and its partitioning
  • usually keep a linked list of available blocks
   a. elements
    • location of start of block
    • size of block
    • pointer to next block in list
   b. how to order (i.e., ‘sort’) list
    • by location (i.e., increasing order)
    • by size
    • no order

 2. how to find a block of b consecutive locations

  • if list sorted by location, find first one with s ≥ b (first fit)
   a. requires a search
   b. but good if want to merge adjacent empty blocks
    into larger ones upon storage deallocation
  • if list sorted by size, find smallest one with s ≥ b (best fit)

• Ex: first fit is superior to best fit

request
available areas

first fit
available areas

best fit

start 1300,1200 1300,1200

size

size

Copyright © 1998 by Hanan Samet



ds181
b

DYNAMIC STORAGE ALLOCATION

• Explicit allocation and deallocation (‘freeing’ or ‘liberating’)
 of blocks of contiguous storage locations

• Issues:

 1. how to keep track of available space and its partitioning
  • usually keep a linked list of available blocks
   a. elements
    • location of start of block
    • size of block
    • pointer to next block in list
   b. how to order (i.e., ‘sort’) list
    • by location (i.e., increasing order)
    • by size
    • no order

 2. how to find a block of b consecutive locations

  • if list sorted by location, find first one with s ≥ b (first fit)
   a. requires a search
   b. but good if want to merge adjacent empty blocks
    into larger ones upon storage deallocation
  • if list sorted by size, find smallest one with s ≥ b (best fit)

• Ex: first fit is superior to best fit

request
available areas

first fit
available areas

best fit

start 1300,1200 1300,1200

size

size

Copyright © 1998 by Hanan Samet

ds12
r

1000 300,1200 1300,200

Copyright © 1998 by Hanan Samet



ds181
b

DYNAMIC STORAGE ALLOCATION

• Explicit allocation and deallocation (‘freeing’ or ‘liberating’)
 of blocks of contiguous storage locations

• Issues:

 1. how to keep track of available space and its partitioning
  • usually keep a linked list of available blocks
   a. elements
    • location of start of block
    • size of block
    • pointer to next block in list
   b. how to order (i.e., ‘sort’) list
    • by location (i.e., increasing order)
    • by size
    • no order

 2. how to find a block of b consecutive locations

  • if list sorted by location, find first one with s ≥ b (first fit)
   a. requires a search
   b. but good if want to merge adjacent empty blocks
    into larger ones upon storage deallocation
  • if list sorted by size, find smallest one with s ≥ b (best fit)

• Ex: first fit is superior to best fit

request
available areas

first fit
available areas

best fit

start 1300,1200 1300,1200

size

size

Copyright © 1998 by Hanan Samet

ds12
r

1000 300,1200 1300,200

Copyright © 1998 by Hanan Samet

ds13
z

1100 300,100 200,200

Copyright © 1998 by Hanan Samet



ds181
b

DYNAMIC STORAGE ALLOCATION

• Explicit allocation and deallocation (‘freeing’ or ‘liberating’)
 of blocks of contiguous storage locations

• Issues:

 1. how to keep track of available space and its partitioning
  • usually keep a linked list of available blocks
   a. elements
    • location of start of block
    • size of block
    • pointer to next block in list
   b. how to order (i.e., ‘sort’) list
    • by location (i.e., increasing order)
    • by size
    • no order

 2. how to find a block of b consecutive locations

  • if list sorted by location, find first one with s ≥ b (first fit)
   a. requires a search
   b. but good if want to merge adjacent empty blocks
    into larger ones upon storage deallocation
  • if list sorted by size, find smallest one with s ≥ b (best fit)

• Ex: first fit is superior to best fit

request
available areas

first fit
available areas

best fit

start 1300,1200 1300,1200

size

size

Copyright © 1998 by Hanan Samet

ds12
r

1000 300,1200 1300,200

Copyright © 1998 by Hanan Samet

ds13
z

1100 300,100 200,200

Copyright © 1998 by Hanan Samet

ds14
g

250 50,100 STUCK!

