
nn0

Copyright © 1998 Hanan Samet

These notes may not be reproduced by any means (mechanical or elec-
tronic or any other) without the express written permission of Hanan Samet

RANKING IN SPATIAL DATABASES

GÍSLI R. HJALTASON
HANAN SAMET

COMPUTER SCIENCE DEPARTMENT AND
CENTER FOR AUTOMATION RESEARCH AND

INSTITUTE FOR ADVANCED COMPUTER STUDIES
UNIVERSITY OF MARYLAND

COLLEGE PARK, MARYLAND 20742-3411 USA

nn1

RANKING PROBLEM

• Ex: Find all the houses in the database in the order of
their distance from location p or object o

• Ex: Find the nearest city of population greater than
30,000 to Portland, Maine

• If we use an index on the locational attributes
corresponding to the location of the cities, then we want
to obtain the cities in the order of their distance from
Portland, Maine

• The process ceases once the condition on the non-
locational population attribute is satisfied

• Query is also a partial ranking query

• We are interested in a solution where if the closest record
does not satisfy our query, then we can get the next clos-
est record by continuing from where we last left off rather
that having to restart from the reference point of the index

• Used in browsing applications

1. can restrict query region

2. can vary nature of features retrieved as well as query
object

3. can serve as basis of incremental spatial join
operations

• Our solution is illustrated by an example spatial index
making use of a disjoint decomposition (e.g., PR quad-
tree) although implemented for other spatial indexes
including R-trees

nn2

MULTIATTRIBUTE INDEXING

• Indexes are used in databases to facilitate retrieval of
records with similar values

• For each particular attribute, an index provides an ordering
in increasing (or decreasing) order of the attribute value

• How to index multiple attributes?
1. primary and secondary attributes

• sort by first attribute
• use second attribute to break ties
• OK as long as we just want the records ordered by

the first attribute
• if we want the records ordered by the second

attribute, then index is useless as consecutive
records are not necessarily ordered by the value of
the second attribute

2. build an additional index on the second attribute
• problem: takes up additional space
• separate indexes are acceptable as long as queries

don’t make use of a combination of attribute values
• not all combinations are meaningful if dimensional

units of the attribute values differ
Ex: age (years) and weight (pounds)
a. unlikely to determine nearest record to the one of

John Jones in terms of age and weight as we
don’t have a commonly accepted notion of the
year-pound unit

b. however, Boolean combinations are useful
•range (i.e., window) or partial range queries
•e.g., find all people between 25 and 30 years

who weigh between 50 and 60 kilograms

nn3

SPATIAL DATABASES

• Distinguished from conventional databases, in part, by
fact that some of the attributes are locational in which
case they have a common dimensional unit which is
distance in space

1. distance unit is the same whether we are in one, two,
or three dimensions, etc.

2. if combine attributes and seek to find nearest record of
type t to Chicago, then unit is distance regardless of
whether there are one, two, three, ... (or even more)
locational attributes associated with t

3. nearest is not meaningful for combinations of non-
locational attributes

4. not all attributes with type distance are locational (e.g.,
size corresponding to pant length, height, waist, etc.)

• Spatial databases are differentiated by the type of
records that they store

1. points (e.g., locations of features)
• zero volumetric measure
• discrete

2. features (i.e., space occupied by the features)
• nonzero volumetric measure (i.e., extent)
• continuous

• Records in a conventional database are always discrete

1. can be viewed as points in a higher dimensional space

2. difference is that for spatial attributes, dimensional unit
is always distance in space

nn4

ORDERING DATA

• Use a combination of the values of the locational
attributes

• Facilitates storage of records

• Desirable for ordering to preserve proximity — i.e.,
records close to each other in the multidimensional space
should also be close to each other in the ordering

• Hashing is a way of achieving ordering

1. explicit order
• mapping from higher dimensional space to one-

dimensional space
• e.g., bit interleaving (Morton order), Peano-Hilbert,

Sierpinski, etc.
• result is a space-filling curve
• no order has property that ALL records that are

close to each other in the multidimensional space of
the locational attributes are also close to each other
in the range of the mapping

2. implicit order
• bucketing methods
• sort records on the basis of the space they occupy

and group into cells or buckets of finite capacity

nn5

ORDERING ON THE BASIS OF SPATIAL OCCUPANCY

1. Minimum bounding rectangles
• e.g., R-tree
• good at distinguishing empty and non-empty space
• drawbacks:

a. non-disjoint decomposition of space
• feature is associated with just one bounding

rectangle while a point p can be in several
bounding rectangles

• just because we don’t find a feature containing p
in a bounding rectangle that overlaps p does not
mean that features in other bounding rectangles
do not contain p

