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HISTORY

1. Linearization or ordering of higher dimensional space
• space filling curves — e.g., Peano (1891)
• spatial index — Morton (1966)

2. Computer graphics
• sorting objects for display
• Warnock’s algorithm (1968)

a. vector: hidden-line elimination
b. raster: hidden-surface elimination

• animation — Hunter (1978)
• BSP trees — Fuchs, Kedem, and Naylor (1980)

3. Image processing and pattern recognition
• Klinger (1971)
• split-and-merge segmentation methods — Horowitz

and Pavlidis (1976)
4. Multidimensional point representation

• multidimensional binary search trees — Finkel and
Bentley (1974)

• k-d trees — Bentley (1975)
5. Volume data for solid modeling and computer vision

• bounding boxes — Reddy and Rubin (1978)
• octrees — Hunter (1978)

6. Finite element mesh generation — Rheinboldt and
Mesztenyi (1980)

7. Fast matrix operations — Strassen (1969)
8. Computational complexity

• dimension reducing device — Hunter (1978)
• optimal placement — Li, Grosky, and Jain (1981)
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SPLIT-AND-MERGE SEGMENTATION

• Subdivide an image until a homogeneity criterion is 
satisfied — e.g., standard deviation of gray levels is 
below a particular threshold

• Group adjacent blocks into maximal homogeneous 
regions

• Ex:

1
b
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1. initial image decomposition into cells of uniform size
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3. split blocks that are not homogeneous
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3. split blocks that are not homogeneous
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4. group identical blocks into regions
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SPACE ORDERING METHODS

• Linearization of higher dimensional spaces
• Space-filling curves
• Examples:

Row order Row-prime order

Morton order Peano-Hilbert order

Cantor order Spiral order
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CONVERTING BETWEEN POINTS AND CURVES

• Need to know size of image for all but the Morton 
order

• Relatively easy for all but the Peano-Hilbert order 
which is difficult (although possible) to decode 
and encode to obtain the corresponding x and y 
coordinate values

• Morton order

1. use bit interleaving of binary representation of 
the x and y coordinates of the point

2. also known as Z-order

0 0 1

1 1 0

y

x

3. Ex: Atlanta  (6,1) 0 1 0 1 1 0 = 22
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STABILITY OF SPACE ORDERING METHODS

• An order is stable if the relative order of the individual 
pixels is maintained when the resolution (i.e., the size of 
the space in which the cells are embedded) is doubled or 
halved

• Morton order is stable while the Peano-Hilbert order is not

• Ex: 

 Morton: Peano-Hilbert:

1

32

0 1

23

0
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• Result of doubling the resolution (i.e., the coverage)
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in which case the circled points do not maintain the same 
relative order in the Peano-Hilbert order while they do in 
the Morton order
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DESIRABLE PROPERTIES OF SPACE FILLING CURVES

1. Pass through each point in the space once and only 
once

2. Two points that are neighbors in space are neighbors 
along the curve and vice versa
• impossible to satisfy for all points at all resolutions

3. Easy to retrieve neighbors of a point

4. Curve should be stable as the space grows and 
contracts by powers of two w ith the same origin
• yes for Morton and Cantor orders

• no for row, row-prime, Peano-Hilbert, and spiral 
orders

5. Curve should be admissible
• at each step at least one horizontal and one vertical 

neighbor must have already been encountered
• used by active border algorithms - e.g., connected 

component labeling algorithm
• row and Morton orders are admissible
• Peano-Hilbert order is not admissible
• row-prime, Cantor, and spiral orders are admissible if 

permit the direction of the horizontal and vertical 
neighbors to vary from point to point

6. Easy to convert between two-dimensional data and the 
curve and vice-versa
• easy for Morton order
• difficult for Peano-Hilbert order
• relatively easy for row, row-prime, Cantor, and spiral 

orders
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SPACE REQUIREMENTS

1. Rationale for using quadtrees/octrees is not so much for
saving space but for saving execution time

2. Execution time of standard image processing algorithms
that are based on traversing the entire image and
performing a computation at each image element is
proportional to the number of blocks in the
decomposition of the image rather than their size
• aggregation of space leads directly to execution time

savings as the aggregate (i.e., block) is visited just
once instead of once for each image element (i.e.,
pixel, voxel) in the aggregate (e.g., connected
component labeling)