Copyright © 1998 by Hanan Samet



ds181
b

DYNAMIC STORAGE ALLOCATION

• Explicit allocation and deallocation (‘freeing’ or ‘liberating’)
 of blocks of contiguous storage locations

• Issues:

 1. how to keep track of available space and its partitioning
  • usually keep a linked list of available blocks
   a. elements
    • location of start of block
    • size of block
    • pointer to next block in list
   b. how to order (i.e., ‘sort’) list
    • by location (i.e., increasing order)
    • by size
    • no order

 2. how to find a block of b consecutive locations

  • if list sorted by location, find first one with s ≥ b (first fit)
   a. requires a search
   b. but good if want to merge adjacent empty blocks
    into larger ones upon storage deallocation
  • if list sorted by size, find smallest one with s ≥ b (best fit)

• Ex: first fit is superior to best fit

request
available areas

first fit
available areas

best fit

start 1300,1200 1300,1200

size

size

Copyright © 1998 by Hanan Samet

ds12
r

1000 300,1200 1300,200

Copyright © 1998 by Hanan Samet

ds13
z

1100 300,100 200,200

Copyright © 1998 by Hanan Samet

ds14
g

250 50,100 STUCK!

Copyright © 1998 by Hanan Samet

ds15
r

• Requests in order of increasing size: first fit is better
• Requests in order of decreasing size: best fit is better

Copyright © 1998 by Hanan Samet



ds181
b

DYNAMIC STORAGE ALLOCATION

• Explicit allocation and deallocation (‘freeing’ or ‘liberating’)
 of blocks of contiguous storage locations

• Issues:

 1. how to keep track of available space and its partitioning
  • usually keep a linked list of available blocks
   a. elements
    • location of start of block
    • size of block
    • pointer to next block in list
   b. how to order (i.e., ‘sort’) list
    • by location (i.e., increasing order)
    • by size
    • no order

 2. how to find a block of b consecutive locations

  • if list sorted by location, find first one with s ≥ b (first fit)
   a. requires a search
   b. but good if want to merge adjacent empty blocks
    into larger ones upon storage deallocation
  • if list sorted by size, find smallest one with s ≥ b (best fit)

• Ex: first fit is superior to best fit

request
available areas

first fit
available areas

best fit

start 1300,1200 1300,1200

size

size

Copyright © 1998 by Hanan Samet

ds12
r

1000 300,1200 1300,200

Copyright © 1998 by Hanan Samet

ds13
z

1100 300,100 200,200

Copyright © 1998 by Hanan Samet

ds14
g

250 50,100 STUCK!

Copyright © 1998 by Hanan Samet

ds15
r

• Requests in order of increasing size: first fit is better
• Requests in order of decreasing size: best fit is better

Copyright © 1998 by Hanan Samet

ds16
v

• Can give example where best fit is better than first fit
Copyright © 1998 by Hanan Samet



ds2

FRAGMENTATION

• Fragmentation results when too many small blocks
 are generated

• Solutions:

 1. can avoid by choosing a constant k and selecting
  block a of size s to satisfy the request for a block
  of size b if s – b < k

  • eliminates small blocks

  • speeds up search in first-fit method as list
   of blocks is smaller

 2. can avoid inspecting blocks that are too small in
  first-fit by performing search in a circular manner
  so that it resumes where the last block was found

 3. can also avoid by using compaction upon
  deallocation

Copyright © 1998 by Hanan Samet



ds3

LIBERATION

1. Want to return storage to the AVAIL list as soon as possible

 • implies that can coalesce elements of AVAIL list into
  larger blocks

2. Contrast with methods based on garbage collection which
 allocate storage continuously until exhausting the AVAIL list

 • followed by a pass for storage reclamation and compaction

3. Combining garbage collection with compaction

 • storage locations must be moved

 • need to exercise care when moving pointer data

 • presence of relocation registers obviates some of the
  problems, since the pointers could be offset addresses

Copyright © 1998 by Hanan Samet



ds481
b

LIBERATION WITH COALESCING

Ex: assume a sorted AVAIL list by memory locations

 • i.e., LINK(p)≠Ω ⇒  LINK(p)>p

Problem: each time the algorithm is invoked to liberate
 block pointed at by p, we must search through
 approximately half the list to locate q such that
 LINK(q)>p

reserved liberated reserved

liberated reserved

reserved liberated reserved

≡ free

reserved

next on AVAIL

next on AVAIL

next on AVAIL

Copyright © 1998 by Hanan Samet



ds481
b

LIBERATION WITH COALESCING

Ex: assume a sorted AVAIL list by memory locations

 • i.e., LINK(p)≠Ω ⇒  LINK(p)>p

Problem: each time the algorithm is invoked to liberate
 block pointed at by p, we must search through
 approximately half the list to locate q such that
 LINK(q)>p

