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WHAT IS A DATA STRUCTURE?

• sex is binary
• several fields can be packed into one word
• some fields can occupy more than one word

• Usually (FORTRAN programmers) use arrays

• A different column for each different class of information

• Ex: airline reservation system
  for each passenger on a specific flight:

1. name
2. address
3. phone #
4. seat #
5. destination (on a multi-stop flight)

• Notes:

1. not all fields contain numeric information

2. fields need not correspond to whole computer words
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DIFFERENT REPRESENTATIONS FOR NUMBERS 
DEPENDING ON THEIR USE:

• Type

1. BCD

• social security number 123-45-6789
• telephone number (123) 456-7890
• can print character by character by shifting
 rather than modulo division

2. ASCII

3. Fieldata

• Manner of using the data may dictate the representation

1. sometimes a dual representation – deck of cards
2. string and numeric

• Ex: airline reservation system
• Los Angeles → Dallas → Baltimore
• task: find all passengers with the same destination
• field: SAMEDEST (LINK or pointer information)

• alternatively, scan through the passenger list each time
 the query is posed

LOPEZ PEREZ

FIRSTDALLAS

…

GARCIA

…

RUIZ
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CHARACTER DATA

1.

2.

3.

4.

JOHN_F ONS   

Ω

ITZIMM

JOH N_F IMM ONSΩ

15

ITZ   

J O H N _ F I T Z I M M O N S

J O H N _ F I T Z I M M O N SΩ
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• 1 permits sharing arbitrary segments of strings
 (start, middle, end)

Ω

ITZPAT RICK  
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• 1 permits sharing arbitrary segments of strings
 (start, middle, end)

Ω

ITZPAT RICK  
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CUR T_S

• 2 only permits sharing endings
 2 may occupy one less word than 1
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• 1 permits sharing arbitrary segments of strings
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CUR T_S

• 2 only permits sharing endings
 2 may occupy one less word than 1
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3 7

• 3 only permits sharing when one string is a substring of
 another, or one string extends into the next string

NO O
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• 3 only permits sharing when one string is a substring of
 another, or one string extends into the next string

NO O
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• 4 only permits sharing a terminating substring
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• 3 only permits sharing when one string is a substring of
 another, or one string extends into the next string
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• 4 only permits sharing a terminating substring
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• 1 is superior to 2 because data and links are separate

• 3 is superior to 4
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PASSENGER DATA STRUCTURE

JIM JONES
40 ELM ST.  ANYTOWN, ANYSTATE 01234
(123) 456-7890
45
DALLAS
NO SMOKING

Passenger = RECORD
    Name:     ^CharString;
    Addr:     ^CharString;
    Phone:    Integer;
    Seat:     Integer;
    Destino:  ^CharString;
    Fumar:    Boolean;
    MVuelo:   ^Passenger;
    MDestino: ^Passenger;
END;

Name Address

Phone #
Seat #

Destino
Fumar

Mismo
Vuelo

Mismo
Destino

...
JIM_JO

Ω

NES   
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PROBLEM:  Add a passenger to flight 455 who gets off
  at Dallas.

First455  ≡ pointer to the first passenger on flight 455
FirstDallas  ≡ pointer to the first passenger to Dallas
NewPass ≡ pointer to the new passenger.

First455 FirstDallas

      PASCAL

1. MVuelo(NewPass) ←First455 NewPass ↑ .MVuelo ←First455;
2. First455 ←NewPass; First455 ←NewPass;
3. MDestino(NewPass) ← NewPass↑ .MDestino ←

FirstDallas;  FirstDallas;
4. FirstDallas ←NewPass; FirstDallas ←NewPass;

Ω

…
……

Ω …
…
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PROBLEM:  Add a passenger to flight 455 who gets off
  at Dallas.

First455  ≡ pointer to the first passenger on flight 455
FirstDallas  ≡ pointer to the first passenger to Dallas
NewPass ≡ pointer to the new passenger.

First455 FirstDallas

      PASCAL

1. MVuelo(NewPass) ←First455 NewPass ↑ .MVuelo ←First455;
2. First455 ←NewPass; First455 ←NewPass;
3. MDestino(NewPass) ← NewPass↑ .MDestino ←

FirstDallas;  FirstDallas;
4. FirstDallas ←NewPass; FirstDallas ←NewPass;

Ω

…
……

Ω …
…
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NewPass
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PROBLEM: How many passengers get off at Dallas?

