QUADTREE BACKGROUND

Hanan Samet

Computer Science Department and
Center for Automation Research and
Institute for Advanced Computer Studies
University of Maryland
College Park, Maryland 20742
e-mail: hjs@umiacs.umd.edu

Copyright © 1996 Hanan Samet

These notes may not be reproduced by any means (mechanical or elec-
tronic or any other) without the express written permission of Hanan Samet

Copyright © 1998 by Hanan Samet

bgl

HISTORY

1.

Linearization or ordering of higher dimensional space

» space filling curves — e.g., Peano (1891)
 gpatial index — Morton (1966)

. Computer graphics

 sorting objects for display
» Warnock’s algorithm (1968)

a. vector: hidden-line elimination
b. raster: hidden-surface elimination

« animation — Hunter (1978)
 BSP trees — Fuchs, Kedem, and Naylor (1980)

Image processing and pattern recognition

« Klinger (1971)

» split-and-merge segmentation methods — Horowitz
and Pavlidis (1976)

Multidimensional point representation

» multidimensional binary search trees — Finkel and
Bentley (1974)

» k-d trees — Bentley (1975)

. Volume data for solid modeling and computer vision

* bounding boxes — Reddy and Rubin (1978)
» octrees — Hunter (1978)

Finite element mesh generation — Rheinboldt and
Mesztenyi (1980)

Fast matrix operations — Strassen (1969)

. Computational complexity

« dimension reducing device — Hunter (1978)
« optimal placement — Li, Grosky, and Jain (1981)

Copyright © 1998 by Hanan Samet

O bg2 O
SPLIT-AND-MERGE SEGMENTATION b

« Subdivide an image until a homogeneity criterion is
satisfied — e.g., standard deviation of gray levels is
below a particular threshold

» Group adjacent blocks into maximal homogeneous
regions

e EXx:

Copyright © 1998 by Hanan Samet

O bg2 O
SPLIT-AND-MERGE SEGMENTATION rb

« Subdivide an image until a homogeneity criterion is
satisfied — e.g., standard deviation of gray levels is
below a particular threshold

» Group adjacent blocks into maximal homogeneous
regions

e EXx:

1. initial image decomposition into cells of uniform size

Copyright © 1998 by Hanan Samet

O bg2 O
SPLIT-AND-MERGE SEGMENTATION zrb

« Subdivide an image until a homogeneity criterion is
satisfied — e.g., standard deviation of gray levels is
below a particular threshold

» Group adjacent blocks into maximal homogeneous
regions

e EXx:

1. initial image decomposition into cells of uniform size
2. merge homogeneous brothers

Copyright © 1998 by Hanan Samet

O

SPLIT-AND-MERGE SEGMENTATION

432 pg2 O

gzrb

« Subdivide an image until a homogeneity criterion is
satisfied — e.g., standard deviation of gray levels is

below a particular threshold

» Group adjacent blocks into maximal homogeneous

regions

e EXx:

_

N

1. initial image decomposition into cells of uniform size

2. merge homogeneous brothers

3. split blocks that are not homogeneous

Copyright © 1998 by Hanan Samet

O bg2 O
SPLIT-AND-MERGE SEGMENTATION vgzrb

« Subdivide an image until a homogeneity criterion is
satisfied — e.g., standard deviation of gray levels is
below a particular threshold

« Group adjacent blocks into maximal homogeneous
regions

e EXx:

BN

initial image decomposition into cells of uniform size

merge homogeneous brothers
split blocks that are not homogeneous

> W e

group identical blocks into regions

Copyright © 1998 by Hanan Samet

bg3

ototololotelole
e A A e A R B
S e e e R R §
S s A I R Bt R
S e e e R R §
oteteorototeteld
s s e A R 5
o olorole oo

—

—

—

—Bue-®

Al

Al

Al

|

L B Bl B B = = -
o000 00
o~ o oo

o o oo

=0 oo

=000

« Linearization of higher dimensional spaces

» Space-filling curves

SPACE ORDERING METHODS
« Examples:

Spiral order

Row-prime order

eIk anandk andn
[[R
| I andk Ik an dhan;

oo o490 e

+ o + oo ,—-&

andkandkandhan,

oo | oo | oo
Peano-Hilbert order

ototolelololole
g-rorereleorore o
pletererere Pt
plelererpleiele
pleleleroleiele
$(9|oeteto(0[9
$|reteteterd|s
oototololoteld

fandlandk Ik ann

Row order

Morton order
Cantor order

g e e o == S
o=vTo o000 o

Copyright © 1998 by Hanan Samet

CONVERTING BETWEEN POINTS AND CURVES

bg4

* Need to know size of image for all but the Morton

order

* Relatively easy for all but the Peano-Hilbert order

which is difficult (although possible) to decode
and encode to obtain the corresponding x and y

coordinate values

e Morton order

1. use bit interleaving of binary representation of
the x and y coordinates of the point

2. also known as Z-order

3. Ex: Atanta (6,1) 0

1
Y
1

0

T~

y

Copyright © 1998 by Hanan Samet

AN

0

22

O bg5 O
STABILITY OF SPACE ORDERING METHODS
* An order is stable if the relative order of the individual

pixels is maintained when the resolution (i.e., the size of

the space in which the cells are embedded) is doubled or
halved

 Morton order is stable while the Peano-Hilbert order is not

e EX:

Morton: Peano-Hilbert:

Copyright © 1998 by Hanan Samet

O bg5

rb
STABILITY OF SPACE ORDERING METHODS
* An order is stable if the relative order of the individual

pixels is maintained when the resolution (i.e., the size of

the space in which the cells are embedded) is doubled or
halved

 Morton order is stable while the Peano-Hilbert order is not

e EX:

Morton: Peano-Hilbert:

10 11 14 15
9 \u12
8
13
233 2 36 7 3:12
0 1 0 14 5 0 1

» Result of doubling the resolution (i.e., the coverage)

Copyright © 1998 by Hanan Samet

O bg5

zrb

STABILITY OF SPACE ORDERING METHODS

» An order is stable if the relative order of the individual
pixels is maintained when the resolution (i.e., the size of
the space in which the cells are embedded) is doubled or
halved

 Morton order is stable while the Peano-Hilbert order is not
e EX:

Morton: Peano-Hilbert:

10 11 14 15

8
13

2g3 2 36 7 SHZ
0 1 0 14 5 0 1

» Result of doubling the resolution (i.e., the coverage)
in which case the circled points do not maintain the same
relative order in the Peano-Hilbert order while they do in
the Morton order

Copyright © 1998 by Hanan Samet

bg6
DESIRABLE PROPERTIES OF SPACE FILLING CURVES

1. Pass through each point in the space once and only
once

2. Two points that are neighbors in space are neighbors
along the curve and vice versa
» impossible to satisfy for all points at all resolutions
3. Easy to retrieve neighbors of a point
4. Curve should be stable as the space grows and
contracts by powers oftwo with the same origin
» yes for Morton and Cantor orders
* no for row, row-prime, Peano-Hilbert, and spiral
orders
5. Curve should be admissible

e at each step at least one horizontal and one vertical
neighbor must have already been encountered

» used by active border algorithms - e.g., connected
component labeling algorithm

* row and Morton orders are admissible
 Peano-Hilbert order is not admissible

e row-prime, Cantor, and spiral orders are admissible if
permit the direction of the horizontal and vertical
neighbors to vary from point to point

6. Easy to convert between two-dimensional data and the
curve and vice-versa
« easy for Morton order
o difficult for Peano-Hilbert order

» relatively easy for row, row-prime, Cantor, and spiral
orders

Copyright © 1998 by Hanan Samet

bg7
SPACE REQUIREMENTS

1. Rationale for using quadtrees/octrees is not so much for
saving space but for saving execution time

2. Execution time of standard image processing algorithms
that are based on traversing the entire image and
performing a computation at each image element is
proportional to the number of blocks in the
decomposition of the image rather than their size

» aggregation of space leads directly to execution time
savings as the aggregate (i.e., block) is visited just
once instead of once for each image element (i.e.,
pixel, voxel) in the aggregate (e.g., connected
component labeling)

3. If want to save space, then, in general, statistical image
compression methods are superior

» drawback: statistical methods are not progressive as
need to transmit the entire image whereas quadtrees
lend themselves to progressive approximation