reserved liberated reserved

liberated reserved

reserved liberated reserved

≡ free

reserved

next on AVAIL

next on AVAIL

next on AVAIL

Copyright © 1998 by Hanan Samet

ds42
r

coalesce from below

Copyright © 1998 by Hanan Samet



ds481
b

LIBERATION WITH COALESCING

Ex: assume a sorted AVAIL list by memory locations

 • i.e., LINK(p)≠Ω ⇒  LINK(p)>p

Problem: each time the algorithm is invoked to liberate
 block pointed at by p, we must search through
 approximately half the list to locate q such that
 LINK(q)>p

reserved liberated reserved

liberated reserved

reserved liberated reserved

≡ free

reserved

next on AVAIL

next on AVAIL

next on AVAIL

Copyright © 1998 by Hanan Samet

ds42
r

coalesce from below

Copyright © 1998 by Hanan Samet

ds43
z

coalesce from above

Copyright © 1998 by Hanan Samet



ds481
b

LIBERATION WITH COALESCING

Ex: assume a sorted AVAIL list by memory locations

 • i.e., LINK(p)≠Ω ⇒  LINK(p)>p

Problem: each time the algorithm is invoked to liberate
 block pointed at by p, we must search through
 approximately half the list to locate q such that
 LINK(q)>p

reserved liberated reserved

liberated reserved

reserved liberated reserved

≡ free

reserved

next on AVAIL

next on AVAIL

next on AVAIL

Copyright © 1998 by Hanan Samet

ds42
r

coalesce from below

Copyright © 1998 by Hanan Samet

ds43
z

coalesce from above

Copyright © 1998 by Hanan Samet

ds44
g

coalesce from below and above

Copyright © 1998 by Hanan Samet



ds5

LIBERATION ALGORITHM

• Assume N consecutive words starting at P0 are
 being liberated

• Algorithm:

 1. search through AVAIL until finding a node Q
  such that link(Q) = P > P0

 2. if P0+N = P then
    begin /* coalesce from above */
      size(P0) ←size(P)+N;
      link(P0) ←link(P);
    end
  else
    begin
      link(P0) ←P;
      size(P0) ←N;
    end;

 3. if Q+size(Q) = P0 then
    begin /* coalesce from below */
      size(Q) ←size(Q)+size(P);
      /* N was already accounted for in step 2 (above) */
      link(Q) ←link(P0);
    end
  else link(Q) ←P0;

Copyright © 1998 by Hanan Samet



ds681
b

LIBERATION USING DOUBLY-LINKED LISTS

• Data structure

• INUSE and SIZE fields
 1. easy to locate immediately adjacent blocks to
  determine if coalescing is possible
 2. obviate need to sort list of available blocks (AVAIL)
  in increasing memory size
 3. more complex if sort AVAIL by block size
  as need to update

• Doubly-linked AVAIL enables easy removal of
 coalesced blocks

• Ex:

reservedliberatedreserved

reserved reserved

reserved reserved

liberated

liberated

+ – – + + – –

+

+

– – +

– – +– –

≡ free

prev next

{}SIZE–2
words

inuse=+ inuse size

inuseinuse=+

reserved block

inuse=–inuse size

inuse

link

link

inuse=–

free block

size

prev nextprev next

prev

next

Copyright © 1998 by Hanan Samet



ds681
b

LIBERATION USING DOUBLY-LINKED LISTS

• Data structure

• INUSE and SIZE fields
 1. easy to locate immediately adjacent blocks to
  determine if coalescing is possible
 2. obviate need to sort list of available blocks (AVAIL)
  in increasing memory size
 3. more complex if sort AVAIL by block size
  as need to update

• Doubly-linked AVAIL enables easy removal of
 coalesced blocks

• Ex:

reservedliberatedreserved

reserved reserved

reserved reserved

liberated

liberated

+ – – + + – –

+

+

– – +

– – +– –

≡ free

prev next

{}SIZE–2
words

inuse=+ inuse size

inuseinuse=+

reserved block

inuse=–inuse size

inuse

link

link

inuse=–

free block

size

prev nextprev next

prev

next

Copyright © 1998 by Hanan Samet

ds62
r

coalesce from below

-

Copyright © 1998 by Hanan Samet



ds681
b

LIBERATION USING DOUBLY-LINKED LISTS

• Data structure

• INUSE and SIZE fields
 1. easy to locate immediately adjacent blocks to
  determine if coalescing is possible
 2. obviate need to sort list of available blocks (AVAIL)
  in increasing memory size
 3. more complex if sort AVAIL by block size
  as need to update

