
ls0

Copyright © 1997 Hanan Samet

These notes may not be reproduced by any means (mechanical or elec-
tronic or any other) without the express written permission of Hanan Samet

LIST STRUCTURES

Hanan Samet

Computer Science Department and
Center for Automation Research and

Institute for Advanced Computer Studies
University of Maryland

College Park, Maryland 20742
e-mail: hjs@umiacs.umd.edu

ls1

WHAT IS A DATA STRUCTURE?

• sex is binary
• several fields can be packed into one word
• some fields can occupy more than one word

• Usually (FORTRAN programmers) use arrays

• A different column for each different class of information

• Ex: airline reservation system
 for each passenger on a specific flight:

1. name
2. address
3. phone #
4. seat #
5. destination (on a multi-stop flight)

• Notes:

1. not all fields contain numeric information

2. fields need not correspond to whole computer words

Copyright © 1998 by Hanan Samet

ls2

DIFFERENT REPRESENTATIONS FOR NUMBERS
DEPENDING ON THEIR USE:

• Type

1. BCD

• social security number 123-45-6789
• telephone number (123) 456-7890
• can print character by character by shifting
 rather than modulo division

2. ASCII

3. Fieldata

• Manner of using the data may dictate the representation

1. sometimes a dual representation – deck of cards
2. string and numeric

• Ex: airline reservation system
• Los Angeles → Dallas → Baltimore
• task: find all passengers with the same destination
• field: SAMEDEST (LINK or pointer information)

• alternatively, scan through the passenger list each time
 the query is posed

LOPEZ PEREZ

FIRSTDALLAS

…

GARCIA

…

RUIZ

Copyright © 1998 by Hanan Samet

ls31
b

CHARACTER DATA

1.

2.

3.

4.

JOHN_F ONS

Ω

ITZIMM

JOH N_F IMM ONSΩ

15

ITZ

J O H N _ F I T Z I M M O N S

J O H N _ F I T Z I M M O N SΩ

Copyright © 1998 by Hanan Samet

ls31
b

CHARACTER DATA

1.

2.

3.

4.

JOHN_F ONS

Ω

ITZIMM

JOH N_F IMM ONSΩ

15

ITZ

J O H N _ F I T Z I M M O N S

J O H N _ F I T Z I M M O N SΩ

Copyright © 1998 by Hanan Samet

ls32
r

• 1 permits sharing arbitrary segments of strings
 (start, middle, end)

Ω

ITZPAT RICK

Copyright © 1998 by Hanan Samet

ls31
b

CHARACTER DATA

1.

2.

3.

4.

JOHN_F ONS

Ω

ITZIMM

JOH N_F IMM ONSΩ

15

ITZ

J O H N _ F I T Z I M M O N S

J O H N _ F I T Z I M M O N SΩ

Copyright © 1998 by Hanan Samet

ls32
r

• 1 permits sharing arbitrary segments of strings
 (start, middle, end)

Ω

ITZPAT RICK

Copyright © 1998 by Hanan Samet

ls33
z

CUR T_S

• 2 only permits sharing endings
 2 may occupy one less word than 1

Copyright © 1998 by Hanan Samet

ls31
b

CHARACTER DATA

1.

2.

3.

4.

JOHN_F ONS

Ω

ITZIMM

JOH N_F IMM ONSΩ

15

ITZ

J O H N _ F I T Z I M M O N S

J O H N _ F I T Z I M M O N SΩ

Copyright © 1998 by Hanan Samet

ls32
r

• 1 permits sharing arbitrary segments of strings
 (start, middle, end)

Ω

ITZPAT RICK

Copyright © 1998 by Hanan Samet

ls33
z

CUR T_S

• 2 only permits sharing endings
 2 may occupy one less word than 1

Copyright © 1998 by Hanan Samet

ls34
g

3 7

• 3 only permits sharing when one string is a substring of
 another, or one string extends into the next string

NO O

Copyright © 1998 by Hanan Samet

ls31
b

CHARACTER DATA

1.

2.

3.

4.

JOHN_F ONS

Ω

ITZIMM

JOH N_F IMM ONSΩ

15

ITZ

J O H N _ F I T Z I M M O N S

J O H N _ F I T Z I M M O N SΩ

Copyright © 1998 by Hanan Samet

ls32
r

• 1 permits sharing arbitrary segments of strings
 (start, middle, end)

Ω

ITZPAT RICK

Copyright © 1998 by Hanan Samet

ls33
z

CUR T_S

• 2 only permits sharing endings
 2 may occupy one less word than 1

Copyright © 1998 by Hanan Samet

ls34
g

3 7

• 3 only permits sharing when one string is a substring of
 another, or one string extends into the next string

NO O

Copyright © 1998 by Hanan Samet

ls35
v

• 4 only permits sharing a terminating substring

Copyright © 1998 by Hanan Samet

ls31
b

CHARACTER DATA

1.

2.

3.

4.

JOHN_F ONS

Ω

ITZIMM

JOH N_F IMM ONSΩ

15

ITZ

J O H N _ F I T Z I M M O N S

J O H N _ F I T Z I M M O N SΩ

Copyright © 1998 by Hanan Samet

ls32
r

• 1 permits sharing arbitrary segments of strings
 (start, middle, end)

Ω

ITZPAT RICK

Copyright © 1998 by Hanan Samet

ls33
z

CUR T_S

• 2 only permits sharing endings
 2 may occupy one less word than 1

Copyright © 1998 by Hanan Samet

ls34
g

3 7

• 3 only permits sharing when one string is a substring of
 another, or one string extends into the next string

NO O

Copyright © 1998 by Hanan Samet

ls35
v

• 4 only permits sharing a terminating substring

Copyright © 1998 by Hanan Samet

ls36
b

• 1 is superior to 2 because data and links are separate

• 3 is superior to 4

Copyright © 1998 by Hanan Samet

ls4

PASSENGER DATA STRUCTURE

JIM JONES
40 ELM ST. ANYTOWN, ANYSTATE 01234
(123) 456-7890
45
DALLAS
NO SMOKING

Passenger = RECORD
 Name: ^CharString;
 Addr: ^CharString;
 Phone: Integer;
 Seat: Integer;
 Destino: ^CharString;
 Fumar: Boolean;
 MVuelo: ^Passenger;
 MDestino: ^Passenger;
END;

Name Address

Phone #
Seat #

Destino
Fumar

Mismo
Vuelo

Mismo
Destino

...
JIM_JO

Ω

NES

Copyright © 1998 by Hanan Samet

ls51
b

PROBLEM: Add a passenger to flight 455 who gets off
 at Dallas.