» quadtrees, though, do achieve compression as a
result of use of common subexpression elimination
techniques

a. e.g., checkerboard image
b. see also vector quantization

4. Sensitive to positioning of the origin of the decomposition

« for an nx nimage, the optimal positioning requires an
O(nzlog,n) dynamic programming algorithm
(Li, Grosky, and Jain)

Copyright © 1998 by Hanan Samet

O 1lbgs O
DIMENSION REDUCTION b

1. Number of blocks necessary to store a simple polygon as a
region quadtree is proportional to its perimeter (Hunter)

* implies that many quadtree algorithms execute in
O(perimeter) time as they are tree traversals

» the region quadtree is a dimension reducing device as
perimeter (ignoring fractal effects) is a one-
dimensional measure and we are starting with two-
dimensional data

» generalizes to higher dimensions

a. region octree takes O (surface area) time and space
(Meagher)

b. d-dimensional data take time and space proportional
to a O (d-1)-dimensional quantity (Walsh)

2. Alternatively, for a region quadtree, the space
requirements double as the resolution doubles

 in contrast with quadrupling in the array representation

» for a region octree the space requirements quadruple
as the resolution doubles

° ex. :
array region quadtree

Copyright © 1998 by Hanan Samet

O 2lilbgs O
DIMENSION REDUCTION rh

1. Number of blocks necessary to store a simple polygon as a
region quadtree is proportional to its perimeter (Hunter)

* implies that many quadtree algorithms execute in
O(perimeter) time as they are tree traversals

» the region quadtree is a dimension reducing device as
perimeter (ignoring fractal effects) is a one-
dimensional measure and we are starting with two-
dimensional data

» generalizes to higher dimensions

a. region octree takes O (surface area) time and space
(Meagher)

b. d-dimensional data take time and space proportional
to a O (d-1)-dimensional quantity (Walsh)

2. Alternatively, for a region quadtree, the space
requirements double as the resolution doubles

 in contrast with quadrupling in the array representation

» for a region octree the space requirements quadruple
as the resolution doubles

° ex. :
array region quadtree

/\
/[

Copyright © 1998 by Hanan Samet

O 5l2llbg8 O
DIMENSION REDUCTION zrhb

1. Number of blocks necessary to store a simple polygon as a
region quadtree is proportional to its perimeter (Hunter)

» implies that many quadtree algorithms execute in
O(perimeter) time as they are tree traversals

» the region quadtree is a dimension reducing device as
perimeter (ignoring fractal effects) is a one-
dimensional measure and we are starting with two-
dimensional data

» generalizes to higher dimensions

a. region octree takes O (surface area) time and space
(Meagher)

b. d-dimensional data take time and space proportional
to a O (d-1)-dimensional quantity (Walsh)

2. Alternatively, for a region quadtree, the space
requirements double as the resolution doubles

 in contrast with quadrupling in the array representation

» for a region octree the space requirements quadruple
as the resolution doubles

° ex. :
array region quadtree

/\

Copyright © 1998 by Hanan Samet

O bgs O
DIMENSION REDUCTION gz b

1. Number of blocks necessary to store a simple polygon as a
region quadtree is proportional to its perimeter (Hunter)

» implies that many quadtree algorithms execute in
O(perimeter) time as they are tree traversals

» the region quadtree is a dimension reducing device as
perimeter (ignoring fractal effects) is a one-
dimensional measure and we are starting with two-
dimensional data

» generalizes to higher dimensions

a. region octree takes O (surface area) time and space
(Meagher)

b. d-dimensional data take time and space proportional
to a O (d-1)-dimensional quantity (Walsh)

2. Alternatively, for a region quadtree, the space
requirements double as the resolution doubles

 in contrast with quadrupling in the array representation

» for a region octree the space requirements quadruple
as the resolution doubles

° ex. :
array region quadtree

Copyright © 1998 by Hanan Samet

O bgs O
DIMENSION REDUCTION rgzrh

1. Number of blocks necessary to store a simple polygon as a
region quadtree is proportional to its perimeter (Hunter)

» implies that many quadtree algorithms execute in
O(perimeter) time as they are tree traversals

» the region quadtree is a dimension reducing device as
perimeter (ignoring fractal effects) is a one-
dimensional measure and we are starting with two-
dimensional data

» generalizes to higher dimensions

a. region octree takes O (surface area) time and space
(Meagher)

b. d-dimensional data take time and space proportional
to a O (d-1)-dimensional quantity (Walsh)