• Doubly-linked AVAIL enables easy removal of
 coalesced blocks

• Ex:

reservedliberatedreserved

reserved reserved

reserved reserved

liberated

liberated

+ – – + + – –

+

+

– – +

– – +– –

≡ free

prev next

{}SIZE–2
words

inuse=+ inuse size

inuseinuse=+

reserved block

inuse=–inuse size

inuse

link

link

inuse=–

free block

size

prev nextprev next

prev

next

Copyright © 1998 by Hanan Samet

ds62
r

coalesce from below

-

Copyright © 1998 by Hanan Samet

ds63
z

coalesce from above

–

Copyright © 1998 by Hanan Samet



ds681
b

LIBERATION USING DOUBLY-LINKED LISTS

• Data structure

• INUSE and SIZE fields
 1. easy to locate immediately adjacent blocks to
  determine if coalescing is possible
 2. obviate need to sort list of available blocks (AVAIL)
  in increasing memory size
 3. more complex if sort AVAIL by block size
  as need to update

• Doubly-linked AVAIL enables easy removal of
 coalesced blocks

• Ex:

reservedliberatedreserved

reserved reserved

reserved reserved

liberated

liberated

+ – – + + – –

+

+

– – +

– – +– –

≡ free

prev next

{}SIZE–2
words

inuse=+ inuse size

inuseinuse=+

reserved block

inuse=–inuse size

inuse

link

link

inuse=–

free block

size

prev nextprev next

prev

next

Copyright © 1998 by Hanan Samet

ds62
r

coalesce from below

-

Copyright © 1998 by Hanan Samet

ds63
z

coalesce from above

–

Copyright © 1998 by Hanan Samet

ds64
g

coalesce from below and above

Copyright © 1998 by Hanan Samet



ds7

BUDDY SYSTEM 

• Restrict block size to be a power of 2

 1. all blocks of size 2k start at location x where x mod 2k = 0

 2. given a block starting at location x such that x mod 2k = 0

  • BUDDYk(x) = x + 2k if x mod 2k+1 = 0
  • BUDDYk(x) = x – 2k if x mod 2k+1 = 2k

  • Ex: BUDDY2(10100) = 10000

 3. only buddies can be merged

 4. try to coalesce buddies when storage is deallocated

• k different available block lists – one for each block size

• When request a block of size 2k and none is available:

 1. split smallest block 2j > 2k into a pair of blocks of size 2j–1

 2. place block on appropriate AVAIL list and try again

• Data structure

 1. doubly-linked list (not circular) FREE of available blocks

  indexed by k

  • links stored in actual blocks
  • FREE[k] points to first available block of size 2k

 2. each block contains

  • INUSE bit
  • SIZE

  • NEXT and PREV links for FREE list

• Can get greater variety in block sizes using Fibonacci
 sequence of block sizes so bi = bi–1+bi–2 and now
 ratio of successive block sizes is 2/3 instead of 1/2