1.  n ←0;

2.  x ←FirstDallas;

3.  if x= Ω then HALT;

4.  n ←n+1;

5.  x ←MDestino(x);

6.  goto 3;

PASCAL:

n←0;

x←FirstDallas;

while x ≠Ω do

    begin

        n ←n+1;

        x ←x↑ .MDestino;

    end;

Field names: MVuelo, MDestino

Variable names: n, x, First455, FirstDallas, NewPass

Integer variable: n

Link variables: x, First455, FirstDallas, NewPass

 contain addresses!

Copyright © 1998 by Hanan Samet



ls7

DATA STRUCTURE SELECTION

1. Will the information be used?
 • playing cards – is the card face up or face down?

2. How accessible should the information be?
 • Ex: game of Hearts

a. how many hearts in the hand
b. explicit ⇒  must constantly update
c. implicit ⇒  must look at all cards

• the choice of representation is dominated by the
 class of operations to be performed on the data

Copyright © 1998 by Hanan Samet
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LINEAR LIST

• Set of nodes x[1], x[2], … x[n] (n≥1)

• Principal property is that x[k] is followed by x[k+1]

• Possible Operations:

1. gain access to the kth node
2. insert before the kth node
3. delete the kth node
4. combine 2 or more lists
5. split a list into 2 or more lists
6. make a copy of a list
7. determine the number of nodes in a list
8. sort the elements of the list
9. search the list for a node with a particular value

• For operations 1, 2, and 3   k=1  or  k=n   are interesting

 1. stack: insert and delete at the same end

 2. queue: insert at one end
   delete at the other end

 3. deque: insert and delete at both ends

Copyright © 1998 by Hanan Samet
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PUSH ≡ insert
POP ≡ remove

LIFO

81
b

STACKS

input output

• Useful for processing goals and subgoals

• Subroutines and parameter transmittal

• Some computers have stack-like instructions

Ex: Translate arithmetic expression from infix to postfix

Infix: operand operator operand A+B

Prefix: operator operand operand +AB

Postfix: operand operand operator AB+

Postfix ≡ ‘Polish notation’

A+B*C ⇒ ABC*+

 Stack
Enter A C

Enter B B

Enter C A

Copyright © 1998 by Hanan Samet
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STACKS

input output

• Useful for processing goals and subgoals
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Postfix: operand operand operator AB+
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 Stack
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Enter B B

Enter C A
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 B*C

 A

 *
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 B*C

 A

 *
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 A+B*C

 +
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QUEUE:

DEQUE:

FRONT REAR

Delete Insert

FIFO

…

OUTPUT

INPUT

SECONDFIRST THIRD LAST
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Input restricted deque
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Input restricted deque
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Output restricted deque
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Input restricted deque
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Output restricted deque
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Question: how would you construct a stack from a deque?
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Y←x[T];
T←T–1;

SEQUENTIAL ALLOCATION

• Easiest way to store a list in a computer is sequentially

  LOC(x[j+1]) = LOC(x[j])+C

   node size = C

  LOC(x[j]) = L 0+C•j       where  L0 = LOC(x[0])

• STACK:

1.  sequential block of storage
2.  variable T(≡ stack pointer) indicates the top of the stack
3.  T=0  ⇒   stack is empty

• To enter a new value Y on the stack:

T←T+1;
x[T] ←Y;

• To remove an entry from the stack we reverse
 entry sequence:

Copyright © 1998 by Hanan Samet
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QUEUE

•  Two pointers:

 1.  R to rear
 2.  F to front
 3.  R = F = 0    when the queue is empty

•  Insertion at the rear of the queue:

  R←R+1;
  x[R] ←Y;

•  Removal of an entry from the front of the queue:

  F←F+1;
  Y ←x[F];

  if F=R then F ←R←0;

• Note that the sequence of operations for removal is not
 the reverse of the sequence for insertion (i.e., we don’t
 remove front and update pointer)

81
b
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QUEUE

•  Two pointers:

 1.  R to rear
 2.  F to front
 3.  R = F = 0    when the queue is empty

•  Insertion at the rear of the queue:

  R←R+1;
  x[R] ←Y;

•  Removal of an entry from the front of the queue:

  F←F+1;
  Y ←x[F];

  if F=R then F ←R←0;

• Note that the sequence of operations for removal is not
 the reverse of the sequence for insertion (i.e., we don’t
 remove front and update pointer)

81
b
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• Problem: suppose R is always > F ?
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•  Two pointers:

 1.  R to rear
 2.  F to front
 3.  R = F = 0    when the queue is empty
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  F←F+1;
  Y ←x[F];

  if F=R then F ←R←0;

• Note that the sequence of operations for removal is not
 the reverse of the sequence for insertion (i.e., we don’t
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• Problem: suppose R is always > F ?
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• Solution: make the queue implicitly circular
    x[1]  x[2]  …  x[M]  x[1]
    R = F = M  when the queue is empty (initially)

if R=M then R ←1
else

if F=M then F ←1
else
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 1.  R to rear
 2.  F to front
 3.  R = F = 0    when the queue is empty

•  Insertion at the rear of the queue:
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  if F=R then F ←R←0;

• Note that the sequence of operations for removal is not
 the reverse of the sequence for insertion (i.e., we don’t
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• Solution: make the queue implicitly circular
    x[1]  x[2]  …  x[M]  x[1]
    R = F = M  when the queue is empty (initially)

if R=M then R ←1
else
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else
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• Question:  Why not a problem in a bank line?