3. If want to save space, then, in general, statistical image
compression methods are superior
• drawback: statistical methods are not progressive as

need to transmit the entire image whereas quadtrees
lend themselves to progressive approximation

• quadtrees, though, do achieve compression as a
result of use of common subexpression elimination
techniques
a. e.g., checkerboard image
b. see also vector quantization

4. Sensitive to positioning of the origin of the decomposition
• for an n x n image, the optimal positioning requires an

O(n 2 log2n) dynamic programming algorithm
(Li, Grosky, and Jain)
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DIMENSION REDUCTION

1. Number of blocks necessary to store a simple polygon as a 
region quadtree is proportional to its perimeter (Hunter)          

• implies that many quadtree algorithms execute in 
O(perimeter) time as they are tree traversals

• the region quadtree is a dimension reducing device as 
perimeter (ignoring fractal effects) is a one-
dimensional measure and we are starting with two-
dimensional data

• generalizes to higher dimensions 

a. region octree takes O (surface area) time and space 
(Meagher)

b. d-dimensional data take time and space proportional 
to a O (d-1)-dimensional quantity (Walsh)

2. Alternatively, for a region quadtree, the space 
requirements double as the resolution doubles

• in contrast with quadrupling in the array representation

• for a region octree the space requirements quadruple 
as the resolution doubles

• ex.

1
b

array region quadtree
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• easy to see dependence on perimeter as decomposition 
only takes place on the boundary as the resolution 
increases 
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BINTREES (Tamminen, Knowlton)

• In higher dimensions (e.g., >3) branching factor of
quadtree and octree is too high

• Bintree:  regular decomposition binary tree for high
dimensional data

1. at each level split on the basis of another attribute

2. cycle through the attributes at the different levels

• Ex:

3
1

2

4

6

5

8

9
7 11

10

13

14

12

15

16

F

3 4

E

5

D

2

C

1

B

J

8 9

I

7

H

10

K

11 12

N

13 14

O

15 16

MG

L

A

6

Copyright © 1998 by Hanan Samet



ar2

BSP TREES (Fuchs, Kedem, Naylor)

• Like a bintree except that the decomposition lines are at
arbitrary orientations (i.e., they need not be parallel or
orthogonal)

• For data of arbitrary dimensions

• In 2D (3D), partition along the edges (faces) of a polygon
(polyhedron)

• Ex:  arrows indicate direction of positive area

B

C

A

2

3
4

5

1

D

B

C

A

2 3

4 51

D

• Usually used for hidden-surface elimination

1. domain is a set of polygons in three dimensions

2. position of viewpoint determines the order in which the
BSP tree is traversed

• A polygon’s plane is extended infinitely to partition the
entire space
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DRAWBACKS OF BSP TREES

• A polygon may be included in both the left and right 
subtrees of node

• Same issues of duplicate reporting as in representations 
based on a disjoint decomposition of the underlying space

• Shape of the BSP tree depends on the order in which the 
polygons are processed and on the polygons chosen to 
serve as the partitioning plane

• Not based on a regular decomposition thereby 
complicating the performance of set-theoretic operations

• Ex: use line segments
  in two dimensions

1
b

C
D

A
B
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1. partition 
induced by 
choosing B as 
the root

B
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A D

3 4 1 2
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A B
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2. partition 
induced by 
choosing C as 
the root
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POINTER-LESS QUADTREE REPRESENTATIONS

• Central idea in the quadtree data structure is the recursive 
decomposition of space into blocks

• The tree is an implementation convenience to enable 
logarithmic searches for the block associated with a 
particular point

• Unlike the pyramid, no information is associated with the 
internal nodes of the quadtree