Copyright © 1998 by Hanan Samet



ds881
b

EXAMPLE OF BUDDY ALGORITHM

• M = 4

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

I S P N

0 16 Ω Ω

k FREE[k]
0 Ω
1 Ω
2 Ω
3 Ω
4 0

initially, one block of size 16 starting
at location 0 is available

Copyright © 1998 by Hanan Samet



ds881
b

EXAMPLE OF BUDDY ALGORITHM

• M = 4

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

I S P N

0 16 Ω Ω

k FREE[k]
0 Ω
1 Ω
2 Ω
3 Ω
4 0

initially, one block of size 16 starting
at location 0 is available

Copyright © 1998 by Hanan Samet

ds82
z

allocate a block of size 2

0 8 Ω Ω

0 4 Ω Ω

0 2 Ω Ω

2
4
8
Ω

1 2 – –

Copyright © 1998 by Hanan Samet



ds881
b

EXAMPLE OF BUDDY ALGORITHM

• M = 4

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

I S P N

0 16 Ω Ω

k FREE[k]
0 Ω
1 Ω
2 Ω
3 Ω
4 0

initially, one block of size 16 starting
at location 0 is available

Copyright © 1998 by Hanan Samet

ds82
z

allocate a block of size 2

0 8 Ω Ω

0 4 Ω Ω

0 2 Ω Ω

2
4
8
Ω

1 2 – –

Copyright © 1998 by Hanan Samet

ds83
r

allocate blocks of size 4, 2, 2 in order

10
12
Ω

1 2 – –

0 4 Ω Ω

1 2 – –

1 2 – –

1 4 – –

0 2 Ω Ω

Copyright © 1998 by Hanan Samet



ds881
b

EXAMPLE OF BUDDY ALGORITHM

• M = 4

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

I S P N

0 16 Ω Ω

k FREE[k]
0 Ω
1 Ω
2 Ω
3 Ω
4 0

initially, one block of size 16 starting
at location 0 is available

Copyright © 1998 by Hanan Samet

ds82
z

allocate a block of size 2

0 8 Ω Ω

0 4 Ω Ω

0 2 Ω Ω

2
4
8
Ω

1 2 – –

Copyright © 1998 by Hanan Samet

ds83
r

allocate blocks of size 4, 2, 2 in order

10
12
Ω

1 2 – –

0 4 Ω Ω

1 2 – –

1 2 – –

1 4 – –

0 2 Ω Ω

Copyright © 1998 by Hanan Samet

ds84
g

1 2 – –

0 4 Ω Ω

0 2 Ω 2

1 4 – –

0 2 10 Ω

1 2 – –

 free the block at location 2

Copyright © 1998 by Hanan Samet



ds881
b

EXAMPLE OF BUDDY ALGORITHM

• M = 4

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

I S P N

0 16 Ω Ω

k FREE[k]
0 Ω
1 Ω
2 Ω
3 Ω
4 0

initially, one block of size 16 starting
at location 0 is available

Copyright © 1998 by Hanan Samet

ds82
z

allocate a block of size 2

0 8 Ω Ω

0 4 Ω Ω

0 2 Ω Ω

2
4
8
Ω

1 2 – –

Copyright © 1998 by Hanan Samet

ds83
r

allocate blocks of size 4, 2, 2 in order

10
12
Ω

1 2 – –

0 4 Ω Ω

1 2 – –

1 2 – –

1 4 – –

0 2 Ω Ω

Copyright © 1998 by Hanan Samet

ds84
g

1 2 – –

0 4 Ω Ω

0 2 Ω 2

1 4 – –

0 2 10 Ω

1 2 – –

 free the block at location 2

Copyright © 1998 by Hanan Samet

ds85
v

free the block at location 0
• merge block at 0 with its buddy at 2
• no further merging is possible as
 the buddy at 4 is in use

1 2 – –

0 4 Ω 0

0 2 Ω Ω

1 4 – –

0 4 12 Ω

Copyright © 1998 by Hanan Samet



ds9

BUDDY ALGORITHM NOTES

• Assume storage runs from locations 0 to m–1

• To reserve a block of size 2k:

 1. find smallest j for which FREE[j]≠Ω
  (assume this block starts at location n)

 2. remove the block at location n from FREE[j]

 3. while j>k do
    begin
      j ←j–1;
      add block at location n+2 j  to FREE[j];
    end;

• To liberate a block of size 2k starting at location n:
 while k ≠m and NOT(INUSE(BUDDY k(n))) do
   begin
     remove BUDDY k(n) from FREE[k];
     k ←k+1;
     if BUDDY k(n)<n then n ←BUDDYk(n);
   end;

• INUSE flag only needs to be set in first word of
 each reserved block

 1. all remaining elements (words) have their buddies
  within the same block

 2. no one outside the block will look for buddies
  within the block

Copyright © 1998 by Hanan Samet



ds1081
b

OVERFLOW

• At times, have more storage allocation requests
 than available memory

• Can perform garbage collection with compaction but
 will soon run out of memory again

• Alternatively, remove blocks to secondary storage:

 1. keep a doubly-linked list of blocks in use,
  sorted according to frequency of use

  • whenever a block is accessed, move it to front of list
  • like a self-organizing file
  • Ex:

 2. circular list of blocks and a recently-used bit indicating
  if the block was accessed since the last time blocks
  were removed to secondary storage