2. Alternatively, for a region quadtree, the space
requirements double as the resolution doubles

 in contrast with quadrupling in the array representation

» for a region octree the space requirements quadruple
as the resolution doubles

° ex. :
array region quadtree

» easy to see dependence on perimeter as decomposition
only takes place on the boundary as the resolution
Increases

Copyright © 1998 by Hanan Samet

arO

ALTERNATIVE REPRESENTATIONS

Hanan Samet

Computer Science Department and
Center for Automation Research and
Institute for Advanced Computer Studies
University of Maryland
College Park, Maryland 20742
e-mail: hjs@umiacs.umd.edu

Copyright © 1994 Hanan Samet

These notes may not be reproduced by any means (mechanical or elec-
tronic or any other) without the express written permission of Hanan Samet

Copyright © 1998 by Hanan Samet

arl

BINTREES (Tamminen, Knowlton)

* In higher dimensions (e.g., >3) branching factor of
quadtree and octree is too high

» Bintree: regular decomposition binary tree for high
dimensional data

1. at each level split on the basis of another attribute
2. cycle through the attributes at the different levels

e EX:
14 16
6
4
5 10 12
3
1
9
2 7 11
8

Copyright © 1998 by Hanan Samet

ar2
BSP TREES (Fuchs, Kedem, Naylor)

 Like a bintree except that the decomposition lines are at
arbitrary orientations (i.e., they need not be parallel or
orthogonal)

» For data of arbitrary dimensions

* In 2D (3D), partition along the edges (faces) of a polygon
(polyhedron)

« Ex: arrows indicate direction of positive area

» Usually used for hidden-surface elimination
1. domain is a set of polygons in three dimensions

2. position of viewpoint determines the order in which the
BSP tree is traversed

» A polygon’s plane is extended infinitely to partition the
entire space

Copyright © 1998 by Hanan Samet

O ar3 O
DRAWBACKS OF BSP TREES b

A polygon may be included in both the left and right
subtrees of node

« Same issues of duplicate reporting as in representations
based on a disjoint decomposition of the underlying space

« Shape of the Bsp tree depends on the order in which the
polygons are processed and on the polygons chosen to
serve as the partitioning plane

» Not based on a regular decomposition thereby
complicating the performance of set-theoretic operations

« Ex: use line segments A
in two dimensions \ ’K B

D
CT/Y

Copyright © 1998 by Hanan Samet

QO ar3 O
DRAWBACKS OF BSP TREES rb

» A polygon may be included in both the left and right
subtrees of node

« Same issues of duplicate reporting as in representations
based on a disjoint decomposition of the underlying space

« Shape of the Bsp tree depends on the order in which the
polygons are processed and on the polygons chosen to
serve as the partitioning plane

» Not based on a regular decomposition thereby
complicating the performance of set-theoretic operations

« Ex: use line segments A
in two dimensions \ ’\ B

D
CT/r

1. partition
induced by
choosing B as
the root

Copyright © 1998 by Hanan Samet

O ar3 O
DRAWBACKS OF BSP TREES zrb

» A polygon may be included in both the left and right
subtrees of node

« Same issues of duplicate reporting as in representations
based on a disjoint decomposition of the underlying space

« Shape of the Bsp tree depends on the order in which the
polygons are processed and on the polygons chosen to
serve as the partitioning plane

» Not based on a regular decomposition thereby
complicating the performance of set-theoretic operations

« Ex: use line segments A
in two dimensions \ ’\ B

D
CT/V

1. partition
induced by
choosing B as
the root

2. partition
induced by
choosing c as
the root

Copyright © 1998 by Hanan Samet

O ara O
POINTER-LESS QUADTREE REPRESENTATIONS

» Central idea in the quadtree data structure is the recursive
decomposition of space into blocks

« The tree is an implementation convenience to enable
logarithmic searches for the block associated with a
particular point

» Unlike the pyramid, no information is associated with the
internal nodes of the quadtree

« Can represent the blocks in a list of numbers where each
block has a unique number (termed a location code)
formed by concatenating

1. the sequence of n (assuming a 2"x2" image) two bit
codes corresponding to each step in the path from the
root of the tree to the block’s node