• Can represent the blocks in a list of numbers where each 
block has a unique number (termed a location code) 
formed by concatenating

1. the sequence of n (assuming a 2n
 ×2n image) two bit 

codes corresponding to each step in the path from the 
root of the tree to the block’s node
• let 0, 1, 2, 3 correspond to SW, SE, NW, NE branches, 

respectively
• absent steps are encoded with a 0
• equivalent to interleaving the binary representations 

of the x and y coordinate values of a particular pixel 
(e.g., at the lower left corner)

2. the depth of the block’s node
• necessary to distinguish between paths having 

trailing digits whose value is 0
 Ex:

1
b
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path from root = NE, SW

locational code = 310,2
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PROPERTIES OF LOCATIONAL CODES

• Locational codes can be stored in a B-tree

• Locational codes are equivalent to a hashing function and
are the basis of techniques known as order preserving
linear hashing

• Sorting locational codes in increasing order has the effect
of a space-filling curve and is equivalent to traversing the
leaf nodes of the tree in SW, SE, NW, NE order

• Neighbor finding is easy at pixel level but cumbersome at
other levels although feasible

• Many alternative locational code implementations exist

1. variable length locational codes where the depth is
omitted and a don’t care code (e.g., 4) is used as a
sentinel

2. fixed length locational codes with a don’t care symbol
to indicate that no further decomposition takes place
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TRAVERSAL-BASED QUADTREE REPRESENTATIONS

• Preorder traversal of the nodes in the quadtree

• Result is a string over the alphabet (DF-expression):

 G = GRAY node    B = BLACK node    W = WHITE node

• Ex:  NW, NE, SW, SE traversal order

1
b

• Drawback:  random access is impossible (e.g., for 
neighbor finding — must always start at the first element 
in the list and visit all elements prior to the one being 
searched for

• Useful whenever have to process entire set of nodes in 
preorder (e.g., NW, NE, SW, SE)

1. centroid computation

2. set-theoretic operations

3. image transformations involving translation, rotation, 
scaling
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ALTERNATIVE DECOMPOSITION METHODS

• A planar decomposition for image representation should be:
1. infinitely repetitive
2. infinitely decomposable into successively finer patterns

• Classification of tilings (Bell, Diaz, Holroyd, and Jackson)
1. isohedral — all tiles are equivalent under the symmetry 

group of the tiling (i.e., when stand in one tile and look 
around, the view is independent of the tile)

1
b

B A
1

2

3

[36]

[34.6]

[33.42]

[32.4.3.2]

[3.4.6.4]

[3.6.3.6]

[3.122]

[44]

[4.6.12]

[63]

[4.82]

2. regular — each tile is a regular polygon

• There are 81 types if classify by their symmetry groups

• Only 11 types if classify by their adjacency structure

• [3.122] means 3 edges at the first vertex of the polygonal 
tile followed by 12 edges at the next two vertices
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• Limited ≡ NOT similar (i.e., cannot be decomposed 
infinitely into smaller tiles of the same shape)

• Unlimited:  each edge of each tile lies on an infinitely 
straight line composed entirely of edges

• Only 4 unlimited tilings [44], [63], [4.82], and [4.6.12]

• Two additional hierarchies:

 Note: [4.82] and [4.6.12] are not regular

rotation of 135° between levels reflection between levels

[4.82] [4.6.12]

[63] [44] [36]

PROPERTIES OF TILINGS — SIMILARITY

• Similarity — a tile at level k has the same shape as a tile 
at level 0 (basic tile shape)
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PROPERTIES OF TILINGS — ADJACENCY

• Adjacency — two tiles are neighbors if they are adjacent 
along an edge or at a vertex

• Uniform adjacency ≡ distances between the centroid of 
one tile and the centroids of all its neighbors are the same

• Adjacency number of a tiling (A) ≡ number of different 
adjacency distances

1
b

[36] [44] [63]
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• Adjacency — two tiles are neighbors if they are adjacent 
along an edge or at a vertex