  • to remove a block, march down the list looking for
   a 0 and reset all 1s that were encountered to 0
  • curculating pointer ensures that a block reset to 0
   will not be checked again for removal until all other
   blocks have been checked
  • Ex:

start

A B C D

1 1 1 0 1
A B C D E

start

Copyright © 1998 by Hanan Samet



ds1081
b

OVERFLOW

• At times, have more storage allocation requests
 than available memory

• Can perform garbage collection with compaction but
 will soon run out of memory again

• Alternatively, remove blocks to secondary storage:

 1. keep a doubly-linked list of blocks in use,
  sorted according to frequency of use

  • whenever a block is accessed, move it to front of list
  • like a self-organizing file
  • Ex:

 2. circular list of blocks and a recently-used bit indicating
  if the block was accessed since the last time blocks
  were removed to secondary storage

  • to remove a block, march down the list looking for
   a 0 and reset all 1s that were encountered to 0
  • curculating pointer ensures that a block reset to 0
   will not be checked again for removal until all other
   blocks have been checked
  • Ex:

start

A B C D

1 1 1 0 1
A B C D E

start

Copyright © 1998 by Hanan Samet

ds102
r

C

• accessing C causes it to move to the front

Copyright © 1998 by Hanan Samet



ds1081
b

OVERFLOW

• At times, have more storage allocation requests
 than available memory

• Can perform garbage collection with compaction but
 will soon run out of memory again

• Alternatively, remove blocks to secondary storage:

 1. keep a doubly-linked list of blocks in use,
  sorted according to frequency of use

  • whenever a block is accessed, move it to front of list
  • like a self-organizing file
  • Ex:

 2. circular list of blocks and a recently-used bit indicating
  if the block was accessed since the last time blocks
  were removed to secondary storage

  • to remove a block, march down the list looking for
   a 0 and reset all 1s that were encountered to 0
  • curculating pointer ensures that a block reset to 0
   will not be checked again for removal until all other
   blocks have been checked
  • Ex:

start

A B C D

1 1 1 0 1
A B C D E

start

Copyright © 1998 by Hanan Samet

ds102
r

C

• accessing C causes it to move to the front

Copyright © 1998 by Hanan Samet

ds103
z

000

• block D is the first to be removed

start

Copyright © 1998 by Hanan Samet



ds1081
b

OVERFLOW

• At times, have more storage allocation requests
 than available memory

• Can perform garbage collection with compaction but
 will soon run out of memory again

• Alternatively, remove blocks to secondary storage:

 1. keep a doubly-linked list of blocks in use,
  sorted according to frequency of use

  • whenever a block is accessed, move it to front of list
  • like a self-organizing file
  • Ex:

 2. circular list of blocks and a recently-used bit indicating
  if the block was accessed since the last time blocks
  were removed to secondary storage

  • to remove a block, march down the list looking for
   a 0 and reset all 1s that were encountered to 0
  • curculating pointer ensures that a block reset to 0
   will not be checked again for removal until all other
   blocks have been checked
  • Ex:

start

A B C D

1 1 1 0 1
A B C D E

start

Copyright © 1998 by Hanan Samet

ds102
r

C

• accessing C causes it to move to the front

Copyright © 1998 by Hanan Samet

ds103
z

000

• block D is the first to be removed

start

Copyright © 1998 by Hanan Samet

ds104
g

• access block A

1

Copyright © 1998 by Hanan Samet



ds1081
b

OVERFLOW

• At times, have more storage allocation requests
 than available memory

• Can perform garbage collection with compaction but
 will soon run out of memory again

• Alternatively, remove blocks to secondary storage:

 1. keep a doubly-linked list of blocks in use,
  sorted according to frequency of use

  • whenever a block is accessed, move it to front of list
  • like a self-organizing file
  • Ex:

 2. circular list of blocks and a recently-used bit indicating
  if the block was accessed since the last time blocks
  were removed to secondary storage

  • to remove a block, march down the list looking for
   a 0 and reset all 1s that were encountered to 0
  • curculating pointer ensures that a block reset to 0
   will not be checked again for removal until all other
   blocks have been checked
  • Ex:

start

A B C D

1 1 1 0 1
A B C D E

start

Copyright © 1998 by Hanan Samet

ds102
r

C

• accessing C causes it to move to the front

Copyright © 1998 by Hanan Samet

ds103
z

000

• block D is the first to be removed

start

Copyright © 1998 by Hanan Samet

ds104
g

• access block A

1

Copyright © 1998 by Hanan Samet

ds105
v

0 0

• block B is removed next

start

Copyright © 1998 by Hanan Samet