Copyright © 1998 by Hanan Samet



ls12

QUEUE

•  Two pointers:

 1.  R to rear
 2.  F to front
 3.  R = F = 0    when the queue is empty
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• Solution: make the queue implicitly circular
    x[1]  x[2]  …  x[M]  x[1]
    R = F = M  when the queue is empty (initially)

if R=M then R ←1
else

if F=M then F ←1
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• Question:  Why not a problem in a bank line?
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• Answer: Because the people move from position to 
    position in the line
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M = 3

R = F

1 2 3

OVERFLOW

• We start with F = R = M
• UNDERFLOW is not a real problem

• Suppose we run out of memory?
• Assume only M locations are available

1. Stack insertion
T←T+1;

if T>M then OVERFLOW;

x[T] ←Y;

2. Stack deletion:

if T=0 then UNDERFLOW;

Y←x[T];

T←T-1;

3. Queue insertion:
if R=M then R ←1;

else R ←R+1;

if R=F then OVERFLOW

else x[R] ←Y;

4. Queue deletion:
if R=F then UNDERFLOW

else

  begin

    if F=M then F ←1

    else F ←F+1;

    Y ←x[F];

  end;
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OVERFLOW

• We start with F = R = M
• UNDERFLOW is not a real problem

• Suppose we run out of memory?
• Assume only M locations are available

1. Stack insertion
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if T>M then OVERFLOW;
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2. Stack deletion:
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  end;
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R

A

Insert A
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  end;
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R

A

Insert A
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Insert B

R

B
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Insert B

R

B
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Insert C  ⇒   OVERFLOW!
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MULTIPLE STACKS

• Two stacks can grow towards each other

• More than 2 stacks requires variable locations
 for base of stack
 BASE[i]  ≡ starting address of stack i
 TOP[i]  ≡ top of stack i

stack1 → ← stack2

Insertion into stack i:
   TOP[i] ←TOP[i]+1;

   if TOP[i]>BASE[i+1] then OVERFLOW;

   else CONTENTS(TOP[i]) ← Y

Deletion from stack i:
   if TOP[i]=BASE[i] then UNDERFLOW;

   Y ←CONTENTS(TOP[i]); 

   TOP[i] ←TOP[i]-1;

When stack i overflows:

1. find smallest k ∋  i<k ≤n and TOP[k]<BASE[k+1]
  for TOP[k]  ≥ m > BASE[i+1]
   CONTENTS(m+1)  ← CONTENTS(m)
  for i  < j  ≤ k
   BASE[j] ←BASE[j]+1; TOP[j] ←TOP[j]+1;

2. find largest k ∋  1 ≤k<i and TOP[k]<BASE[k+1]
  for BASE[k+1]  < m < TOP[i]
   CONTENTS(m-1) ←CONTENTS(m)
  for k  < j  ≤ i
   BASE[j] ←BASE[j]-1; TOP[j] ←TOP[j]-1;  

3. if TOP[k]=BASE[k+1]  ∀  k≠i   then REAL OVERFLOW

Copyright © 1998 by Hanan Samet



LINKED ALLOCATION

• Next node need not be physically adjacent

• Use an extra field to indicate address of next node

• Each node has two fields

• Need a pointer to FIRST element

Ω denotes the end of the list

Info    Link

ls15

FIRST

Sequential
Item 1

Item 2

Item 3

Item n

…

Linked
 Item 1 B

B Item 2 C

C Item 3 D

 Item n Ω
…

Item 1 Item 2 Item 3 …

Item n Ω
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COMPARISON OF LINKED(L) VS SEQUENTIAL(S)

1. L requires extra space for links
 • but if a node has many fields, then overhead is small
 • can share storage with L
 • repacking is inefficient with S when memory is
  densely packed

2. Easy to insert and delete with L
 • no need to move data as with S

3. S is superior for random access into a list
 (i.e., Kth element)
 • S: add an offset (K) to base address
 • L: traverse K links

