
hs0

Copyright © 1996 Hanan Samet

These notes may not be reproduced by any means (mechanical or elec-
tronic or any other) without the express written permission of Hanan Samet

HASHING METHODS

Hanan Samet

Computer Science Department and
Center for Automation Research and

Institute for Advanced Computer Studies
University of Maryland

College Park, Maryland 20742
e-mail: hjs@umiacs.umd.edu

hs1

HASHING OVERVIEW

• Task: compare the value of a key with a set of key values
in a table

• Conventional solutions:

1. use a comparison on key values (tree-based)

2. branching process governed by the digits comprising
the key value (trie-based)

• Alternative solution is to find a 1-1 mapping (i.e.,
function) from set of possible key values to a memory
address and use table lookup methods to retrieve the
record — O (1) process

• Problem: the set of possible key values is much larger
than the number of available memory addresses

1. developing the 1-1 function h is time-consuming as it
requires puzzle-solving abilities
• result is called a perfect hashing function

2. once h is found, addition of a single key value may
render the function meaningless
• need to develop it anew

3. can replace h by a program, which may itself be time-
consuming to compute

• Result: usually abandon goal of finding 1-1 mapping and
use a special method to resolve any ambiguity
(i.e., when more than one key value is mapped to
the same address — termed a collision)

Copyright © 1998 by Hanan Samet

hs2

HASHING

• Def: to “mess things up”
• Hashing function h(k) is used to calculate address where

to start the search for the record with key value k
• Issues

1. what kind of a function is h(k)?
• easy and fast to compute
• minimize the number of collisions

2. what if h(k) does not yield the desired result?
• how to handle collisions

• Assume table of size m and 0 ≤ h(k) < m
• Example hashing functions:

1. division techniques
• often use h(k) = k mod m
• choice of m is important

a. m even
• bad as h(k) even when k even and odd when k

odd
b. m is a power of the radix of alphanumeric set of

character values
• bad as only least significant characters matter
• with m=r 3, ABCDEF, IJKDEF, and KLMDEF all

hash to the same location
c. usually choose m to be prime

2. multiplicative techniques
• entire key value is used
• examples:

a. multiply fields and take modulo
b. add or exclusive-or of fields

Copyright © 1998 by Hanan Samet

hs3

• Hash table of size m

• One chain (linked list) for each of m hash values
containing all elements that hash to that location (known
as a collision list)

• Hash chains are known as buckets

• Hash table locations are known as bucket addresses

• For n key values, average chain size is n/m

• One chain (linked list) for each of m hash values

• Retrieval

1. use sequential search through chain

2. speed up unsuccessful search by sorting chain by key
value

3. speed up successful search by self-organizing
methods
• move key value to start of chain each time it is

accessed

• Ex:

1
bSEPARATE CHAINING

h(k) NAME k=KEY NEXT

0 JIM 49 Λ
1 JOHN 22 Λ
2 RAY 30 Λ
3 SUZY 3 Λ
4
5
6

2
r

 JANE 14 Λ

1. add JANE(14)→0

3
z

2. add LUCY(41)→6

 LUCY 41 Λ

Copyright © 1998 by Hanan Samet

hs4

• When m is large, many of the chains are empty

• Use empty locations in table for the chain

• Must be able to distinguish between free and occupied
locations

• Insertion algorithm:

1. if key value not present, then allocate a free location

2. link location to chain which was unsuccessfully
searched

• Ex:

1
bIN-PLACE CHAINING

h(k) NAME k=KEY NEXT

0 JIM 49 Λ
1 JOHN 22 Λ
2 RAY 30 Λ
3 SUZY 3 Λ
4
5
6

2
r

1. add JANE(14)→0 which collides with JIM(49)→0

6

 JANE 14 Λ

3
z

2. add LUCY(41)→6 which collides with JANE(14)→0
which is stored at 6
• result in coalescing of chains of JANE and LUCY

making unsuccessful search longer as several
chains must be searched

 LUCY 41 Λ
5

4
g

• Can avoid coalescing by moving JANE just before adding
LUCY

 LUCY 41
 JANE 14

5

Λ

Copyright © 1998 by Hanan Samet

hs5

IN-PLACE CHAINING INSERTION ALGORITHM

location procedure
CHAINING_WITH_COALESCING_INSERTION(k);
begin
 value key k;
 integer i;
 global integer r;
 /* r is the most recently allocated location */
 global hashtable table;
 i←h(k);
 if OCCUPIED(table[i]) then
 begin
 while NOT(NULL(NEXT(table[i])) do
 begin
 if k=KEY(table[i]) then return(i)
 else i←NEXT(table[i]);
 end;
 if k=KEY(table[i]) then return(i);
 while OCCUPIED(table[r]) do r←r-1;
 if r≤0 then return(`OVERFLOW')
 else
 begin
 NEXT(table[i])←r;
 i←r;
 end;
 end;
 MARK(table[i],`OCCUPIED');
 KEY(table[i])←k;
 NEXT(table[i])←NIL;
 return(i);
end;