First455 ≡ pointer to the first passenger on flight 455
FirstDallas ≡ pointer to the first passenger to Dallas
NewPass ≡ pointer to the new passenger.

First455 FirstDallas

 PASCAL

1. MVuelo(NewPass) ←First455 NewPass ↑ .MVuelo ←First455;
2. First455 ←NewPass; First455 ←NewPass;
3. MDestino(NewPass) ← NewPass↑ .MDestino ←

FirstDallas; FirstDallas;
4. FirstDallas ←NewPass; FirstDallas ←NewPass;

Ω

…
……

Ω …
…

Copyright © 1998 by Hanan Samet

ls51
b

PROBLEM: Add a passenger to flight 455 who gets off
 at Dallas.

First455 ≡ pointer to the first passenger on flight 455
FirstDallas ≡ pointer to the first passenger to Dallas
NewPass ≡ pointer to the new passenger.

First455 FirstDallas

 PASCAL

1. MVuelo(NewPass) ←First455 NewPass ↑ .MVuelo ←First455;
2. First455 ←NewPass; First455 ←NewPass;
3. MDestino(NewPass) ← NewPass↑ .MDestino ←

FirstDallas; FirstDallas;
4. FirstDallas ←NewPass; FirstDallas ←NewPass;

Ω

…
……

Ω …
…

Copyright © 1998 by Hanan Samet

ls52
r

NewPass

Copyright © 1998 by Hanan Samet

ls6

PROBLEM: How many passengers get off at Dallas?

1. n ←0;

2. x ←FirstDallas;

3. if x= Ω then HALT;

4. n ←n+1;

5. x ←MDestino(x);

6. goto 3;

PASCAL:

n←0;

x←FirstDallas;

while x ≠Ω do

 begin

 n ←n+1;

 x ←x↑ .MDestino;

 end;

Field names: MVuelo, MDestino

Variable names: n, x, First455, FirstDallas, NewPass

Integer variable: n

Link variables: x, First455, FirstDallas, NewPass

 contain addresses!

Copyright © 1998 by Hanan Samet

ls7

DATA STRUCTURE SELECTION

1. Will the information be used?
 • playing cards – is the card face up or face down?

2. How accessible should the information be?
 • Ex: game of Hearts

a. how many hearts in the hand
b. explicit ⇒ must constantly update
c. implicit ⇒ must look at all cards

• the choice of representation is dominated by the
 class of operations to be performed on the data

Copyright © 1998 by Hanan Samet

ls8

LINEAR LIST

• Set of nodes x[1], x[2], … x[n] (n≥1)

• Principal property is that x[k] is followed by x[k+1]

• Possible Operations:

1. gain access to the kth node
2. insert before the kth node
3. delete the kth node
4. combine 2 or more lists
5. split a list into 2 or more lists
6. make a copy of a list
7. determine the number of nodes in a list
8. sort the elements of the list
9. search the list for a node with a particular value

• For operations 1, 2, and 3 k=1 or k=n are interesting

 1. stack: insert and delete at the same end

 2. queue: insert at one end
 delete at the other end

 3. deque: insert and delete at both ends

Copyright © 1998 by Hanan Samet

ls9

PUSH ≡ insert
POP ≡ remove

LIFO

81
b

STACKS

input output

• Useful for processing goals and subgoals

• Subroutines and parameter transmittal

• Some computers have stack-like instructions

Ex: Translate arithmetic expression from infix to postfix

Infix: operand operator operand A+B

Prefix: operator operand operand +AB

Postfix: operand operand operator AB+

Postfix ≡ ‘Polish notation’

A+B*C ⇒ ABC*+

 Stack
Enter A C

Enter B B

Enter C A

Copyright © 1998 by Hanan Samet

ls9

PUSH ≡ insert
POP ≡ remove

LIFO

81
b

STACKS

input output

• Useful for processing goals and subgoals

• Subroutines and parameter transmittal

• Some computers have stack-like instructions

Ex: Translate arithmetic expression from infix to postfix

Infix: operand operator operand A+B

Prefix: operator operand operand +AB

Postfix: operand operand operator AB+

Postfix ≡ ‘Polish notation’

A+B*C ⇒ ABC*+

 Stack
Enter A C

Enter B B

Enter C A

Copyright © 1998 by Hanan Samet

ls92
r

 B*C

 A

 *

Copyright © 1998 by Hanan Samet

ls9

PUSH ≡ insert
POP ≡ remove

LIFO

81
b

STACKS

input output

• Useful for processing goals and subgoals

• Subroutines and parameter transmittal

• Some computers have stack-like instructions

Ex: Translate arithmetic expression from infix to postfix

Infix: operand operator operand A+B

Prefix: operator operand operand +AB

Postfix: operand operand operator AB+

Postfix ≡ ‘Polish notation’

A+B*C ⇒ ABC*+

 Stack
Enter A C

Enter B B

Enter C A

Copyright © 1998 by Hanan Samet

ls92
r

 B*C

 A

 *

Copyright © 1998 by Hanan Samet

ls93
z

 A+B*C

 +

Copyright © 1998 by Hanan Samet

ls1081
b

QUEUE:

DEQUE:

FRONT REAR

Delete Insert

FIFO

…

OUTPUT

INPUT

SECONDFIRST THIRD LAST

Copyright © 1998 by Hanan Samet

ls1081
b

QUEUE:

DEQUE:

FRONT REAR

Delete Insert

FIFO

…

OUTPUT

INPUT

SECONDFIRST THIRD LAST

Copyright © 1998 by Hanan Samet

ls102
r

Input restricted deque

Copyright © 1998 by Hanan Samet

ls1081
b

QUEUE:

DEQUE:

FRONT REAR

Delete Insert

FIFO

…

OUTPUT

INPUT

SECONDFIRST THIRD LAST

Copyright © 1998 by Hanan Samet

ls102
r

Input restricted deque

Copyright © 1998 by Hanan Samet

ls103
z

Output restricted deque

Copyright © 1998 by Hanan Samet

ls1081
b

QUEUE:

DEQUE:

FRONT REAR

Delete Insert

FIFO

…

OUTPUT

INPUT

SECONDFIRST THIRD LAST

Copyright © 1998 by Hanan Samet

ls102
r

Input restricted deque

Copyright © 1998 by Hanan Samet

ls103
z

Output restricted deque

Copyright © 1998 by Hanan Samet

ls104
g

Question: how would you construct a stack from a deque?