4. L facilitates joining and breaking lists

5. L allows more complex data structures

6. S is superior for marching sequentially through a list
 • S makes use of indexing
 • L makes use of indirect addressing (⇒  memory access)

7. S takes advantage of locality
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STORAGE MANAGEMENT

• Linked list of available storage

• AVAIL  points to the first element

• Use LINK  field

 x ⇐ AVAIL  is short hand notation for allocating a new
  node as follows:

 if AVAIL= Ω then OVERFLOW
 else
   begin
     x ←AVAIL;
     AVAIL ←LINK(AVAIL);
     LINK(x) ←Ω;
   end;

 AVAIL ⇐ x is short hand notation for returning a
  node as follows:

 LINK(x) ←AVAIL;
 AVAIL ←x;

81
b

AVAIL

Ω

Ωx

AVAIL
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STORAGE MANAGEMENT

• Linked list of available storage

• AVAIL  points to the first element

• Use LINK  field
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  node as follows:
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81
b

AVAIL

Ω

Ωx

AVAIL
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COMBINING SEQUENTIAL AND LINKED STORAGE

Allocation of a node of linked storage (x):

if AVAIL= Ω then
   if PoolMax>SeqMin then OVERFLOW
   else 
     begin
      PoolMax ←PoolMax+1;
      x ⇐ PoolMax;
     end;
else x ⇐ AVAIL;

• No need to initially link up AVAIL

• A similar scheme is used in DBMS-10 for storing records
  on disk pages

0

M Sequential

Linked

SeqMin  ≡ bottom of sequential storage

PoolMax  ≡ top of linked storage

0

255

250
240… lines

actual storage

logical address = la = page # line #

physical address = 

+ CONTENTS[line #(la)]

page #(la) 0
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LINKED STACKS

Insert Y into a linked stack:

T = top of stack pointer

p⇐ AVAIL;
INFO(p) ←Y;
LINK(p) ←T;
T←p;

Delete Y from a linked stack:

if T= Ω then UNDERFLOW;
p←T;
T←LINK(p);
Y←INFO(p);
AVAIL ⇐ p;

Ω

T

p
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LINKED STACKS

Insert Y into a linked stack:

T = top of stack pointer

p⇐ AVAIL;
INFO(p) ←Y;
LINK(p) ←T;
T←p;

Delete Y from a linked stack:

if T= Ω then UNDERFLOW;
p←T;
T←LINK(p);
Y←INFO(p);
AVAIL ⇐ p;

Ω

T

p
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LINKED STACKS

Insert Y into a linked stack:

T = top of stack pointer

p⇐ AVAIL;
INFO(p) ←Y;
LINK(p) ←T;
T←p;

Delete Y from a linked stack:

if T= Ω then UNDERFLOW;
p←T;
T←LINK(p);
Y←INFO(p);
AVAIL ⇐ p;

Ω

T

p
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LINKED QUEUES

F=Ω signifies an empty queue

Insert Y at the rear of a queue:

P⇐ AVAIL;
INFO(P) ←Y;
LINK(P) ←Ω;
if F= Ω then F ←P;
else LINK(R) ←P;
R←P;

Delete Y from the front of a queue:

if F= Ω then UNDERFLOW;
P←F;
F←LINK(P);
Y←INFO(P);
AVAIL ⇐ P;

F

R
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LINKED QUEUES

F=Ω signifies an empty queue

Insert Y at the rear of a queue:

P⇐ AVAIL;
INFO(P) ←Y;
LINK(P) ←Ω;
if F= Ω then F ←P;
else LINK(R) ←P;
R←P;

Delete Y from the front of a queue:

if F= Ω then UNDERFLOW;
P←F;
F←LINK(P);
Y←INFO(P);
AVAIL ⇐ P;

F

R
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LINKED QUEUES

F=Ω signifies an empty queue

Insert Y at the rear of a queue:

P⇐ AVAIL;
INFO(P) ←Y;
LINK(P) ←Ω;
if F= Ω then F ←P;
else LINK(R) ←P;
R←P;

Delete Y from the front of a queue:

if F= Ω then UNDERFLOW;
P←F;
F←LINK(P);
Y←INFO(P);
AVAIL ⇐ P;

F

R
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TOPOLOGICAL SORT

• Given: relations as to what precedes what  (a<b)
• Desired: a partial ordering

• Formal definition of a partial ordering
 1. If X<Y and Y<Z then X<Z (transitivity)
 2. If X<Y then  (asymmetry)
 3.   (irreflexivity)