Copyright © 1998 by Hanan Samet

hs6

• Avoid extra space for NEXT field by not storing entire key
value with record

• k = m · q(k) + h(k), q(k) =  k/m , h(k) = k mod m
• Store q(k) in table instead of k
• Can compute k given m, q(k), and h(k),
• Ex: 0 ≤ k < 232

• Since only compare q(k), all elements in same collision
list must have the same value of h(k) and thus no
coalescing is allowed

• Data structure:
1. circular collision lists
2. flag FIRST denoting if first element on collision list
3. pointer NEXT to next element in circular list with same

h(k) value
• Ex:

1
bLAMPSON’S IN-PLACE CHAINING

h(k) NAME k=KEY FIRST

0 JIM 49 T 7 0
1 JOHN 22 T 3 1
2 RAY 30 T 4 2
3 SUZY 3 T 0 3
4
5
6

q(k) NEXT

q(k) h(k)
 0 21 22 31

2
r

1. add JANE(14)→0

 JANE 14 F 2 0

 6

3
z

2. add LUCY(41)→6 but 6 contains JANE
• if at least one element of the hash chain starting at 6

exists, then it must be stored there
• must move JANE as it does not belong in 6

 JANE 14 F 2 0
 LUCY 41 T 5 6

 5

4
g

• Nice compromise between use of a key value as an index
to a table, which is impossible due to large number of
possible key values, and storing the entire key value as in
a conventional hashing method

Copyright © 1998 by Hanan Samet

hs7

• Like chaining but NEXT link field is open or unspecified

• Probe sequence: set of locations comprising collision list
of a key

• Goal: cycle through all locations with little or no duplication

• Linear probing: h(k), h(k)+1, h(k)+2, …, m–1, 0, 1, h(k)–1

• Insertion Algorithm:

1. calculate hash address i

2. if TABLE(i) is empty then insert and exit; else i←i+1
mod m and repeat step 2 until exhausting TABLE

• Ex:

1
bOPEN ADDRESSING

h(k) NAME k=KEY

0 JIM 49
1 JOHN 22
2 RAY 30
3 SUZY 3
4
5
6

2
r

1. adding JANE(14)→0 yields a collision; cyclic probe
sequence causes its insertion in 4

JANE 14

3
z

2. adding LUCY(41)→6

LUCY 41

4
g

3. delete RAY(30)→2

5
r

• problem: if look up JANE then don’t find her since a
collision exists at location 0, and probe
sequence finds location 2 unoccupied

6
z

• solution: add DELETED flag to each entry to halt the
search during insertion but not during lookup

N
N
Y
N
N
N
N

DELETED

Copyright © 1998 by Hanan Samet

hs8

PILEUP PHENOMENON

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

• Next key to be inserted goes into one of the vacant
locations

• Not all vacant locations are equally probable

•Ex: insert k into location 3 if 0 ≤ h(k) ≤ 3
insert k into location 6 if h(k)=6
3 is four times as likely as 6

• Coalescing in open addressing with linear probing can
lead to big growth (e.g., inserting into location 9 makes
the list of 8 grow by 4)

• Different from in-place chaining where coalescing causes
a list to grow by only one element

• Pileup phenomenon arises whenever consecutive values
are likely to occur

• Overcome by a number of techniques:

1. use additive constant instead of 1
• should be relatively prime to m so can cycle through

table

2. use a pseudo random number generator to create
successive offsets from h(k) (random probing)
• make sure cycle through table
• uniform hashing = when all possible configurations

of empty and occupied locations are equally likely =
model of hashing for comparing various methods

Copyright © 1998 by Hanan Samet

hs9

ANALYSIS OF PERFORMANCE

• n= number of key values in table

• m= maximum size of table

• α = n/m = load factor

• Expected number of probes for successful search:

α linear probing random probing
(under uniform
hashing model)

separate
chaining

(1–α/2)/(1-α) –(ln (1-α))/α 1+α/2
0.1 1.06 1.05 1.05
0.5 1.50 1.34 1.25
0.75 2.50 1.83 1.375
0.9 5.50 2.56 1.45

Copyright © 1998 by Hanan Samet

hs10

QUADRATIC PROBING

• Alternative to linear probing

• Avoids primary clustering

• hi = (h(k)+i 2) mod m

• Locations in the probe sequence can be computed with
no multiplication
1. hi is location of element i
2. hi+1 = (hi + di mod m) where d0 = 1 and di+1 = di +2