• Uniform adjacency ≡ distances between the centroid of 
one tile and the centroids of all its neighbors are the same

• Adjacency number of a tiling (A) ≡ number of different 
adjacency distances
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[44] [63] [36]

PROPERTIES OF TILINGS — UNIFORM ORIENTATION

• Uniform orientation

• All tiles with the same orientation can be mapped into 
each other by translations of the plane which do not 
involve rotation for reflection

1
b

Conclusion:

• [44] has a lower adjacency number than [63]

• [44] has a uniform orientation while [63] does not

• [44] is unlimited while [36] is limited

 Use [44]!
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[44] [63] [36]

PROPERTIES OF TILINGS — UNIFORM ORIENTATION

• Uniform orientation

• All tiles with the same orientation can be mapped into 
each other by translations of the plane which do not 
involve rotation for reflection

1
b

Conclusion:

• [44] has a lower adjacency number than [63]

• [44] has a uniform orientation while [63] does not

• [44] is unlimited while [36] is limited

 Use [44]!
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HEXAGONAL TESSELLATIONS [36]

1. Still of interest

• regular

• uniform orientation

• uniform adjacency

2. Several tiling hierarchies (n -shapes)   NOT UNIQUE!

• n ≡ number of atomic tiles in the first level molecular tile

• 4-shape and 9-shape have unusual adjacency behavior
a. contact with two of the neighboring molecular tiles is 

along only one edge of a molecular tile while contact 
with the remaining four tiles is nearly along 1/4 of the 
perimeter

b. molecular tile has the shape of a rhombus

• 7-shape
a. uniform contact with all six neighboring molecular 

tiles
b. the shape of the molecular tile is more like a 

hexagon (≡ rosette and termed a septree)

4-shape 7-shape 9-shape
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NEIGHBOR FINDING OPERATIONS USING QUADTREES

• Many image processing operations involve traversing an 
image and applying an operation to a pixel and some of its 
neighboring (i.e., adjacent) pixels

• For quadtree/octree 
representations replace 
pixel/voxel by block

• Neighbor is defined to be an 
adjacent block of greater than 
or equal size

• Desirable to be able to locate neighbors in a manner that
1. is position-independent
2. is size-independent
3. makes no use of additional links to adjacent nodes (e.g., 

ropes and nets a la Hunter)
4. just uses the structure of the tree or configuration of the 

blocks

A 1
3 24

5

A has neighbors5
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• Some block configurations are impossible, thereby 
simplifying a number of algorithms
1. impossible for a node A to have 

two larger neighbors B and C 
on directly opposite sides or 
touching corners

2. partial overlap of two blocks B 
and C with A is impossible 
since a quadtree is constructed 
by recursively splitting blocks 
into blocks that have side 
lengths that are powers of 2

A

A
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• Some block configurations are impossible, thereby 
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FINDING LATERAL NEIGHBORS OF EQUAL SIZE

Algorithm:  based on finding the nearest common ancestor

1. Ascend the tree if the node is a son of the same type as 
the direction of the neighbor (ADJ)

2. Otherwise, the father F is the nearest common ancestor 
and retrace the path starting at F making mirror image 
moves about the edge shared by the neighboring blocks

Ex: E neighbor of A (i.e., G)

1
b

A

D

C E

G

FB
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node procedure EQUAL_LATERAL_NEIGHBOR(P,D);
/* Find = size neighbor of P in direction D */
begin
  value pointer node P;
  value direction D;
  return(SON(if ADJ(D,SONTYPE(P)) then
               EQUAL_LATERAL_NEIGHBOR(FATHER(P),D)
             else FATHER(P),
             REFLECT(D,SONTYPE(P))));
end;
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node procedure EQUAL_LATERAL_NEIGHBOR(P,D);
/* Find = size neighbor of P in direction D */
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  value pointer node P;
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FINDING NEIGHBORS IN A
POINTERLESS REPRESENTATION

• Assume a bit-interleaved 
representation that also indicates 
the depth of each block