« let0, 1, 2, 3 correspond to sw, SE, Nw, NE branches,
respectively

» absent steps are encoded witha 0

« equivalent to interleaving the binary representations
of the x and y coordinate values of a particular pixel
(e.g., at the lower left corner)

2. the depth of the block’s node

» necessary to distinguish between paths having
trailing digits whose value is 0

Ex:

Copyright © 1998 by Hanan Samet

QO ara O
r
POINTER-LESS QUADTREE REPRESENTATIONS

» Central idea in the quadtree data structure is the recursive
decomposition of space into blocks

« The tree is an implementation convenience to enable
logarithmic searches for the block associated with a
particular point

» Unlike the pyramid, no information is associated with the
internal nodes of the quadtree

« Can represent the blocks in a list of numbers where each
block has a unique number (termed a location code)
formed by concatenating

1. the sequence of n (assuming a 2"x2" image) two bit
codes corresponding to each step in the path from the
root of the tree to the block’s node

« let0, 1, 2, 3 correspond to sw, SE, Nw, NE branches,
respectively

» absent steps are encoded witha 0

« equivalent to interleaving the binary representations
of the x and y coordinate values of a particular pixel
(e.g., at the lower left corner)

2. the depth of the block’s node

» necessary to distinguish between paths having
trailing digits whose value is 0

Ex:

path from root = NE, sSw

locational code = 310,2

Copyright © 1998 by Hanan Samet

arb

PROPERTIES OF LOCATIONAL CODES

e Locational codes can be stored in a B-tree

» Locational codes are equivalent to a hashing function and
are the basis of techniques known as order preserving
linear hashing

« Sorting locational codes in increasing order has the effect
of a space-filling curve and is equivalent to traversing the
leaf nodes of the tree in sw, SE, Nw, NE order

* Neighbor finding is easy at pixel level but cumbersome at
other levels although feasible

« Many alternative locational code implementations exist

1. variable length locational codes where the depth is
omitted and a don't care code (e.g., 4) is used as a
sentinel

2. fixed length locational codes with a don’t care symbol
to indicate that no further decomposition takes place

Copyright © 1998 by Hanan Samet

O

arGO

TRAVERSAL-BASED QUADTREE REPRESENTATIONS

» Preorder traversal of the nodes in the quadtree

* Result is a string over the alphabet (DF-expression):

G = GRAY node

B = BLACK hode W = WHITE node

« EX: Nw, NE, SW, SE traversal order

9:10

13

14

11

12

15

16

17

18

19

11 12 13 14

7 8 910 15161718

« Drawback: random access is impossible (e.qg., for
neighbor finding — must always start at the first element
in the list and visit all elements prior to the one being
searched for

» Useful whenever have to process entire set of nodes in
preorder (e.g., NW, NE, SW, SE)

1.
2.
3.

centroid computation

set-theoretic operations

image transformations involving translation, rotation,
scaling

Copyright © 1998 by Hanan Samet

O

ar6O

;
TRAVERSAL-BASED QUADTREE REPRESENTATIONS

» Preorder traversal of the nodes in the quadtree

* Result is a string over the alphabet (DF-expression):

G = GRAY nhode B =BLACK nhode w = WHITE node

« EX: Nw, NE, SW, SE traversal order

9:10

11

12

A
2 3
4 5
13 14
11 12 13 14

15116
19

17418

7 8 910 15161718
G WG WwWBB G WG WBBB WB G BBG BBBW W

« Drawback: random access is impossible (e.qg., for
neighbor finding — must always start at the first element
in the list and visit all elements prior to the one being
searched for

» Useful whenever have to process entire set of nodes in
preorder (e.g., NW, NE, SW, SE)

1.
2.
3.

centroid computation

set-theoretic operations

image transformations involving translation, rotation,
scaling

Copyright © 1998 by Hanan Samet

tio

TESSELLATIONS

Hanan Samet

Computer Science Department and
Center for Automation Research and
Institute for Advanced Computer Studies
University of Maryland
College Park, Maryland 20742
e-mail: hjs@umiacs.umd.edu

Copyright © 1994 Hanan Samet

These notes may not be reproduced by any means (mechanical or elec-
tronic or any other) without the express written permission of Hanan Samet