 2 implies the absence of loops

• Applications:
 1. job scheduling — PERT networks, CPM

 2. system tapes
 3. subroutine order so no routine is invoked before
  it is declared
  • But see PASCAL FORWARD declarations

XY

1

4

8

9

3

7

5

6

2

X X
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TOPOLOGICAL SORT

• Given: relations as to what precedes what  (a<b)
• Desired: a partial ordering

• Formal definition of a partial ordering
 1. If X<Y and Y<Z then X<Z (transitivity)
 2. If X<Y then  (asymmetry)
 3.   (irreflexivity)

 2 implies the absence of loops

• Applications:
 1. job scheduling — PERT networks, CPM

 2. system tapes
 3. subroutine order so no routine is invoked before
  it is declared
  • But see PASCAL FORWARD declarations

XY

1

4

8

9

3

7

5

6

2

X X
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ALGORITHM

• Performs topological sort
• Proves by construction the existence of the ordering
• Recursive algorithm
 1. find an item, i, not preceded by any other item
 2. remove i and perform the sort on the remaining items
• Brute force solution takes O(n · m) time for n items and m 

successor-predecessor relation pairs by executing the 
following for each of the n items
1. make a pass over successor-predecessor list S and find 

items that do not appear as a successor (m operations)
2. remove all relations from S where an item found in 1 

appears as a predecessor (m operations)
• Data Structure for better solution:
 t[K]  corresponds to item K with 2 fields:
 • PRED_COUNT[t[K]]  ≡ # of direct predecessors of K
    (i. e., L < K)
 • SUCCESSORS[t[K]]  ≡ pointer to a linked list containing the
    direct successors of item K
Ex: t[7] :

• Maintain a queue of all items having 0 predecessors
• Each time item K is output:
 1. remove t[K]  from the queue
 2. decrement PRED_COUNT field of all successors of K
 3. add to the queue any node whose PRED_COUNT field has
  gone to 0
• O(m+n) time and space

Ω1 4 5

PRED_COUNT
SUCCESSORS

DATA NEXT
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OBSERVATIONS

• Can use a stack instead of a queue

• The queue can be kept in the PRED_COUNT field of t[K]  
 since once this field has gone to zero it will not be 
 referenced again – i.e., it can no longer be decremented

• Sequential allocation for t[K]  whose size is fixed
• Linked allocation for the successor relations

• Queue is linked by index (à la FORTRAN)
• Successor list is linked by address
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CIRCULAR LISTS

• Last node points back to first node
• No need to think of any node as a ‘last’ or ‘first’ node

1. Insert Y at the left:
 P ⇐ AVAIL;  INFO(P) ←Y;
 if PTR= Ω then PTR ←LINK(P) ←P
 else
  begin
     LINK(P) ←LINK(PTR);  LINK(PTR) ←P;
  end;

2. Insert Y at the right:
 Insert Y at the left;
 PTR←P;

3. Set Y to the left node and delete:
 if PTR= Ω  then UNDERFLOW;
 P ←LINK(PTR);  Y ←INFO(P);
 LINK(PTR) ←LINK(P);  AVAIL ⇐ P;
 if PTR=P then PTR ←Ω;
 /* Check for a list of one element */
 /* before deleting     */

PTR

Copyright © 1998 by Hanan Samet



ls2481
b

CIRCULAR LISTS

• Last node points back to first node
• No need to think of any node as a ‘last’ or ‘first’ node

1. Insert Y at the left:
 P ⇐ AVAIL;  INFO(P) ←Y;
 if PTR= Ω then PTR ←LINK(P) ←P
 else
  begin
     LINK(P) ←LINK(PTR);  LINK(PTR) ←P;
  end;

2. Insert Y at the right:
 Insert Y at the left;
 PTR←P;

3. Set Y to the left node and delete:
 if PTR= Ω  then UNDERFLOW;
 P ←LINK(PTR);  Y ←INFO(P);
 LINK(PTR) ←LINK(P);  AVAIL ⇐ P;
 if PTR=P then PTR ←Ω;
 /* Check for a list of one element */
 /* before deleting     */

PTR
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CIRCULAR LISTS

• Last node points back to first node
• No need to think of any node as a ‘last’ or ‘first’ node

1. Insert Y at the left:
 P ⇐ AVAIL;  INFO(P) ←Y;
 if PTR= Ω then PTR ←LINK(P) ←P
 else
  begin
     LINK(P) ←LINK(PTR);  LINK(PTR) ←P;
  end;

2. Insert Y at the right:
 Insert Y at the left;
 PTR←P;

3. Set Y to the left node and delete:
 if PTR= Ω  then UNDERFLOW;
 P ←LINK(PTR);  Y ←INFO(P);
 LINK(PTR) ←LINK(P);  AVAIL ⇐ P;
 if PTR=P then PTR ←Ω;
 /* Check for a list of one element */
 /* before deleting     */