Copyright © 1998 by Hanan Samet

ls11

Y←x[T];
T←T–1;

SEQUENTIAL ALLOCATION

• Easiest way to store a list in a computer is sequentially

 LOC(x[j+1]) = LOC(x[j])+C

 node size = C

 LOC(x[j]) = L 0+C•j where L0 = LOC(x[0])

• STACK:

1. sequential block of storage
2. variable T(≡ stack pointer) indicates the top of the stack
3. T=0 ⇒ stack is empty

• To enter a new value Y on the stack:

T←T+1;
x[T] ←Y;

• To remove an entry from the stack we reverse
 entry sequence:

Copyright © 1998 by Hanan Samet

ls12

QUEUE

• Two pointers:

 1. R to rear
 2. F to front
 3. R = F = 0 when the queue is empty

• Insertion at the rear of the queue:

 R←R+1;
 x[R] ←Y;

• Removal of an entry from the front of the queue:

 F←F+1;
 Y ←x[F];

 if F=R then F ←R←0;

• Note that the sequence of operations for removal is not
 the reverse of the sequence for insertion (i.e., we don’t
 remove front and update pointer)

81
b

Copyright © 1998 by Hanan Samet

ls12

QUEUE

• Two pointers:

 1. R to rear
 2. F to front
 3. R = F = 0 when the queue is empty

• Insertion at the rear of the queue:

 R←R+1;
 x[R] ←Y;

• Removal of an entry from the front of the queue:

 F←F+1;
 Y ←x[F];

 if F=R then F ←R←0;

• Note that the sequence of operations for removal is not
 the reverse of the sequence for insertion (i.e., we don’t
 remove front and update pointer)

81
b

Copyright © 1998 by Hanan Samet

ls122
r

• Problem: suppose R is always > F ?

Copyright © 1998 by Hanan Samet

ls12

QUEUE

• Two pointers:

 1. R to rear
 2. F to front
 3. R = F = 0 when the queue is empty

• Insertion at the rear of the queue:

 R←R+1;
 x[R] ←Y;

• Removal of an entry from the front of the queue:

 F←F+1;
 Y ←x[F];

 if F=R then F ←R←0;

• Note that the sequence of operations for removal is not
 the reverse of the sequence for insertion (i.e., we don’t
 remove front and update pointer)

81
b

Copyright © 1998 by Hanan Samet

ls122
r

• Problem: suppose R is always > F ?

Copyright © 1998 by Hanan Samet

ls123
z

• Solution: make the queue implicitly circular
 x[1] x[2] … x[M] x[1]
 R = F = M when the queue is empty (initially)

if R=M then R ←1
else

if F=M then F ←1
else

Copyright © 1998 by Hanan Samet

ls12

QUEUE

• Two pointers:

 1. R to rear
 2. F to front
 3. R = F = 0 when the queue is empty

• Insertion at the rear of the queue:

 R←R+1;
 x[R] ←Y;

• Removal of an entry from the front of the queue:

 F←F+1;
 Y ←x[F];

 if F=R then F ←R←0;

• Note that the sequence of operations for removal is not
 the reverse of the sequence for insertion (i.e., we don’t
 remove front and update pointer)

81
b

Copyright © 1998 by Hanan Samet

ls122
r

• Problem: suppose R is always > F ?

Copyright © 1998 by Hanan Samet

ls123
z

• Solution: make the queue implicitly circular
 x[1] x[2] … x[M] x[1]
 R = F = M when the queue is empty (initially)

if R=M then R ←1
else

if F=M then F ←1
else

Copyright © 1998 by Hanan Samet

ls124
g

• Question: Why not a problem in a bank line?

Copyright © 1998 by Hanan Samet

ls12

QUEUE

• Two pointers:

 1. R to rear
 2. F to front
 3. R = F = 0 when the queue is empty

• Insertion at the rear of the queue:

 R←R+1;
 x[R] ←Y;

• Removal of an entry from the front of the queue:

 F←F+1;
 Y ←x[F];

 if F=R then F ←R←0;

• Note that the sequence of operations for removal is not
 the reverse of the sequence for insertion (i.e., we don’t
 remove front and update pointer)

81
b

Copyright © 1998 by Hanan Samet

ls122
r

• Problem: suppose R is always > F ?

Copyright © 1998 by Hanan Samet

ls123
z

• Solution: make the queue implicitly circular
 x[1] x[2] … x[M] x[1]
 R = F = M when the queue is empty (initially)

if R=M then R ←1
else

if F=M then F ←1
else

Copyright © 1998 by Hanan Samet

ls124
g

• Question: Why not a problem in a bank line?

Copyright © 1998 by Hanan Samet

ls125
v

• Answer: Because the people move from position to
 position in the line

Copyright © 1998 by Hanan Samet

ls1381
b

M = 3

R = F

1 2 3

OVERFLOW

• We start with F = R = M
• UNDERFLOW is not a real problem

• Suppose we run out of memory?
• Assume only M locations are available

1. Stack insertion
T←T+1;

if T>M then OVERFLOW;

x[T] ←Y;

2. Stack deletion:

if T=0 then UNDERFLOW;

Y←x[T];

T←T-1;

3. Queue insertion:
if R=M then R ←1;

else R ←R+1;

if R=F then OVERFLOW

else x[R] ←Y;

4. Queue deletion:
if R=F then UNDERFLOW

else

 begin

 if F=M then F ←1

 else F ←F+1;

 Y ←x[F];

 end;

Copyright © 1998 by Hanan Samet

ls1381
b

M = 3

R = F

1 2 3

OVERFLOW

• We start with F = R = M
• UNDERFLOW is not a real problem

• Suppose we run out of memory?
• Assume only M locations are available

1. Stack insertion
T←T+1;

if T>M then OVERFLOW;

x[T] ←Y;

2. Stack deletion:

if T=0 then UNDERFLOW;

Y←x[T];

T←T-1;

3. Queue insertion:
if R=M then R ←1;

else R ←R+1;

if R=F then OVERFLOW

else x[R] ←Y;

4. Queue deletion:
if R=F then UNDERFLOW

else

 begin

 if F=M then F ←1

 else F ←F+1;