• Ex: y bit is more significant than x 
bit — i.e., yn xn … y1 x1 y0 x0

1
b

1. Mimic tree algorithm in the sense that to find a lateral 
neighbor (say in the x direction), search for the first x bit 
position that is different while complementing the bits 
encountered in the process
Ex: find pixel-sized eastern neighbor of 213 = 10 01 11

210

220 230

212

000

213

301

303302
310

320

100

330

211 300
200
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• search for an x bit with a value of 0
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• search for an x bit with a value of 0
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• result is 302 = 11 00 10
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• cumbersome as many bit operations are required
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• search for an x bit with a value of 0

Copyright © 1998 by Hanan Samet

nf33
z
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• cumbersome as many bit operations are required
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2. Use arithmetic by adding or subtracting from the 
appropriate x (y) bit and skip the positions 
corresponding to the y (or x) bits
• save the contents of the y (x) bit positions
• load a 1 in every y (x) bit position of the addend — 

enables propagation of the carry (if one is present) to 
the next x (y) bit position

Ex: find pixel-sized eastern neighbor of 213 = 10 01 11

 the addend 00 00 01 becomes     + 10 10 11

Copyright © 1998 by Hanan Samet



nf3
FINDING NEIGHBORS IN A
POINTERLESS REPRESENTATION

• Assume a bit-interleaved 
representation that also indicates 
the depth of each block

• Ex: y bit is more significant than x 
bit — i.e., yn xn … y1 x1 y0 x0

1
b

1. Mimic tree algorithm in the sense that to find a lateral 
neighbor (say in the x direction), search for the first x bit 
position that is different while complementing the bits 
encountered in the process
Ex: find pixel-sized eastern neighbor of 213 = 10 01 11

210

220 230

212

000

213

301

303302
310

320

100

330

211 300
200

Copyright © 1998 by Hanan Samet

nf32
r

• search for an x bit with a value of 0

Copyright © 1998 by Hanan Samet

nf33
z

• result is 302 = 11 00 10

Copyright © 1998 by Hanan Samet

nf34
g

• cumbersome as many bit operations are required

Copyright © 1998 by Hanan Samet

nf35
r

2. Use arithmetic by adding or subtracting from the 
appropriate x (y) bit and skip the positions 
corresponding to the y (or x) bits
• save the contents of the y (x) bit positions
• load a 1 in every y (x) bit position of the addend — 

enables propagation of the carry (if one is present) to 
the next x (y) bit position

Ex: find pixel-sized eastern neighbor of 213 = 10 01 11

 the addend 00 00 01 becomes     + 10 10 11

Copyright © 1998 by Hanan Samet

nf36
z

 result       01 00 10

• perform the addition or subtraction
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 restoring y bit positions to previous       11 00 10 = 302

• reset the y (x) bit positions to their previous value
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• only requires 4 instructions regardless of resolution of 
image and bit position of nearest common ancestor
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ANALYSIS OF NEIGHBOR FINDING

1. Bottom-up random image model where each pixel has
an equal probability of being black or white
• probability of the existence of a 2x2 block at a

particular position is 1/8
• OK for a checkerboard image but inappropriate for

maps as it means that there is a very low probability of
aggregation

• problem is that such a model assumes independence
• in contrast, a pixel’s value is typically related to that of

its neighbors

2. Top-down random image model where the probability of
a node being black or white is p and 1-2p for being gray
• model does not make provisions for merging
• uses a branching process model and analysis is in

terms of extinct branching processes

3. Use a model based on positions of the blocks in the
decomposition
• a block is equally likely to be at any position and depth

in the tree
• compute an average case based on all the possible

positions of a block of size 1x1, 2x2, 4x4, etc.
• 1 case at depth 0, 4 cases at depth 1, 16 cases at

depth 2, etc.
• this is not a realizable situation but in practice does

model the image accurately
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Theorem: average number of nodes visited by 
EQUAL_LATERAL_NEIGHBOR is ≤ 4

Proof:

• Let node A be at level i (i.e., a 2i
 ×2i block)