PTR
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CIRCULAR LISTS

• Last node points back to first node
• No need to think of any node as a ‘last’ or ‘first’ node

1. Insert Y at the left:
 P ⇐ AVAIL;  INFO(P) ←Y;
 if PTR= Ω then PTR ←LINK(P) ←P
 else
  begin
     LINK(P) ←LINK(PTR);  LINK(PTR) ←P;
  end;

2. Insert Y at the right:
 Insert Y at the left;
 PTR←P;

3. Set Y to the left node and delete:
 if PTR= Ω  then UNDERFLOW;
 P ←LINK(PTR);  Y ←INFO(P);
 LINK(PTR) ←LINK(P);  AVAIL ⇐ P;
 if PTR=P then PTR ←Ω;
 /* Check for a list of one element */
 /* before deleting     */

PTR

Copyright © 1998 by Hanan Samet

ls242
r

Y

Copyright © 1998 by Hanan Samet

ls243
v

Y

Copyright © 1998 by Hanan Samet

ls244
g

/  /  /  /  /  /  /  /  /

Copyright © 1998 by Hanan Samet



ls2481
b

CIRCULAR LISTS

• Last node points back to first node
• No need to think of any node as a ‘last’ or ‘first’ node

1. Insert Y at the left:
 P ⇐ AVAIL;  INFO(P) ←Y;
 if PTR= Ω then PTR ←LINK(P) ←P
 else
  begin
     LINK(P) ←LINK(PTR);  LINK(PTR) ←P;
  end;

2. Insert Y at the right:
 Insert Y at the left;
 PTR←P;

3. Set Y to the left node and delete:
 if PTR= Ω  then UNDERFLOW;
 P ←LINK(PTR);  Y ←INFO(P);
 LINK(PTR) ←LINK(P);  AVAIL ⇐ P;
 if PTR=P then PTR ←Ω;
 /* Check for a list of one element */
 /* before deleting     */

PTR
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1 and 3 imply stack
2 and 3 imply queue
1, 2, and 3 imply output restricted deque

Copyright © 1998 by Hanan Samet



ls25

ERASING A CIRCULAR LIST

Note: PTR is meaningless after erasing a list

Inserting Circular List L2 at the Right of Circular List L1:

Assume PTR1 points to L1 and PTR2 points to L2.

if PTR2 ≠Ω then
  begin
    if PTR1 ≠Ω then LINK(PTR1) ↔LINK(PTR2);
    PTR1 ←PTR2;
    PTR2 ←Ω;
  end

• A circular list can also be split into two lists
• Analogous to concatenation and deconcatenation of strings.

81
b

PTR1 PTR2

PTRAVAIL
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ERASING A CIRCULAR LIST

Note: PTR is meaningless after erasing a list

Inserting Circular List L2 at the Right of Circular List L1:

Assume PTR1 points to L1 and PTR2 points to L2.

if PTR2 ≠Ω then
  begin
    if PTR1 ≠Ω then LINK(PTR1) ↔LINK(PTR2);
    PTR1 ←PTR2;
    PTR2 ←Ω;
  end

• A circular list can also be split into two lists
• Analogous to concatenation and deconcatenation of strings.

81
b

PTR1 PTR2

PTRAVAIL
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ERASING A CIRCULAR LIST

Note: PTR is meaningless after erasing a list

Inserting Circular List L2 at the Right of Circular List L1:

Assume PTR1 points to L1 and PTR2 points to L2.

if PTR2 ≠Ω then
  begin
    if PTR1 ≠Ω then LINK(PTR1) ↔LINK(PTR2);
    PTR1 ←PTR2;
    PTR2 ←Ω;
  end

• A circular list can also be split into two lists
• Analogous to concatenation and deconcatenation of strings.

81
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PTR1 PTR2

PTRAVAIL
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AVAIL ↔ PTR ?
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if PTR ≠Ω then AVAIL ↔LINK(PTR)
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ERASING A CIRCULAR LIST

Note: PTR is meaningless after erasing a list

Inserting Circular List L2 at the Right of Circular List L1:

Assume PTR1 points to L1 and PTR2 points to L2.

if PTR2 ≠Ω then
  begin
    if PTR1 ≠Ω then LINK(PTR1) ↔LINK(PTR2);
    PTR1 ←PTR2;
    PTR2 ←Ω;
  end

• A circular list can also be split into two lists
• Analogous to concatenation and deconcatenation of strings.