 Y ←x[F];

 end;

Copyright © 1998 by Hanan Samet

ls132
r

R

A

Insert A

Copyright © 1998 by Hanan Samet

ls1381
b

M = 3

R = F

1 2 3

OVERFLOW

• We start with F = R = M
• UNDERFLOW is not a real problem

• Suppose we run out of memory?
• Assume only M locations are available

1. Stack insertion
T←T+1;

if T>M then OVERFLOW;

x[T] ←Y;

2. Stack deletion:

if T=0 then UNDERFLOW;

Y←x[T];

T←T-1;

3. Queue insertion:
if R=M then R ←1;

else R ←R+1;

if R=F then OVERFLOW

else x[R] ←Y;

4. Queue deletion:
if R=F then UNDERFLOW

else

 begin

 if F=M then F ←1

 else F ←F+1;

 Y ←x[F];

 end;

Copyright © 1998 by Hanan Samet

ls132
r

R

A

Insert A

Copyright © 1998 by Hanan Samet

ls133
z

Insert B

R

B

Copyright © 1998 by Hanan Samet

ls1381
b

M = 3

R = F

1 2 3

OVERFLOW

• We start with F = R = M
• UNDERFLOW is not a real problem

• Suppose we run out of memory?
• Assume only M locations are available

1. Stack insertion
T←T+1;

if T>M then OVERFLOW;

x[T] ←Y;

2. Stack deletion:

if T=0 then UNDERFLOW;

Y←x[T];

T←T-1;

3. Queue insertion:
if R=M then R ←1;

else R ←R+1;

if R=F then OVERFLOW

else x[R] ←Y;

4. Queue deletion:
if R=F then UNDERFLOW

else

 begin

 if F=M then F ←1

 else F ←F+1;

 Y ←x[F];

 end;

Copyright © 1998 by Hanan Samet

ls132
r

R

A

Insert A

Copyright © 1998 by Hanan Samet

ls133
z

Insert B

R

B

Copyright © 1998 by Hanan Samet

ls134
g

Insert C ⇒ OVERFLOW!

Copyright © 1998 by Hanan Samet

ls14

MULTIPLE STACKS

• Two stacks can grow towards each other

• More than 2 stacks requires variable locations
 for base of stack
 BASE[i] ≡ starting address of stack i
 TOP[i] ≡ top of stack i

stack1 → ← stack2

Insertion into stack i:
 TOP[i] ←TOP[i]+1;

 if TOP[i]>BASE[i+1] then OVERFLOW;

 else CONTENTS(TOP[i]) ← Y

Deletion from stack i:
 if TOP[i]=BASE[i] then UNDERFLOW;

 Y ←CONTENTS(TOP[i]);

 TOP[i] ←TOP[i]-1;

When stack i overflows:

1. find smallest k ∋ i<k ≤n and TOP[k]<BASE[k+1]
 for TOP[k] ≥ m > BASE[i+1]
 CONTENTS(m+1) ← CONTENTS(m)
 for i < j ≤ k
 BASE[j] ←BASE[j]+1; TOP[j] ←TOP[j]+1;

2. find largest k ∋ 1 ≤k<i and TOP[k]<BASE[k+1]
 for BASE[k+1] < m < TOP[i]
 CONTENTS(m-1) ←CONTENTS(m)
 for k < j ≤ i
 BASE[j] ←BASE[j]-1; TOP[j] ←TOP[j]-1;

3. if TOP[k]=BASE[k+1] ∀ k≠i then REAL OVERFLOW

Copyright © 1998 by Hanan Samet

LINKED ALLOCATION

• Next node need not be physically adjacent

• Use an extra field to indicate address of next node

• Each node has two fields

• Need a pointer to FIRST element

Ω denotes the end of the list

Info Link

ls15

FIRST

Sequential
Item 1

Item 2

Item 3

Item n

…

Linked
 Item 1 B

B Item 2 C

C Item 3 D

 Item n Ω
…

Item 1 Item 2 Item 3 …

Item n Ω

Copyright © 1998 by Hanan Samet

ls16

COMPARISON OF LINKED(L) VS SEQUENTIAL(S)

1. L requires extra space for links
 • but if a node has many fields, then overhead is small
 • can share storage with L
 • repacking is inefficient with S when memory is
 densely packed

2. Easy to insert and delete with L
 • no need to move data as with S

3. S is superior for random access into a list
 (i.e., Kth element)
 • S: add an offset (K) to base address
 • L: traverse K links

4. L facilitates joining and breaking lists

5. L allows more complex data structures

6. S is superior for marching sequentially through a list
 • S makes use of indexing
 • L makes use of indirect addressing (⇒ memory access)

7. S takes advantage of locality

Copyright © 1998 by Hanan Samet

ls17

STORAGE MANAGEMENT

• Linked list of available storage

• AVAIL points to the first element

• Use LINK field

 x ⇐ AVAIL is short hand notation for allocating a new
 node as follows:

 if AVAIL= Ω then OVERFLOW
 else
 begin
 x ←AVAIL;
 AVAIL ←LINK(AVAIL);
 LINK(x) ←Ω;
 end;

 AVAIL ⇐ x is short hand notation for returning a
 node as follows:

 LINK(x) ←AVAIL;
 AVAIL ←x;

81
b

AVAIL

Ω

Ωx

AVAIL

Copyright © 1998 by Hanan Samet

ls17

STORAGE MANAGEMENT

• Linked list of available storage

• AVAIL points to the first element

• Use LINK field

 x ⇐ AVAIL is short hand notation for allocating a new
 node as follows:

 if AVAIL= Ω then OVERFLOW
 else
 begin
 x ←AVAIL;
 AVAIL ←LINK(AVAIL);
 LINK(x) ←Ω;
 end;

 AVAIL ⇐ x is short hand notation for returning a
 node as follows:

 LINK(x) ←AVAIL;
 AVAIL ←x;

81
b

AVAIL

Ω

Ωx

AVAIL

Copyright © 1998 by Hanan Samet

ls172
r

x

Copyright © 1998 by Hanan Samet

ls17

STORAGE MANAGEMENT

• Linked list of available storage

• AVAIL points to the first element

• Use LINK field

 x ⇐ AVAIL is short hand notation for allocating a new
 node as follows:

 if AVAIL= Ω then OVERFLOW
 else
 begin
 x ←AVAIL;
 AVAIL ←LINK(AVAIL);
 LINK(x) ←Ω;
 end;