•Theorem: if m is prime, then quadratic probing will
search through at least 50% of the table
before seeing a particular location again

•Ex: m=7
h0 = 0, h1 = 1, h2 = 4
h3 = 9 mod 7 = 2 and h4 = 16 mod 7 =2

• Proof:
1. let probes i, j probe the same location (assume i ≠j)
2. i 2 mod m = j 2 mod m
3. (i 2 – j 2) mod m = (i+j) · (i–j) mod m = 0 mod m
4. but i,j are both < m implying (i –j) ≠ c · m
5. therefore, i+j = c ·m and i or j must be at least m/2 since

probe sequence starts with i =1, and recycling of values
won’t occur until at least 50% of table has been searched

• Sequence differs from one obtained from the pseudo random
number generator as the pseudo random number generator
guarantees that every location will be on a probe sequence

Copyright © 1998 by Hanan Samet

hs11

DOUBLE HASHING

• Use an additional hash function g(k) to generate a
constant increment for the probe sequence

• Probe sequence for key value k:
p0 = h(k)
p1 = (h(k) + g(k)) mod m
p2 = (h(k) + 2·g(k)) mod m
p3 = (h(k) + 3·g(k)) mod m
…
pi = (h(k) + i ·g(k)) mod m

• h(k) and g(k) should be independent

• g(k) generates values between 1 and m –1

• Two different key values will have the same value for h
and g with probability O (1/m 2) instead of O (1/m)

• Key value k is stored at any one of the locations along its
probe sequence

• Key values stored along the probe sequence of k are not
necessarily part of k’s probe sequence

•Ex: key values s and t can both hash to location u
key value s : u = (h (s) + c · g (s)) mod m
key value t : u = (h (t) + d · g (t)) mod m

Copyright © 1998 by Hanan Samet

hs12
SELF-ORGANIZING DOUBLE HASHING

• Collision lists are long as each location is frequently on
the collision lists of many different key values

• Develop techniques for rearranging the elements on the
collision lists so that subsequent searches are shorter

• Assume records are retrieved many times once inserted
into the table hence it pays to rearrange the collision lists

• Assume trying to insert key value k and probe locations p0
, p1 , … pi , … pt, where pi = (h(k)+i · g(k)) mod m before
finding location pt empty

• pi = (h(k)+i · g(k)) mod m

• Each pi (0 ≤ i <t) is also part of a hash chain consisting of
locations: (pi +j · g(KEY(pi))) mod m for arbitrary j

• Assume ci = g(KEY(pi)), and pi = h(KEY(pi)) mod m:

1
b

• Actually, pi = (h(KEY(pi)) +di · g(KEY(pi))) mod m

• Brent algorithm: try to insert key value k in one of pi and
move the contents of pi to an empty location along its
probe sequence (column) so as to minimize the effective
incremental search cost

 p0 p1 p2 p3 p4 ··· pt
 p0+ c0 p1+ c1 p2+ c2 p3+ c3 p4+ c4
 p0+2c0 p1+2c1 p2+2c2 p3+2c3
 p0+3c0 p1+3c1 p2+3c2
 p0+4c0 p1+4c1
 p0+5c0

2
r

• Order for testing candidate locations for moving

1

3

6

10

15

2

5

9

14

4

8

13

7

12

11

3
z

(along diagonals)
Copyright © 1998 by Hanan Samet

hs13

• First free location in RUDY’s probe sequence is p4 for an
increase in cost of 4

1
bEXAMPLE OF BRENT ALGORITHM

 p0=TIM p1=ALAN p2=JAY p3=KATY p4=?

 JOAN RUTH φ KIM φ
 RON φ φ ALEX φ
 RITA φ φ BOB φ
 φ φ φ φ φ

• Attempt to insert RUDY

2
r

• Examine locations in diagonal order for first free location

3
v

• Alternatively, find first free location in each hash chain and
check if overall search cost is increased by a movement of it

• Movement must result in an increase <4 in the search cost

4
z

• Moving TIM increases the search cost by 4

TIM

RUDY

5
g

ALAN

• Moving ALAN increases its search cost by 2, while
increasing that of RUDY by 1 for a total of 3

RUDY

6
v

• Moving JAY increases its search cost by 1, while
increasing that of RUDY by 2 for a total of 3

JAY

RUDY

7
r

KATY

• Moving KATY increases its search cost by 4, while
increasing that of RUDY by 3 for a total of 7

RUDY

8
b

• Move JAY as its increase (3) was the least and was
encountered first

9
g

• Need 2.5 probes on the average for successful search

• Average number of probes for unsuccessful search is not
reduced (as high as (m+1)/2 when the table is full)

Copyright © 1998 by Hanan Samet

hs14

GONNET-MUNRO ALGORITHM

• More general than the Brent algorithm

• Brent algorithm only attempts to move records on the
probe sequence of the record being inserted

 p0=TIM p1=ALAN p2=JAY p3=KATY p4=?