Copyright © 1998 by Hanan Samet

O g1 O
ALTERNATIVE DECOMPOSITION METHODS P

» A planar decomposition for image representation should be:
1. infinitely repetitive
2. infinitely decomposable into successively finer patterns
 Classification of tilings (Bell, Diaz, Holroyd, and Jackson)

1. isohedral — all tiles are equivalent under the symmetry
group of the tiling (i.e., when stand in one tile and look
around, the view is independent of the tile)

2. regular — each tile is a regular polygon
» There are 81 types if classify by their symmetry groups
* Only 11 types if classify by their adjacency structure

/
> AVARVAN
[33.42] % [3.6.3.6] % [4.6.12]
7

 [3.122] means 3 edges at the first vertex of the polygonal
tile followed by 12 edges at the next two vertices

Copyright © 1998 by Hanan Samet

O i1 O
ALTERNATIVE DECOMPOSITION METHODS b

» A planar decomposition for image representation should be:
1. infinitely repetitive
2. infinitely decomposable into successively finer patterns
 Classification of tilings (Bell, Diaz, Holroyd, and Jackson)

1. isohedral — all tiles are equivalent under the symmetry
group of the tiling (i.e., when stand in one tile and look
around, the view is independent of the tile)

2. regular — each tile is a regular polygon
» There are 81 types if classify by their symmetry groups
* Only 11 types if classify by their adjacency structure

/
> AVARVAN
[33.42] % [3.6.3.6] % [4.6.12]
7

 [3.122] means 3 edges at the first vertex of the polygonal
tile followed by 12 edges at the next two vertices

Copyright © 1998 by Hanan Samet

O

12 O

PROPERTIES OF TILINGS — SIMILARITY b

at level O (basic tile shape)

/

[63] [44]

Similarity — a tile at level k has the same shape as a tile

[3°]

« Limited = NOT similar (i.e., cannot be decomposed
infinitely into smaller tiles of the same shape)

« Unlimited: each edge of each tile lies on an infinitely
straight line composed entirely of edges

« Only 4 unlimited tilings [44], [63], [4.82], and [4.6.12]

[4.82]

7/
/

/

[
S
o

 Two additional hierarchies:

'
yau
'

rotation of 135° between levels

[4.6.12]

reflection between levels

Note: [4.82] and [4.6.12] are not regular

Copyright © 1998 by Hanan Samet

O 2 O
PROPERTIES OF TILINGS — SIMILARITY "b

Similarity — a tile at level k has the same shape as a tile
at level O (basic tile shape)

/

[63] [44] [39]

YES YES NO

« Limited = NOT similar (i.e., cannot be decomposed
infinitely into smaller tiles of the same shape)

« Unlimited: each edge of each tile lies on an infinitely
straight line composed entirely of edges

« Only 4 unlimited tilings [44], [63], [4.82], and [4.6.12]

[4.82] [4.6.12]

7/
/

/

[
S
o

 Two additional hierarchies:

'
yau
'

rotation of 135° between levels reflection between levels

Note: [4.82] and [4.6.12] are not regular

Copyright © 1998 by Hanan Samet

O 1 43 O
PROPERTIES OF TILINGS — ADJACENCY b

» Adjacency — two tiles are neighbors if they are adjacent
along an edge or at a vertex

« Uniform adjacency = distances between the centroid of
one tile and the centroids of all its neighbors are the same

» Adjacency number of a tiling (A) = number of different
adjacency distances

[36] [44] [63]

Copyright © 1998 by Hanan Samet

O 21 43 O
PROPERTIES OF TILINGS — ADJACENCY b

» Adjacency — two tiles are neighbors if they are adjacent
along an edge or at a vertex

« Uniform adjacency = distances between the centroid of
one tile and the centroids of all its neighbors are the same

» Adjacency number of a tiling (A) = number of different
adjacency distances

[36] [44] [63]

Copyright © 1998 by Hanan Samet

O a O
PROPERTIES OF TILINGS — UNIFORM ORIENTATION

e Uniform orientation

 All tiles with the same orientation can be mapped into
each other by translations of the plane which do not
involve rotation for reflection

/

[44] [63] [36]

Conclusion:

* [44] has a lower adjacency number than [63]

* [44] has a uniform orientation while [63] does not
e [44] is unlimited while [39] is limited

Use [44]!