• There are 2n
 
–i·(2n

 
–i

  –1) possible positions for 
node A such that an equal sized neighbor exists 
in a given horizontal or vertical direction

2n
 
–i rows

2n
 
–i

  –1 adjacencies per row
2n

 
–i

 ·20 have NCA at level n
2n

 
–i

 ·21 have NCA at level n –1
…
2n

 
–i

 ·2n
 
–i

 
–1 have NCA at level i +1
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• For node A at level i, direction D, and the NCA 
at level j, 2·(j –i ) nodes are visited in locating 
an equal-sized neighbor at level i
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• For node A at level i, direction D, and the NCA 
at level j, 2·(j –i ) nodes are visited in locating 
an equal-sized neighbor at level i
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• For node A at level i, direction D, and the NCA 
at level j, 2·(j –i ) nodes are visited in locating 
an equal-sized neighbor at level i
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 nodes are visited on the average ≤ 4

2n −i ⋅ 2n − j ⋅ 2 ⋅( j − i )
j =i +1

n

∑
i =0

n−1

∑

2n −i ⋅ (2n − i −1)
i =0

n −1

∑
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FINDING DIAGONAL NEIGHBORS OF EQUAL SIZE

Algorithm:  based on finding the nearest common ancestor
1. Ascend the tree if the node is a son of the same type as 

the direction of the neighbor (ADJ)
2. If the father and an ancestor A 

of the desired neighbor are 
adjacent along an edge 
(COMMON_EDGE), then calculate 
the desired neighbor with 
EQUAL_LATERAL_NEIGHBOR and 
apply the retracing step in 3

3. Otherwise, the father F is the 
nearest common ancestor 
and now retrace the path 
starting at F making 
diagonally opposite moves 

Ex: SE neighbor of A (i.e., G)
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node procedure EQUAL_DIAGONAL_NEIGHBOR(P,C);
/* Find = size neighbor of P towards quadrant C */
begin
  value pointer node P;
  value quadrant C;
  return(SON(if ADJ(C,SONTYPE(P)) then
               EQUAL_DIAGONAL_NEIGHBOR(FATHER(P),C)
             else if COMMON_EDGE(C,SONTYPE(P)) ≠Ω then
               EQUAL_LATERAL_NEIGHBOR(FATHER(P),
               COMMON_EDGE(C,SONTYPE(P)))
             else FATHER(P),
             OPQUAD(SONTYPE(P))));
end;
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sized nodes in direction NE
NCA = nearest common ancestor
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Theorem: average number of nodes visited by 
EQUAL_DIAGONAL_NEIGHBOR is ≤ 16/3

Proof:

• Let node A be at level i (i.e., a 2i
 ×2i block)

• There are (2n
 
–i

  –1)2 possible positions for node A such that 
an equal size neighbor exists in a given corner direction

40·(2·(2n
 
–i

   –1)–1) have NCA at level n
41·(2·(2n

 
–i

 
–1

  –1)–1) have NCA at level n –1
…
4n
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–1·(2·(2n

 
–i

 
–(n

 
–i

 
–1)

  –1)–1)  have NCA at level i +1
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• There are (2n
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an equal size neighbor exists in a given corner direction
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• For node A at level i, direction D, and the NCA 
at level j, 2·(j –i ) nodes are visited in locating 
an equal-sized neighbor at level i
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(23–1)2 neighbor pairs of equal 
sized nodes in direction NE
NCA = nearest common ancestor
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 nodes are visited on the average ≤ 16/3

4n − j ⋅ (2 ⋅(2n − i −(n − j) −1) −1) ⋅ 2 ⋅( j − i )
j =i +1

n

∑
i =0

n−1

∑

(2n−i −1)2

i =0

n −1

∑
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FINDING NEIGHBORS IN HIGHER DIMENSIONS