81
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PTR1 PTR2

PTRAVAIL
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AVAIL ↔ PTR ?
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if PTR ≠Ω then AVAIL ↔LINK(PTR)
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DOUBLY-LINKED LISTS

    RLINK(LLINK(Y)) = LLINK(RLINK(Y)) = Y

• Disadvantage: More space for links

• Advantage:  Given X, it can be deleted without having
      to locate its predecessor as is necessary
      with singly-linked lists

Easy to insert a node to the left or right of another node:

Insert to the right of Z:
 P ⇐ AVAIL;

 LLINK(P) ←Z; RLINK(P) ←RLINK(Z);

 LLINK(RLINK(Z)) ←P; RLINK(Z) ←P;

Insert to the left of X:
 Interchange LEFT and RIGHT in ‘Insertion to the right’.

• 4 links are changed (only 2 changed with singly-linked list)

ZYX

ZYX

First ΩX
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DOUBLY-LINKED LISTS

    RLINK(LLINK(Y)) = LLINK(RLINK(Y)) = Y

• Disadvantage: More space for links

• Advantage:  Given X, it can be deleted without having
      to locate its predecessor as is necessary
      with singly-linked lists

Easy to insert a node to the left or right of another node:

Insert to the right of Z:
 P ⇐ AVAIL;

 LLINK(P) ←Z; RLINK(P) ←RLINK(Z);

 LLINK(RLINK(Z)) ←P; RLINK(Z) ←P;

Insert to the left of X:
 Interchange LEFT and RIGHT in ‘Insertion to the right’.

• 4 links are changed (only 2 changed with singly-linked list)

ZYX

ZYX

First ΩX
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DOUBLY-LINKED LISTS

    RLINK(LLINK(Y)) = LLINK(RLINK(Y)) = Y

• Disadvantage: More space for links

• Advantage:  Given X, it can be deleted without having
      to locate its predecessor as is necessary
      with singly-linked lists

Easy to insert a node to the left or right of another node:

Insert to the right of Z:
 P ⇐ AVAIL;

 LLINK(P) ←Z; RLINK(P) ←RLINK(Z);

 LLINK(RLINK(Z)) ←P; RLINK(Z) ←P;

Insert to the left of X:
 Interchange LEFT and RIGHT in ‘Insertion to the right’.

• 4 links are changed (only 2 changed with singly-linked list)

ZYX

ZYX

First ΩX
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DOUBLY-LINKED LISTS

    RLINK(LLINK(Y)) = LLINK(RLINK(Y)) = Y

• Disadvantage: More space for links

• Advantage:  Given X, it can be deleted without having
      to locate its predecessor as is necessary
      with singly-linked lists

Easy to insert a node to the left or right of another node:

Insert to the right of Z:
 P ⇐ AVAIL;

 LLINK(P) ←Z; RLINK(P) ←RLINK(Z);

 LLINK(RLINK(Z)) ←P; RLINK(Z) ←P;

Insert to the left of X:
 Interchange LEFT and RIGHT in ‘Insertion to the right’.

• 4 links are changed (only 2 changed with singly-linked list)

ZYX

ZYX

First ΩX
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TWO LINKS FOR THE PRICE OF ONE

Exclusive Or:

 A B A ⊕ B A ⊕ A = 0
 0 0 0 A ⊕ 0 = A A ⊕ 1 = A
 0 1 1 A ⊕ B = B ⊕ A
 1 0 1 (A ⊕ B) ⊕ C = A ⊕ (B ⊕ C)
 1 1 0 A ⊕ A⊕ B = B

Let  LINK(X i ) = LOC(X i+1 ) ⊕ LOC(Xi-1 )

Knowing 2 successive locations (Li, Li+1) allows going
left and right.

RIGHT(L 2) = LINK(L 2) ⊕ L1 = L 3⊕ L1⊕ L1 = L 3
LEFT(L 1) = LINK(L 1) ⊕ L2 = L 0⊕ L2⊕ L2 = L 0

Ex: Exchange the contents of two locations
 without using temporaries

 B ← A ⊕ B  A ⊕ B

 A ← A ⊕ B  A ⊕ (A ⊕ B) = B

 B ← A ⊕ B  B ⊕ (A ⊕ B) = A

Xi+1XiXi-1

L3:L2:L1:L0:
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ARRAYS

• Generalization of a linear list
• Allocate storage sequentially
• LOC(A[m,n]) ≡ A0 + A1·m + A2·n
 A0, A1, A2 are constants
• Ex: Q[0:3,0:2,0:1]

Row-major order
ALGOL

Column-major order 
FORTRAN

• Row-major is preferable = lexicographic order of indices
• LOC(Q[i,j,k]) = LOC(Q[0,0,0]) + 6·i + 2·j + k

Q[0,0,0]

Q[0,0,1]

Q[0,1,0]

Q[0,1,1]

Q[0,2,0]

Q[0,2,1]

Q[1,0,0]

Q[3,2,0]

Q[3,2,1]

...