Copyright © 1998 by Hanan Samet

O ta O
PROPERTIES OF TILINGS — UNIFORM ORIENTATION

e Uniform orientation

 All tiles with the same orientation can be mapped into
each other by translations of the plane which do not
involve rotation for reflection

/

[44] [63] [36]

YES NO YES

Conclusion:

* [44] has a lower adjacency number than [63]

* [44] has a uniform orientation while [63] does not
e [44] is unlimited while [39] is limited

Use [44]!

Copyright © 1998 by Hanan Samet

tI15

HEXAGONAL TESSELLATIONS [39]

1. Still of interest
* regular
 uniform orientation
 uniform adjacency

4-shape 7-shape 9-shape

2. Several tiling hierarchies (n-shapes) NOT UNIQUE!
* n = number of atomic tiles in the first level molecular tile

» 4-shape and 9-shape have unusual adjacency behavior

a. contact with two of the neighboring molecular tiles is
along only one edge of a molecular tile while contact
with the remaining four tiles is nearly along 1/4 of the
perimeter

b. molecular tile has the shape of a rhombus
o 7-shape

a. uniform contact with all six neighboring molecular
tiles

b. the shape of the molecular tile is more like a
hexagon (= rosette and termed a septree)

Copyright © 1998 by Hanan Samet

NEIGHBOR FINDING METHODS IN QUADTREES

Hanan Samet

Computer Science Department and
Center for Automation Research and
Institute for Advanced Computer Studies
University of Maryland
College Park, Maryland 20742
e-mail: hjs@umiacs.umd.edu

Copyright © 1996 Hanan Samet

These notes may not be reproduced by any means (mechanical or elec-
tronic or any other) without the express written permission of Hanan Samet

Copyright © 1998 by Hanan Samet

O nfl O

b
NEIGHBOR FINDING OPERATIONS USING QUADTREES

« Many image processing operations involve traversing an
image and applying an operation to a pixel and some of its
neighboring (i.e., adjacent) pixels

» For quadtree/octree
representations replace 5

pixel/voxel by block INEl
* Neighbor is defined to be an 41312
adjacent block of greater than
or equal size -
Ahas 5 neighbors

» Desirable to be able to locate neighbors in a manner that
1. is position-independent
2. Is size-independent

3. makes no use of additional links to adjacent nodes (e.g.,
ropes and nets a la Hunter)

4. just uses the structure of the tree or configuration of the
blocks

Copyright © 1998 by Hanan Samet

O nfl O
NEIGHBOR FINDING OPERATIONS USING QUADTREES

« Many image processing operations involve traversing an
image and applying an operation to a pixel and some of its
neighboring (i.e., adjacent) pixels

» For quadtree/octree
representations replace
pixel/voxel by block

o |on
w >

N (-

* Neighbor is defined to be an
adjacent block of greater than
or equal size

Ahas 86 neighbors

» Desirable to be able to locate neighbors in a manner that
1. is position-independent
2. Is size-independent

3. makes no use of additional links to adjacent nodes (e.g.,
ropes and nets a la Hunter)

4. just uses the structure of the tree or configuration of the
blocks

Copyright © 1998 by Hanan Samet

O nfl O

zr b
NEIGHBOR FINDING OPERATIONS USING QUADTREES

« Many image processing operations involve traversing an
image and applying an operation to a pixel and some of its
neighboring (i.e., adjacent) pixels

» For quadtree/octree
representations replace
pixel/voxel by block

oo
w >
N [[~

* Neighbor is defined to be an
adjacent block of greater than
or equal size

Ahas8 %7 neighbors

» Desirable to be able to locate neighbors in a manner that
1. is position-independent
2. Is size-independent

3. makes no use of additional links to adjacent nodes (e.g.,
ropes and nets a la Hunter)

4. just uses the structure of the tree or configuration of the
blocks

Copyright © 1998 by Hanan Samet

O nfl O

gzrb
NEIGHBOR FINDING OPERATIONS USING QUADTREES

« Many image processing operations involve traversing an
image and applying an operation to a pixel and some of its
neighboring (i.e., adjacent) pixels

» For quadtree/octree
representations replace
pixel/voxel by block

H (O[O

8
A
3

N [[~

* Neighbor is defined to be an
adjacent block of greater than
or equal size

A has 5 § X 8 neighbors

» Desirable to be able to locate neighbors in a manner that
1. is position-independent
2. Is size-independent