1. Three dimensions
• need direction of a vertex
• direction of an edge = direction of a vertex in two

dimensions
• direction of a face = direction of an edge in two

dimensions

2. Arbitrary dimensions (d ): neighbor of node N
• use induction and routines for adjacencies along

1, 2, ... d - 1 dimensions
• add one new routine for a d -dimensional adjacency

(e.g., vertex in three dimensions)

a. ascend the tree if the node is a son of the same type
as the direction of the neighbor (ADJ)

b. for i = d - 1 step -1 until 1
• determine if the father of N and the ancestor of the

desired neighbor have an i -dimensional
adjacency in which case apply the algorithm for
obtaining such a neighbor in d - 1 dimensions

• exit loop upon success

c. father of N is the desired nearest common ancestor
• retrace path making directly opposite moves

about the vertex shared by node N and its
neighbor

Copyright © 1998 by Hanan Samet
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PERFORMANCE FOR TWO-DIMENSIONAL DATA

• Assume 512x512 images

• Results correlate well with the model

• Average cost of neighbor finding for neighbors of greater
than or equal size using the position model

Flood Topo Land Pebble Average Predicted

lateral neighbor 3.50 3.60 3.59 3.56 3.57 3.46
diagonal neighbor 4.47 4.68 4.63 4.60 4.60 4.44

• Average cost of stage 1 of neighbor finding (i.e., just
locating the nearest common ancestor

Flood Topo Land Pebble Average Predicted

lateral neighbor 2.01 2.00 2.00 1.99 2.00 1.98
diagonal neighbor 2.69 2.67 2.66 2.65 2.67 2.62

• Average cost of stage 2 of neighbor finding (i.e.,
descending the tree once the nearest common ancestor
has been located)

Flood Topo Land Pebble Average Predicted

lateral neighbor 1.49 1.60 1.59 1.57 1.57 1.48
diagonal neighbor 1.79 2.00 1.97 1.95 1.94 1.82

Copyright © 1998 by Hanan Samet
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FINDING THE NEAREST OBJECT

• Ex: find the nearest object to P

1
b

P

12 8 7 6

13 9 1 4 5

2 3

10 11

D

E C

F

A

B

• Assume PR quadtree for points (i.e., at most one point
 per block)
• Search neighbors of block 1 in counterclockwise order
• Points are sorted with respect to the space they occupy
 which enables pruning the search space
• Algorithm:
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1. start at block 2 and compute distance to P from A
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2. ignore block 3 whether or not it is empty as A is closer
 to P than any point in 3
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3. examine block 4 as distance to SW corner is shorter
 than the distance from P to A; however, reject B as it is
 further from P than A
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4. ignore blocks 6, 7, 8, 9, and 10 as the minimum
 distance to them from P is greater than the distance 
 from P to A
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5. examine block 11 as the distance from P to the southern
 border of 1 is shorter than the distance from P to A;
 however, reject F as it is further from P than A
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5. examine block 11 as the distance from P to the southern
 border of 1 is shorter than the distance from P to A;
 however, reject F as it is further from P than A
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• If F was moved, a better order would have started with 
block 11, the southern neighbor of 1, as it is closest

new F
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USE OF NEIGHBOR FINDING IN RAY TRACING

• Goal: sort the faces of the objects to reduce the number
of necessary ray-object intersection tests

• Trace each ray by checking the blocks through which it
passes

• Ex:  two-dimensional object

9

6

12

71 8

4

2

5
3

10

11

(0,0) 32

32

x

y

S

R

S

S C
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BUILDING QUADTREES

• Using a variant of EQU
neighbors in the easte
adding them if they are

Algorithm: process array

• Odd row — add nodes
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find neighbors in the 
eastern direction and a
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find neighbors in the 
eastern direction and a
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OPTIMAL QUADTREE B

I = cost of a block (i.e., no
c = cost of examining a p
2n ×2n image
N = number of blocks in t