 AVAIL ⇐ x is short hand notation for returning a
 node as follows:

 LINK(x) ←AVAIL;
 AVAIL ←x;

81
b

AVAIL

Ω

Ωx

AVAIL

Copyright © 1998 by Hanan Samet

ls172
r

x

Copyright © 1998 by Hanan Samet

ls173
v

Copyright © 1998 by Hanan Samet

ls18

COMBINING SEQUENTIAL AND LINKED STORAGE

Allocation of a node of linked storage (x):

if AVAIL= Ω then
 if PoolMax>SeqMin then OVERFLOW
 else
 begin
 PoolMax ←PoolMax+1;
 x ⇐ PoolMax;
 end;
else x ⇐ AVAIL;

• No need to initially link up AVAIL

• A similar scheme is used in DBMS-10 for storing records
 on disk pages

0

M Sequential

Linked

SeqMin ≡ bottom of sequential storage

PoolMax ≡ top of linked storage

0

255

250
240… lines

actual storage

logical address = la = page # line #

physical address =

+ CONTENTS[line #(la)]

page #(la) 0

Copyright © 1998 by Hanan Samet

ls1981
b

LINKED STACKS

Insert Y into a linked stack:

T = top of stack pointer

p⇐ AVAIL;
INFO(p) ←Y;
LINK(p) ←T;
T←p;

Delete Y from a linked stack:

if T= Ω then UNDERFLOW;
p←T;
T←LINK(p);
Y←INFO(p);
AVAIL ⇐ p;

Ω

T

p

Copyright © 1998 by Hanan Samet

ls1981
b

LINKED STACKS

Insert Y into a linked stack:

T = top of stack pointer

p⇐ AVAIL;
INFO(p) ←Y;
LINK(p) ←T;
T←p;

Delete Y from a linked stack:

if T= Ω then UNDERFLOW;
p←T;
T←LINK(p);
Y←INFO(p);
AVAIL ⇐ p;

Ω

T

p

Copyright © 1998 by Hanan Samet

ls192
r

Y

Copyright © 1998 by Hanan Samet

ls1981
b

LINKED STACKS

Insert Y into a linked stack:

T = top of stack pointer

p⇐ AVAIL;
INFO(p) ←Y;
LINK(p) ←T;
T←p;

Delete Y from a linked stack:

if T= Ω then UNDERFLOW;
p←T;
T←LINK(p);
Y←INFO(p);
AVAIL ⇐ p;

Ω

T

p

Copyright © 1998 by Hanan Samet

ls192
r

Y

Copyright © 1998 by Hanan Samet

ls193
v

AVAIL

Y

Copyright © 1998 by Hanan Samet

ls2081
b

LINKED QUEUES

F=Ω signifies an empty queue

Insert Y at the rear of a queue:

P⇐ AVAIL;
INFO(P) ←Y;
LINK(P) ←Ω;
if F= Ω then F ←P;
else LINK(R) ←P;
R←P;

Delete Y from the front of a queue:

if F= Ω then UNDERFLOW;
P←F;
F←LINK(P);
Y←INFO(P);
AVAIL ⇐ P;

F

R

Copyright © 1998 by Hanan Samet

ls2081
b

LINKED QUEUES

F=Ω signifies an empty queue

Insert Y at the rear of a queue:

P⇐ AVAIL;
INFO(P) ←Y;
LINK(P) ←Ω;
if F= Ω then F ←P;
else LINK(R) ←P;
R←P;

Delete Y from the front of a queue:

if F= Ω then UNDERFLOW;
P←F;
F←LINK(P);
Y←INFO(P);
AVAIL ⇐ P;

F

R

Copyright © 1998 by Hanan Samet

ls202
r

Y

Copyright © 1998 by Hanan Samet

ls2081
b

LINKED QUEUES

F=Ω signifies an empty queue

Insert Y at the rear of a queue:

P⇐ AVAIL;
INFO(P) ←Y;
LINK(P) ←Ω;
if F= Ω then F ←P;
else LINK(R) ←P;
R←P;

Delete Y from the front of a queue:

if F= Ω then UNDERFLOW;
P←F;
F←LINK(P);
Y←INFO(P);
AVAIL ⇐ P;

F

R

Copyright © 1998 by Hanan Samet

ls202
r

Y

Copyright © 1998 by Hanan Samet

ls203
v

Copyright © 1998 by Hanan Samet

ls2181
b

TOPOLOGICAL SORT

• Given: relations as to what precedes what (a<b)
• Desired: a partial ordering

• Formal definition of a partial ordering
 1. If X<Y and Y<Z then X<Z (transitivity)
 2. If X<Y then (asymmetry)
 3. (irreflexivity)

 2 implies the absence of loops

• Applications:
 1. job scheduling — PERT networks, CPM

 2. system tapes
 3. subroutine order so no routine is invoked before
 it is declared
 • But see PASCAL FORWARD declarations

XY

1

4

8

9

3

7

5

6

2

X X

Copyright © 1998 by Hanan Samet

ls2181
b

TOPOLOGICAL SORT

• Given: relations as to what precedes what (a<b)
• Desired: a partial ordering

• Formal definition of a partial ordering
 1. If X<Y and Y<Z then X<Z (transitivity)
 2. If X<Y then (asymmetry)
 3. (irreflexivity)

 2 implies the absence of loops

• Applications:
 1. job scheduling — PERT networks, CPM

 2. system tapes
 3. subroutine order so no routine is invoked before
 it is declared
 • But see PASCAL FORWARD declarations

XY

1

4

8

9

3

7

5

6

2

X X

Copyright © 1998 by Hanan Samet

ls212
r

1 3 7 4 9 2 5 8 6

Copyright © 1998 by Hanan Samet

ls22

ALGORITHM

• Performs topological sort
• Proves by construction the existence of the ordering
• Recursive algorithm
 1. find an item, i, not preceded by any other item
 2. remove i and perform the sort on the remaining items
• Brute force solution takes O(n · m) time for n items and m

successor-predecessor relation pairs by executing the
following for each of the n items
1. make a pass over successor-predecessor list S and find

items that do not appear as a successor (m operations)
2. remove all relations from S where an item found in 1

appears as a predecessor (m operations)
• Data Structure for better solution:
 t[K] corresponds to item K with 2 fields:
 • PRED_COUNT[t[K]] ≡ # of direct predecessors of K
 (i. e., L < K)
 • SUCCESSORS[t[K]] ≡ pointer to a linked list containing the
 direct successors of item K
Ex: t[7] :