 JOAN RUTH φ KIM φ
 RON φ φ ALEX φ
 RITA φ φ BOB φ
 φ φ φ φ φ

• Gonnet-Munro attempts to move in several stages
instead of just one stage

1. RUDY to TIM, TIM to JOAN, and JOAN to ?

2. RUDY to ALAN, ALAN to RUTH, and RUTH to?

• Need remaining hash chains

 JOAN RITA KIM RUTH RON ALEX BOB

 φ JAY φ KIM KATY φ	 φ
 φ TIM φ φ ALAN φ	 φ
 φ φ φ φ JAY φ	 φ
	 φ	 φ	 φ	 φ	 φ	 φ	 φ

• Can visualize search for best movement as a binary tree

• Best movement is the closest empty node to the root

Copyright © 1998 by Hanan Samet

hs151
b

EXAMPLE OF GONNET-MUNRO ALGORITHM

• Attempt to insert RUDY

ALAN

JAY RUTH RON
φ

JOAN

KIM

φ

KATY

φ
KIM

φ

ALEX

φ

RITA KATY

JAY

φ

TIM

φ

ALAN

JAY

φ

RUDY, TIM

• Right son of a is next element in probe sequence of KEY(a)
• Left son of a is next element in probe sequence of a and

a’s father

BOB

φ φ

φφ

denote pruning
due to repetition

2
r

• Search generates the tree level by level and chooses the
first empty node as the final target for a sequence of
relocation steps

3
z

• RUDY can be relocated to any position in the leftmost part of
the tree

4
g

• Apply the relocation step as many times as needed to get
to desired empty node

• Optimal solution moves RUDY to TIM, TIM to JOAN, and
JOAN to its empty right son
1. increase in total search cost is 2
2. better than 3 obtained by Brent algorithm

*

5
v

• Brent algorithm only applies one step and thus must find
the empty node in just one iteration
1. move RUDY to JAY; JAY to empty right son of JAY
2. increase in total search cost is 3

Copyright © 1998 by Hanan Samet

hs161
b

SHORTCOMING OF GONNET-MUNRO ALGORITHM

• Only moves records in forward direction along their hash
chains

• Sometimes can reduce the cost by moving backward
along the chain

• Ex: suppose ALAN is not in the first position along the
hash chain starting at h(ALAN) mod m and that BOB
immediately precedes ALAN along the hash chain,
although h(ALAN) ≠ h(BOB)

TIM

ALAN
JAY RUTH

RUDY

JOAN

BOB

p1=ALAN

RUTH

φ

BOB

φ

2
r

φ

φ
BOB

• Optimal solution moves RUDY to ALAN, ALAN to BOB, and
BOB to its empty son
1. increase in total search cost is 1
2. better than 2 obtained by Gonnet-Munro algorithm

3
z

• Requires a ternary tree
1. need an additional link from a to the previous element

in the probe sequence of KEY(a)
• e.g., ALAN to BOB

2. search process interprets previous links as indicating a
decrease in cost

3. if incoming link to a is a “previous element” link, then
left son of a is the prior element in probe sequence of
a and its father

4. search process is more complex and empty node at
closest level to the root no longer represents the
cheapest relocation sequence

5. optimal solution may require exhaustive search
Copyright © 1998 by Hanan Samet

hs17

SUMMARY

• Advantages
1. separate chaining is superior with respect to the

number of probes but need more space
2. open addressing with linear probing results in more

accesses but this is compensated by its simplicity
3. compares favorably with other search methods as the

search time is bounded as the number of records
increases (provided the table does not become too full)

• Disadvantages
1. size of hash table is usually fixed

• have to worry about rehashing
• separate chaining with overflow buckets is good
• use linear hashing or spiral hashing which just split

one bucket and rehash its contents instead of
rehashing the entire table

2. after an unsuccessful search we only know that the
record is not present
• we don’t know about the presence or absence of

other records with similar key values such as the
immediate predecessor or successor

• contrast with B-trees and other methods based on
binary search which maintain the natural order of the
key values and permit processing along this order

• order-preserving hashing methods such as those
used to deal with multiattribute data (and spatial
data) are an exception

3. deletion may be cumbersome (e.g., open addressing)
4. only efficient on the average

• contrast with B-tree methods which have
guaranteed upper bounds on search time, etc.

• need faith in probability theory!

Copyright © 1998 by Hanan Samet