• may need to search entire space
b. inability to correlate empty space in two maps

2. Disjoint cells
• drawback: a feature may be reported more than once

a. because it may have been decomposed into
several pieces and thus be in several cells

b. removing duplicates may require sorting
• uniform grid

a. all cells the same size
b. drawback: possibility of many sparse cells

• adaptive grid — quadtree variants
a. regular decomposition
b. all cells of width power of 2

• partitions at arbitrary positions
a. drawback: not a regular decomposition
b. e.g., R+-tree

nn6
R-TREES

Objects grouped into hierarchies, stored in another
structure such as a B-tree

Object has single bounding rectangle, yet area that it
spans may be included in several bounding rectangles

Does not result in disjoint decomposition of space

a

b

c

d

e

f

g

h

i

1
b

Order (m,M) R-tree
1. between m M/2 and M entries in each node

except root
2. at least 2 entries in root unless a leaf node

2
r

R3

R4

R5
R6

ic feba hgdR3: R4: R5: R6:

3
z

R4R3 R6R5

R1

R2

R2:R1:

4
g

R2R1R0:

R0

nn7
SEARCHING FOR A POINT OR LINE
SEGMENT IN AN R-TREE

1
b

ba hgd ic fe

R2R1

R4R3 R6R5

a

b

c

d

e

f

g

h

i

R3

R4

R5

R6R2

R1

Q

May have to examine many nodes since a line segment
can be contained in the covering rectangles of many
nodes yet its record is contained in only one leaf node
(e.g., i in R2, R3, R4, and R5)

Ex: Search for a line segment containing point Q

R3: R4: R5: R6:

R1: R2:

R0:

R0

Q is in R0

2
v

Q can be in both R1 and R2

3
r

4
z

Searching R1 first means that R4 is searched but this
leads to failure even though Q is part of i which is in R4

5
g

Searching R2 finds that Q can only be in R5

nn8DISJOINT CELLS

Objects decomposed into disjoint subobjects; each
subobject in different cell

Drawback: in order to determine area covered by
object, must retrieve all cells that it occupies

Techniques differ in degree of regularity

R+-tree (also k-d-B-tree) and cell tree are examples
of this technique

a

b

c

d

e

f

g

h

i

1
b

Q

2
r

R3

R4

R6

R5

hgd ihc ifc ba e iR3: R4: R5: R6:

3
z

R4R3 R6R5

R1

R2

R1: R2:

4
g

R2R1R0:

R0

nn9

UNIFORM GRID

• Ideal for uniformly distributed data

• Supports set-theoretic operations

• Spatial data (e.g., line segment data) is rarely uniformly
distributed

nn10

PM1 QUADTREE

• Vertex-based (one vertex per block)

a b

c

d

e

f

g

h

i

DECOMPOSITION RULE:

Partitioning occurs when a block contains more than one
segment unless all the segments are incident at the same
vertex which is also in the same block

• Shape independent of order of insertion

nn11

RANKING IN SPATIAL DATABASES

1. Goal: use ordering provided by the index to rank data
based on its closeness to a given value v of attribute a

2. Ranking is a general problem

3. If ranking on the basis of the value of just one attribute,
then the implicit and explicit indexes are equivalent and
we can derive the ranking directly from the index
• index is obtained by sorting the data with respect to a

reference point (e.g., zero for data of type ratio)
• e.g., rank individual in order of the closeness of their

weight to that of John Smith which is 150 pounds
a. look up 150 in the index and then proceed in the

two directions along the index to get the nearest
individuals by weight in constant time

b. no need to rebuild index if want to also ask about
Sam Jones whose weight is 200 pounds

4. If ranking involves more than one locational attribute all
of whose values are of type distance, then more complex
• if explicit index then not possible

a. e.g., build index on basis of distance from point p1
using a particular distance metric

b. if want ranking on basis of distance from p2, then
need to resort as their distance from p2 is not
obtained by the addition or subtraction of some
constant equal to the distance from p1 to p2 as is
the case when there is just one attribute involved

• use an implicit index based on sorting objects with
respect to the space they occupy instead of each other
or some common reference point (e.g., bucketing)

nn12

PR QUADTREE

• Decompose space until just one point per block

(52,10)
Mobile

(62,77)
Toronto

(82,65)
Buffalo

(5,45)
Denver

(27,35)
Omaha

(85,15)
Atlanta

(35,42)
Chicago

(90,5)
Miami

A

B

D F

Toronto

C E

Buffalo Denver

Chicago Omaha Atlanta Miami

Mobile

nn13

BOTTOM-UP SOLUTION

• Algorithm:

1. locate block b containing query object q

2. find nearest feature o by examining adjacent
neighboring blocks of b in clockwise order

• Depending on nature of the distance metric (e.g.,
Euclidean) may have to visit block not immediately
adjacent to b

• Obtain neighbors using neighbor-finding techniques
which don’t restart search at root of the tree

• Especially fast if nearest feature is in a brother of b

• Worst case requires visiting all of the blocks around the
node

• If need to find the next closest feature, then have to
restart search from the beginning rather than from where
last left off

nn14

TOP-DOWN SOLUTION

1. Easy to find leaf node(s) b containing query object q

2. Use recursion to keep track of blocks seen already

3. Problem is that b may be empty or not contain the
nearest feature

• need to unwind recursion to find nearest feature

4. Algorithm breaks down if want to get second nearest
feature without restarting search from the start

• when visit a leaf node n, we need to remember
features already encountered which may still not yet
be the closest ones

4. Solution is to replace the recursion stack by a priority
queue to record:

• blocks with unvisited descendants

• features which have not yet been reported

5. Priority queue insertion rules:

• feature o in b is inserted in the queue only if o has not
yet been reported
a. check if o’s distance from q is less than the

distance from b to q
b. if yes, then o must have been encountered in a

block c which was closer to q than b and hence
already been reported

nn15

ALGORITHM REQUIREMENTS

• Features can be of arbitrary type (points, rectangles,
polygons, etc.)

• Must have a distance function between:

1. query object type and the feature type stored in the
index (feature metric)

2. query object type and the container block type (block
metric)

• Two distance functions must be consistent with each
other

1. means that for a feature f with distance d (f,q)=s, then
there must exist a block b containing f such that
d (b,q) ≤ s

2. always true if both distance functions are based on the
same metric
• e.g., Euclidean, Manhattan, Chessboard

3. also implies that distance from a query object to the
block that contains it is zero

• Works in any dimension

• Location of the query object q need not be in the space
spanned by the dataset (e.g., outside a window whose
features are to be ranked with respect to q)

nn16nn161
b

ALGORITHM
IncNearest(QueryObject,SpatialIndex)
1. Queue ← NewPriorityQueue()
2. Block ← RootBlock(SpatialIndex)
3. Enqueue(Queue,Dist(Block,QueryObject),Block)
4. while not IsEmpty(Queue) do
5. Element ← Dequeue(Queue)
6. if Element is a spatial object then
7. while Element = First(Queue) do DeleteFirst(Queue)
8. Report Element
9. else if Element is a leaf block then
10. for each Object in leaf block Element do
11. if Dist(Object,QueryObject) ≥
12. Dist(Element,QueryObject) then
13. Enqueue(Queue,Dist(Object,QueryObject),Object)
14. else /* Element is a non-leaf container block */
15. for each Child block of container block Element
16. in SpatialIndex do
17. Enqueue(Queue,Dist(Child,QueryObject),Child)

2
r

1. Lines 1-3 initialize the priority queue

3
z

2. Line 8 reports a feature
• coroutine-like behavior as control will resume here to

get the next nearest

4
g

3. Line 11 ensures that features that have already been
reported are not put on the queue again
• to work properly, blocks must be retrieved from the

queue before spatial features at the same distance
• otherwise, a feature at the same distance as the block

might be retrieved again after the block has been
processed and we would not know that it had already
been reported

5
v

4. Line 7 eliminates duplicate instances of a feature from
the queue
• possible for disjoint feature decompositions (e.g., PMR

quadtree, R+-tree)
• duplicates are in front by virtue of having an ordering

on the queue
• more efficient than checking for membership in queue

nn17nn171
b

EXAMPLE
• Find closest city to x=(65,62) with population ≥ 1 million

Mobile

Toronto

Buffalo

Denver

Omaha

Atlanta

Chicago

Miami

1

2 3

4 5
8

7

9 10

11 15

13 146

12

16

• Blocks labeled “depth/
NW-most descendant”

• Search circles corre-
spond to block/feature
being dequeued

• Legend
satisfies query
doesn’t satisfy query
City Pop (1000) Pos

Atlanta 4,129 (85,15)
Buffalo 764 (82,65)
Chicago 6,532 (35,42)
Denver 1,381 (5,45)
Mobile 504 (52,10)
Omaha 416 (27,35)
Toronto 904 (62,77)
Miami 5,250 (90,5)