• Maintain a queue of all items having 0 predecessors
• Each time item K is output:
 1. remove t[K] from the queue
 2. decrement PRED_COUNT field of all successors of K
 3. add to the queue any node whose PRED_COUNT field has
 gone to 0
• O(m+n) time and space

Ω1 4 5

PRED_COUNT
SUCCESSORS

DATA NEXT

Copyright © 1998 by Hanan Samet

ls23

OBSERVATIONS

• Can use a stack instead of a queue

• The queue can be kept in the PRED_COUNT field of t[K]
 since once this field has gone to zero it will not be
 referenced again – i.e., it can no longer be decremented

• Sequential allocation for t[K] whose size is fixed
• Linked allocation for the successor relations

• Queue is linked by index (à la FORTRAN)
• Successor list is linked by address

Copyright © 1998 by Hanan Samet

ls2481
b

CIRCULAR LISTS

• Last node points back to first node
• No need to think of any node as a ‘last’ or ‘first’ node

1. Insert Y at the left:
 P ⇐ AVAIL; INFO(P) ←Y;
 if PTR= Ω then PTR ←LINK(P) ←P
 else
 begin
 LINK(P) ←LINK(PTR); LINK(PTR) ←P;
 end;

2. Insert Y at the right:
 Insert Y at the left;
 PTR←P;

3. Set Y to the left node and delete:
 if PTR= Ω then UNDERFLOW;
 P ←LINK(PTR); Y ←INFO(P);
 LINK(PTR) ←LINK(P); AVAIL ⇐ P;
 if PTR=P then PTR ←Ω;
 /* Check for a list of one element */
 /* before deleting */

PTR

Copyright © 1998 by Hanan Samet

ls2481
b

CIRCULAR LISTS

• Last node points back to first node
• No need to think of any node as a ‘last’ or ‘first’ node

1. Insert Y at the left:
 P ⇐ AVAIL; INFO(P) ←Y;
 if PTR= Ω then PTR ←LINK(P) ←P
 else
 begin
 LINK(P) ←LINK(PTR); LINK(PTR) ←P;
 end;

2. Insert Y at the right:
 Insert Y at the left;
 PTR←P;

3. Set Y to the left node and delete:
 if PTR= Ω then UNDERFLOW;
 P ←LINK(PTR); Y ←INFO(P);
 LINK(PTR) ←LINK(P); AVAIL ⇐ P;
 if PTR=P then PTR ←Ω;
 /* Check for a list of one element */
 /* before deleting */

PTR

Copyright © 1998 by Hanan Samet

ls242
r

Y

Copyright © 1998 by Hanan Samet

ls2481
b

CIRCULAR LISTS

• Last node points back to first node
• No need to think of any node as a ‘last’ or ‘first’ node

1. Insert Y at the left:
 P ⇐ AVAIL; INFO(P) ←Y;
 if PTR= Ω then PTR ←LINK(P) ←P
 else
 begin
 LINK(P) ←LINK(PTR); LINK(PTR) ←P;
 end;

2. Insert Y at the right:
 Insert Y at the left;
 PTR←P;

3. Set Y to the left node and delete:
 if PTR= Ω then UNDERFLOW;
 P ←LINK(PTR); Y ←INFO(P);
 LINK(PTR) ←LINK(P); AVAIL ⇐ P;
 if PTR=P then PTR ←Ω;
 /* Check for a list of one element */
 /* before deleting */

PTR

Copyright © 1998 by Hanan Samet

ls242
r

Y

Copyright © 1998 by Hanan Samet

ls243
v

Y

Copyright © 1998 by Hanan Samet

ls2481
b

CIRCULAR LISTS

• Last node points back to first node
• No need to think of any node as a ‘last’ or ‘first’ node

1. Insert Y at the left:
 P ⇐ AVAIL; INFO(P) ←Y;
 if PTR= Ω then PTR ←LINK(P) ←P
 else
 begin
 LINK(P) ←LINK(PTR); LINK(PTR) ←P;
 end;

2. Insert Y at the right:
 Insert Y at the left;
 PTR←P;

3. Set Y to the left node and delete:
 if PTR= Ω then UNDERFLOW;
 P ←LINK(PTR); Y ←INFO(P);
 LINK(PTR) ←LINK(P); AVAIL ⇐ P;
 if PTR=P then PTR ←Ω;
 /* Check for a list of one element */
 /* before deleting */

PTR

Copyright © 1998 by Hanan Samet

ls242
r

Y

Copyright © 1998 by Hanan Samet

ls243
v

Y

Copyright © 1998 by Hanan Samet

ls244
g

/ / / / / / / / /

Copyright © 1998 by Hanan Samet

ls2481
b

CIRCULAR LISTS

• Last node points back to first node
• No need to think of any node as a ‘last’ or ‘first’ node

1. Insert Y at the left:
 P ⇐ AVAIL; INFO(P) ←Y;
 if PTR= Ω then PTR ←LINK(P) ←P
 else
 begin
 LINK(P) ←LINK(PTR); LINK(PTR) ←P;
 end;

2. Insert Y at the right:
 Insert Y at the left;
 PTR←P;

3. Set Y to the left node and delete:
 if PTR= Ω then UNDERFLOW;
 P ←LINK(PTR); Y ←INFO(P);
 LINK(PTR) ←LINK(P); AVAIL ⇐ P;
 if PTR=P then PTR ←Ω;
 /* Check for a list of one element */
 /* before deleting */

PTR

Copyright © 1998 by Hanan Samet

ls242
r

Y

Copyright © 1998 by Hanan Samet

ls243
v

Y

Copyright © 1998 by Hanan Samet

ls244
g

/ / / / / / / / /

Copyright © 1998 by Hanan Samet

ls245
v

1 and 3 imply stack
2 and 3 imply queue
1, 2, and 3 imply output restricted deque

Copyright © 1998 by Hanan Samet

ls25

ERASING A CIRCULAR LIST

Note: PTR is meaningless after erasing a list

Inserting Circular List L2 at the Right of Circular List L1:

Assume PTR1 points to L1 and PTR2 points to L2.

if PTR2 ≠Ω then
 begin
 if PTR1 ≠Ω then LINK(PTR1) ↔LINK(PTR2);
 PTR1 ←PTR2;
 PTR2 ←Ω;
 end

• A circular list can also be split into two lists
• Analogous to concatenation and deconcatenation of strings.