Q[0,0,0]

Q[1,0,0]

Q[2,0,0]

Q[3,0,0]

Q[0,1,0]

Q[1,1,0]

Q[2,1,0]

Q[2,2,1]

Q[3,2,1]

...
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K-DIMENSIONAL ARRAYS

• A[l1:u1, l2:u2, …, lk:uk]

• LOC(A[i1, i2, …, ik]) =  LOC(A[l1,l2,l3,…,lk]) +
      (u2–l2+1) … (uk–lk+1)·(i1–l1) + …
      (uk–lk+1)·(ik–1–lk–1) + ik–lk

     = LOC(A[l1,l2,l3,…,lk]) + ∑ Ar·(ir–lr)

     = {LOC(A[l1,l2,l3,…,lk])–∑ Ar·lr } + ∑ Ar·ir

    Ar = ∏ (us–ls+1)

    Ak = 1

• Semantics of Ar:
 1. let i1, i2, …, ir be constant
 2. let jr+1, jr+2, …, jk vary through  li ≤ ji ≤ ui
 3. consider A[i1, i2, …, ir, jr+1, jr+2, …, jk]
  • when ir changes by 1  LOC(A[i1, i2, …, ik]) changes by Ar

k

k

r = 1

r = 1
k

r = 1

r < s ≤ k
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ARRAY DESCRIPTOR

• ‘Dope vector’
• Ex:   Q[0:3,0:2,0:1]

• Why store the bounds?
• Not needed in the access function!

ls30

Address of first element

# of dimensions

Type (string, real, complex, ?)

l1

l2

ln

...

Real

3

0

3

6

0

2

2

0

1

1

Q0

u1

A1

u2

A2

un

An
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TRIANGULAR MATRIX

• LOC(A[j,k]) = A0 + F1(j) + F2(k)

• Two triangular matrices:

 A[j,k] =

 B[j,k] = 

81
b

A[0,0]

A[1,0] A[1,1]

A[n,0] A[n,1] … A[n,n]

A[0,0] B[0,0] B[1,0] … B[n,0]

A[1,0] A[1,1] B[1,1] … B[n,1]

A[n,0] A[n,1] … A[n,n] B[n,n]

...
= C

...

Copyright © 1998 by Hanan Samet



ls31

TRIANGULAR MATRIX

• LOC(A[j,k]) = A0 + F1(j) + F2(k)

• Two triangular matrices:

 A[j,k] =

 B[j,k] = 

81
b

A[0,0]

A[1,0] A[1,1]

A[n,0] A[n,1] … A[n,n]

A[0,0] B[0,0] B[1,0] … B[n,0]

A[1,0] A[1,1] B[1,1] … B[n,1]

A[n,0] A[n,1] … A[n,n] B[n,n]

...
= C

...
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LOC(A[j,k]) = LOC(A[0,0]) + ( ∑ i+1 ) + k

  = LOC(A[0,0]) + ––––– + k

• quadratic access function (not linear)

j·(j+1)
2

i = 0

j–1
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TRIANGULAR MATRIX

• LOC(A[j,k]) = A0 + F1(j) + F2(k)

• Two triangular matrices:

 A[j,k] =

 B[j,k] = 

81
b

A[0,0]

A[1,0] A[1,1]

A[n,0] A[n,1] … A[n,n]

A[0,0] B[0,0] B[1,0] … B[n,0]

A[1,0] A[1,1] B[1,1] … B[n,1]

A[n,0] A[n,1] … A[n,n] B[n,n]

...
= C

...
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LOC(A[j,k]) = LOC(A[0,0]) + ( ∑ i+1 ) + k

  = LOC(A[0,0]) + ––––– + k

• quadratic access function (not linear)

j·(j+1)
2

i = 0

j–1
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C[j,k]

C[k,j+1]
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SPARSE MATRICES

• For each item:

• For each row: For each column:

• Ex:

• Circular list is useful for insertion and deletion
 of elements

• Ex: compute C = C+A·B 

  Cik = Cik + ∑ Aij·Bjk

ls32

Col #

Up LinkLeft Link

Row # Value

–1 –1

1 –1–1

3

–1 2 3

111 –1 1 1 4

3

2 –1 2 21 2 2 3

–1 3 3 5

j

(   )1  4
2 3
  5
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