Naive algorithm:
• Examine each pixel an

Copyright © 1998 by Hanan Samet

OPTIMAL ALGORITHM

• When building a quadt
unprocessed part of th
have been assigned

Def: a block is active if a
pixels, covered by 
differs in color from

E bl k A d B
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IMPLEMENTATION

• The algorithm must kee
• For a 2n ×2n image the 
• Use a data structure ca

active blocks organized
1. one row for each lev
2. row i has 2n –i entrie

Copyright © 1998 by Hanan Samet
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CONVERTING QUADTR

• Useful when outputting

• Generate row-by-row b
row that intersects it —

• Preferable to generatin
outputting as it takes t
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COMPLEXITY OF CONV
QUADTREES TO RAST

• Assume a 2n × 2n imag

• Top-down algorithm vi
outputs a node of size

• Bottom-up algorithm:
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CHAIN CODE

• Records relative positio
valued adjacent grid sq

• Four directions

• Usually assume the im

• Assume four-connecte
are not in same region
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Q
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CONVERTING FROM C

Algorithm:

1. traverse boundary in 
quadtree with BLACK n
adjacent to the bound

• remaining nodes a
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STEP 1 OF CHAIN COD
CONVERSION ALGORI

• Construct the tree by c
adjacent to the links in
relationship between s

P

OLD
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EXAMPLE OF STEP 2 O
FROM CHAIN CODES T
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CONNECTED COMPON

• Assign the same label 
color (i.e., that share an

• Follows thresholding st
applications and is a p

• Two approaches

1. fill algorithm or polyg
f f
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SET OPERATIONS ON 

UNION(S,T) : traverse S

1. GRAY(S) :
GRAY(T) : re

 m
BLACK(T) : re
WHITE(T) : re

2. BLACK(S) : re
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otherwise, decompose
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1. find smallest subtre
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WINDOWING (AN ALTE

• Def: extract a rectangu
build its quadtree

• Algorithm: analogous t
images

1. A1 is the image from
extracted
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SHIFTING A QUADTRE

• Equivalent to extractin
image with a different 

• Shifting an input image
the window is at (–∆X,–

• Ex:  shift by (3,1)
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• Easy for multiples of 9
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use a more general lin

• Ex:  Rotate by 90° cou
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LINEAR IMAGE TRANS

• Source tree and target 

• General window algorit
tree is completely conta
otherwise, it decompos
repeats the process an

• Merges can be avoided
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SPATIAL RANGE QUER

Ex: find all objects wi
Mississippi River,
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BUFFER1

• Algorithm:

1. expand each BLACK

2. decompose the res
3. insert the blocks on

• Drawbacks
1 excessive redundan
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OBSERVATION

• Any WHITE block T of wi
result of expansion by r

• Rationale:

1. if block T has width ≤
brothers will have a 
all of T is within R of
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IMPROVING ON BUFFE

1. Reduce number of bl
result of expansion

• introduce concept o
a. a nonleaf node 
b. such nodes can
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MERGING CLUSTER

• Merging clusters are bl
nodes of width W(R ) wh

• Expansion by radius R 
become BLACK blocks

• Rationale:
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VERTEX SET

• Vertex set of merging 
(one for each of the di
blocks which must be 
by the merging cluster

• Ex: merging cluster wi
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CONSTRUCTION OF T

• For a BLACK node P in 
VSd if

1. v is the d vertex of 

2. v is not in the close
quadtree-like subdi
other BLACK node in
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EXPANDING THE VERT

1. Vertex sets guide th

2. Merging cluster can 

3. Areas of expansion 
form staircase-like re
• extreme points of t

images of the tran
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AN UPPER BOUND ON 

• The size of the union o
is ≤ W(R )+1, and this bo

• Since the vertex subse
of all the vertex subset

• Example of the worst c
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ALTERNATIVE BOUND ON

• B(M ) = number of BLACK bl
• The size of the union of th

is ≤ 2·B(M )+2, and this boun
• Examples for R =3

• Justification: 
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EXAMPLE PERFORMAN

100

1000
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OBSERVATIONS

• BUFFER2 is far superior 

• Even values of R lead t
the effect of node aggre

• BUFFER2’s execution tim
1. remain constant or d
2 i f th
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