81
b

PTR1 PTR2

PTRAVAIL

Copyright © 1998 by Hanan Samet

ls25

ERASING A CIRCULAR LIST

Note: PTR is meaningless after erasing a list

Inserting Circular List L2 at the Right of Circular List L1:

Assume PTR1 points to L1 and PTR2 points to L2.

if PTR2 ≠Ω then
 begin
 if PTR1 ≠Ω then LINK(PTR1) ↔LINK(PTR2);
 PTR1 ←PTR2;
 PTR2 ←Ω;
 end

• A circular list can also be split into two lists
• Analogous to concatenation and deconcatenation of strings.

81
b

PTR1 PTR2

PTRAVAIL

Copyright © 1998 by Hanan Samet

ls252
r

AVAIL ↔ PTR ?

Copyright © 1998 by Hanan Samet

ls25

ERASING A CIRCULAR LIST

Note: PTR is meaningless after erasing a list

Inserting Circular List L2 at the Right of Circular List L1:

Assume PTR1 points to L1 and PTR2 points to L2.

if PTR2 ≠Ω then
 begin
 if PTR1 ≠Ω then LINK(PTR1) ↔LINK(PTR2);
 PTR1 ←PTR2;
 PTR2 ←Ω;
 end

• A circular list can also be split into two lists
• Analogous to concatenation and deconcatenation of strings.

81
b

PTR1 PTR2

PTRAVAIL

Copyright © 1998 by Hanan Samet

ls252
r

AVAIL ↔ PTR ?

Copyright © 1998 by Hanan Samet

ls253
v

if PTR ≠Ω then AVAIL ↔LINK(PTR)

Copyright © 1998 by Hanan Samet

ls25

ERASING A CIRCULAR LIST

Note: PTR is meaningless after erasing a list

Inserting Circular List L2 at the Right of Circular List L1:

Assume PTR1 points to L1 and PTR2 points to L2.

if PTR2 ≠Ω then
 begin
 if PTR1 ≠Ω then LINK(PTR1) ↔LINK(PTR2);
 PTR1 ←PTR2;
 PTR2 ←Ω;
 end

• A circular list can also be split into two lists
• Analogous to concatenation and deconcatenation of strings.

81
b

PTR1 PTR2

PTRAVAIL

Copyright © 1998 by Hanan Samet

ls252
r

AVAIL ↔ PTR ?

Copyright © 1998 by Hanan Samet

ls253
v

if PTR ≠Ω then AVAIL ↔LINK(PTR)

Copyright © 1998 by Hanan Samet

ls254
g

Copyright © 1998 by Hanan Samet

ls2681
b

DOUBLY-LINKED LISTS

 RLINK(LLINK(Y)) = LLINK(RLINK(Y)) = Y

• Disadvantage: More space for links

• Advantage: Given X, it can be deleted without having
 to locate its predecessor as is necessary
 with singly-linked lists

Easy to insert a node to the left or right of another node:

Insert to the right of Z:
 P ⇐ AVAIL;

 LLINK(P) ←Z; RLINK(P) ←RLINK(Z);

 LLINK(RLINK(Z)) ←P; RLINK(Z) ←P;

Insert to the left of X:
 Interchange LEFT and RIGHT in ‘Insertion to the right’.

• 4 links are changed (only 2 changed with singly-linked list)

ZYX

ZYX

First ΩX

Copyright © 1998 by Hanan Samet

ls2681
b

DOUBLY-LINKED LISTS

 RLINK(LLINK(Y)) = LLINK(RLINK(Y)) = Y

• Disadvantage: More space for links

• Advantage: Given X, it can be deleted without having
 to locate its predecessor as is necessary
 with singly-linked lists

Easy to insert a node to the left or right of another node:

Insert to the right of Z:
 P ⇐ AVAIL;

 LLINK(P) ←Z; RLINK(P) ←RLINK(Z);

 LLINK(RLINK(Z)) ←P; RLINK(Z) ←P;

Insert to the left of X:
 Interchange LEFT and RIGHT in ‘Insertion to the right’.

• 4 links are changed (only 2 changed with singly-linked list)

ZYX

ZYX

First ΩX

Copyright © 1998 by Hanan Samet

ls262
r

Copyright © 1998 by Hanan Samet

ls2681
b

DOUBLY-LINKED LISTS

 RLINK(LLINK(Y)) = LLINK(RLINK(Y)) = Y

• Disadvantage: More space for links

• Advantage: Given X, it can be deleted without having
 to locate its predecessor as is necessary
 with singly-linked lists

Easy to insert a node to the left or right of another node:

Insert to the right of Z:
 P ⇐ AVAIL;

 LLINK(P) ←Z; RLINK(P) ←RLINK(Z);

 LLINK(RLINK(Z)) ←P; RLINK(Z) ←P;

Insert to the left of X:
 Interchange LEFT and RIGHT in ‘Insertion to the right’.

• 4 links are changed (only 2 changed with singly-linked list)

ZYX

ZYX

First ΩX

Copyright © 1998 by Hanan Samet

ls262
r

Copyright © 1998 by Hanan Samet

ls263
v

Copyright © 1998 by Hanan Samet

ls2681
b

DOUBLY-LINKED LISTS

 RLINK(LLINK(Y)) = LLINK(RLINK(Y)) = Y

• Disadvantage: More space for links

• Advantage: Given X, it can be deleted without having
 to locate its predecessor as is necessary
 with singly-linked lists

Easy to insert a node to the left or right of another node:

Insert to the right of Z:
 P ⇐ AVAIL;

 LLINK(P) ←Z; RLINK(P) ←RLINK(Z);

 LLINK(RLINK(Z)) ←P; RLINK(Z) ←P;

Insert to the left of X:
 Interchange LEFT and RIGHT in ‘Insertion to the right’.

• 4 links are changed (only 2 changed with singly-linked list)

ZYX

ZYX

First ΩX

Copyright © 1998 by Hanan Samet

ls262
r

Copyright © 1998 by Hanan Samet

ls263
v

Copyright © 1998 by Hanan Samet

ls264
g

Copyright © 1998 by Hanan Samet

ls27

TWO LINKS FOR THE PRICE OF ONE

Exclusive Or:

 A B A ⊕ B A ⊕ A = 0
 0 0 0 A ⊕ 0 = A A ⊕ 1 = A
 0 1 1 A ⊕ B = B ⊕ A
 1 0 1 (A ⊕ B) ⊕ C = A ⊕ (B ⊕ C)
 1 1 0 A ⊕ A⊕ B = B

Let LINK(X i) = LOC(X i+1) ⊕ LOC(Xi-1)

Knowing 2 successive locations (Li, Li+1) allows going
left and right.