1. Initially, queue only contains root: [0/1]

2
r

2. Dequeue root and enqueue 4 sons: [1/2 1/13 1/1 1/6]

3
z

3. Dequeue 1/2 and enqueue 4 sons: [2/4 2/5 1/13 2/2 1/1 2/3 1/6]

4
g

4. Dequeue 2/4 (empty); dequeue 2/5 containing Buffalo; enqueue
Buffalo: [1/13 2/2 1/1 2/3 Buffalo 1/6]

5
v

5. Dequeue 1/13 and enqueue 4 sons:
[2/13 2/2 1/1 2/14 2/3 Buffalo 1/6 2/15 2/16]

6
r

6. Dequeue 2/13 (empty); dequeue 2/2 containing Toronto; enqueue
Toronto: [1/1 Toronto 2/14 2/3 Buffalo 1/6 2/15 2/16]

7
z

7. Dequeue 1/1 which is empty; dequeue Toronto (population too
small); dequeue 2/14 and 2/3 (empty): [Buffalo 1/6 2/15 2/16]

1

8
g

8. Dequeue Buffalo (population too small): [1/6 2/15 2/16]

2

9
v

9. Dequeue 1/6 and enqueue 4 sons: [2/7 2/15 2/16 2/12 2/6 2/11]

10
r

10. Dequeue 2/7 and enqueue 4 sons:
[3/8 3/10 3/7 3/9 2/15 2/16 2/12 2/6 2/11]

11
g

11. Dequeue 3/8 and 3/10 (empty); dequeue 3/7 containing Chicago;
enqueue Chicago: [Chicago 3/9 2/15 2/16 2/12 2/6 2/11]

12
z

12. Dequeue Chicago which satisfies the query

3

nn18

COMPARISON WITH OTHER WORK

• Not more efficient than similar methods of Arya/Mount
and Hoel/Samet

• Works with arbitrary data structures including R-trees

• Arya/Mount make use of a k-d tree along with a priority
queue but the results of their complexity analysis only
hold for an approximate answer

• Unlike Arya/Mount we are not restricted to point features

• Compare with algorithm of Roussopoulos/Kelley/Vincent

1. restricted to R-trees

2. restricted to points as query objects

3. k is fixed a priori
• need to restart algorithm if want the k+1 nearest

neighbors
• maybe don’t need all k neighbors

• Algorithm of Hoel/Samet is only good for finding nearest
neighbor

nn19

ANALYSIS

1. Assume constant time to calculate distance metric

• true for point query objects but not necessarily for
more complex features such as polygons

2. Assume a PMR quadtree

• for line data, O (N) blocks for N lines

3. Assume spatial index exists and thus ignore cost of
building it

4. Worst case queue size
arises when:

• all features in queue are
at a distance of at least d
from q, and

• all leaf blocks containing
the features are at a dis-
tance less than d from q

• implies all features are
inserted into the queue
before finding the nearest one — i.e., O(N) space

• if must rank all features, then O(N log M) execution time
a. M is maximum queue size
b. O(N log N) worst-case time which compares

favorably with one-dimensional sorting

• circular feature configuration is only bad if query
object is at the center of the circle

• highly unlikely for both the features to be in a circle
and the query object to be at its center

nn20

ALTERNATIVE SOLUTIONS TO RANKING PROBLEM

1. Compute distance of all features from query object
using conventional sorting techniques

• O(N log N)

• our approach is better as don’t have to retrieve all
features at once

• our approach is dynamic

• we can usually do better than O(N log N)
a. we usually base the sort on the container blocks

instead of the features
b. important in a disk-based environment as usually

we just need to look at the location and size of the
container blocks rather than inspecting their
contents which may require a disk access

2. Instead of enqueueing empty blocks, only insert
nonempty blocks

• costly as requires a disk access to inspect contents

• our algorithm often avoids inspecting empty blocks as
they get pruned by being too far away from the query
object

• however, if a total ranking, then it may be better to
inspect blocks before enqueueing

nn21

CONCLUSION

1. For partial ranking, we visit a minimum number of
container blocks in the sense that:

• assume kth nearest neighbor is at distance dk from q

• only examine contents of container blocks within a
distance dk from q

• however, all of the container blocks could be within dk
of q so that the algorithm still takes the same amount
of time as a total ranking which is O(N log N)

2. Algorithm can be applied to other spatial indexes as
long as they decompose the space into blocks that are
organized using a containment hierarchy

3. Analysis was for a PMR quadtree and may differ for
other spatial indexes