RIGHT(L 2) = LINK(L 2) ⊕ L1 = L 3⊕ L1⊕ L1 = L 3
LEFT(L 1) = LINK(L 1) ⊕ L2 = L 0⊕ L2⊕ L2 = L 0

Ex: Exchange the contents of two locations
 without using temporaries

 B ← A ⊕ B A ⊕ B

 A ← A ⊕ B A ⊕ (A ⊕ B) = B

 B ← A ⊕ B B ⊕ (A ⊕ B) = A

Xi+1XiXi-1

L3:L2:L1:L0:

Copyright © 1998 by Hanan Samet

ls28

ARRAYS

• Generalization of a linear list
• Allocate storage sequentially
• LOC(A[m,n]) ≡ A0 + A1·m + A2·n
 A0, A1, A2 are constants
• Ex: Q[0:3,0:2,0:1]

Row-major order
ALGOL

Column-major order
FORTRAN

• Row-major is preferable = lexicographic order of indices
• LOC(Q[i,j,k]) = LOC(Q[0,0,0]) + 6·i + 2·j + k

Q[0,0,0]

Q[0,0,1]

Q[0,1,0]

Q[0,1,1]

Q[0,2,0]

Q[0,2,1]

Q[1,0,0]

Q[3,2,0]

Q[3,2,1]

...

Q[0,0,0]

Q[1,0,0]

Q[2,0,0]

Q[3,0,0]

Q[0,1,0]

Q[1,1,0]

Q[2,1,0]

Q[2,2,1]

Q[3,2,1]

...

Copyright © 1998 by Hanan Samet

ls29

K-DIMENSIONAL ARRAYS

• A[l1:u1, l2:u2, …, lk:uk]

• LOC(A[i1, i2, …, ik]) = LOC(A[l1,l2,l3,…,lk]) +
 (u2–l2+1) … (uk–lk+1)·(i1–l1) + …
 (uk–lk+1)·(ik–1–lk–1) + ik–lk

 = LOC(A[l1,l2,l3,…,lk]) + ∑ Ar·(ir–lr)

 = {LOC(A[l1,l2,l3,…,lk])–∑ Ar·lr } + ∑ Ar·ir

 Ar = ∏ (us–ls+1)

 Ak = 1

• Semantics of Ar:
 1. let i1, i2, …, ir be constant
 2. let jr+1, jr+2, …, jk vary through li ≤ ji ≤ ui
 3. consider A[i1, i2, …, ir, jr+1, jr+2, …, jk]
 • when ir changes by 1 LOC(A[i1, i2, …, ik]) changes by Ar

k

k

r = 1

r = 1
k

r = 1

r < s ≤ k

Copyright © 1998 by Hanan Samet

ARRAY DESCRIPTOR

• ‘Dope vector’
• Ex: Q[0:3,0:2,0:1]

• Why store the bounds?
• Not needed in the access function!

ls30

Address of first element

of dimensions

Type (string, real, complex, ?)

l1

l2

ln

...

Real

3

0

3

6

0

2

2

0

1

1

Q0

u1

A1

u2

A2

un

An

Copyright © 1998 by Hanan Samet

ls31

TRIANGULAR MATRIX

• LOC(A[j,k]) = A0 + F1(j) + F2(k)

• Two triangular matrices:

 A[j,k] =

 B[j,k] =

81
b

A[0,0]

A[1,0] A[1,1]

A[n,0] A[n,1] … A[n,n]

A[0,0] B[0,0] B[1,0] … B[n,0]

A[1,0] A[1,1] B[1,1] … B[n,1]

A[n,0] A[n,1] … A[n,n] B[n,n]

...
= C

...

Copyright © 1998 by Hanan Samet

ls31

TRIANGULAR MATRIX

• LOC(A[j,k]) = A0 + F1(j) + F2(k)

• Two triangular matrices:

 A[j,k] =

 B[j,k] =

81
b

A[0,0]

A[1,0] A[1,1]

A[n,0] A[n,1] … A[n,n]

A[0,0] B[0,0] B[1,0] … B[n,0]

A[1,0] A[1,1] B[1,1] … B[n,1]

A[n,0] A[n,1] … A[n,n] B[n,n]

...
= C

...

Copyright © 1998 by Hanan Samet

ls312
r

LOC(A[j,k]) = LOC(A[0,0]) + (∑ i+1) + k

 = LOC(A[0,0]) + ––––– + k

• quadratic access function (not linear)

j·(j+1)
2

i = 0

j–1

Copyright © 1998 by Hanan Samet

ls31

TRIANGULAR MATRIX

• LOC(A[j,k]) = A0 + F1(j) + F2(k)

• Two triangular matrices:

 A[j,k] =

 B[j,k] =

81
b

A[0,0]

A[1,0] A[1,1]

A[n,0] A[n,1] … A[n,n]

A[0,0] B[0,0] B[1,0] … B[n,0]

A[1,0] A[1,1] B[1,1] … B[n,1]

A[n,0] A[n,1] … A[n,n] B[n,n]

...
= C

...

Copyright © 1998 by Hanan Samet

ls312
r

LOC(A[j,k]) = LOC(A[0,0]) + (∑ i+1) + k

 = LOC(A[0,0]) + ––––– + k

• quadratic access function (not linear)

j·(j+1)
2

i = 0

j–1

Copyright © 1998 by Hanan Samet

ls313
z

C[j,k]

C[k,j+1]

Copyright © 1998 by Hanan Samet

SPARSE MATRICES

• For each item:

• For each row: For each column:

• Ex:

• Circular list is useful for insertion and deletion
 of elements

• Ex: compute C = C+A·B

 Cik = Cik + ∑ Aij·Bjk

ls32

Col #

Up LinkLeft Link

Row # Value

–1 –1

1 –1–1

3

–1 2 3

111 –1 1 1 4

3

2 –1 2 21 2 2 3

–1 3 3 5

j

()1 4
2 3
 5

Copyright © 1998 by Hanan Samet