3. makes no use of additional links to adjacent nodes (e.g.,
ropes and nets a la Hunter)

4. just uses the structure of the tree or configuration of the
blocks

Copyright © 1998 by Hanan Samet

O nfl O

vgzrhb
NEIGHBOR FINDING OPERATIONS USING QUADTREES

« Many image processing operations involve traversing an
image and applying an operation to a pixel and some of its
neighboring (i.e., adjacent) pixels

» For quadtree/octree
representations replace
pixel/voxel by block

H (O[O

8
A
3

N [~ [~

* Neighbor is defined to be an
adjacent block of greater than
or equal size

A has 5 § X 8 neighbors

» Desirable to be able to locate neighbors in a manner that
1. is position-independent
2. Is size-independent

3. makes no use of additional links to adjacent nodes (e.g.,
ropes and nets a la Hunter)

4. just uses the structure of the tree or configuration of the
blocks

« Some block configurations are impossible, thereby
simplifying a number of algorithms

1. impossible for a node A to have
two larger neighbors B and C
on directly opposite sides or A
touching corners

2. partial overlap of two blocks B
and C with A is impossible
since a quadtree is constructed
by recursively splitting blocks A
into blocks that have side

lengths that are powers of 2
Copyright © 1998 by Hanan Samet

O 6[5/4]32[1] nf1 O

rvgzrhb

NEIGHBOR FINDING OPERATIONS USING QUADTREES

« Many image processing operations involve traversing an
image and applying an operation to a pixel and some of its
neighboring (i.e., adjacent) pixels

» For quadtree/octree
representations replace
pixel/voxel by block

H (O[O

8
A
3

N [~ [~

* Neighbor is defined to be an
adjacent block of greater than
or equal size

A has 5 § X 8 neighbors

» Desirable to be able to locate neighbors in a manner that
1. is position-independent
2. Is size-independent

3. makes no use of additional links to adjacent nodes (e.g.,
ropes and nets a la Hunter)

4. just uses the structure of the tree or configuration of the
blocks

« Some block configurations are impossible, thereby
simplifying a number of algorithms

1. impossible for a node A to have
two larger neighbors B and C C
on directly opposite sides or B A
touching corners

2. partial overlap of two blocks B
and C with A is impossible C
since a quadtree is constructed
by recursively splitting blocks A
into blocks that have side

lengths that are powers of 2
Copyright © 1998 by Hanan Samet

O nf2 O
FINDING LATERAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor

1. Ascend the tree if the node is a son of the same type as
the direction of the neighbor (ADJ)

2. Otherwise, the father F is the nearest common ancestor
and retrace the path starting at F making mirror image
moves about the edge shared by the neighboring blocks

Ex: E neighbor of A (i.e., G)

AlG

B F

Copyright © 1998 by Hanan Samet

O nf2 O

rb

FINDING LATERAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor

1. Ascend the tree if the node is a son of the same type as
the direction of the neighbor (ADJ)

2. Otherwise, the father F is the nearest common ancestor
and retrace the path starting at F making mirror image
moves about the edge shared by the neighboring blocks

Ex: E neighbor of A (i.e., G)

NE [NW
NE 1A | G NI NW
O
B F
NW [2 5\JNE
C E
3 4

Copyright © 1998 by Hanan Samet

O nf2 O

zrb
FINDING LATERAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor

1. Ascend the tree if the node is a son of the same type as
the direction of the neighbor (ADJ)

2. Otherwise, the father F is the nearest common ancestor
and retrace the path starting at F making mirror image
moves about the edge shared by the neighboring blocks

Ex: E neighbor of A (i.e., G)

NE [NW
NE 1A | G NI NW
O
B F
NW [2 5\INE
C E
3 4

Copyright © 1998 by Hanan Samet

O nf2 O

bzrb
FINDING LATERAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor

1. Ascend the tree if the node is a son of the same type as
the direction of the neighbor (ADJ)

2. Otherwise, the father F is the nearest common ancestor
and retrace the path starting at F making mirror image
moves about the edge shared by the neighboring blocks

Ex: E neighbor of A (i.e., G)

NE [NW
NE 1A | G NI NW
O
B F
NW [2 5\INE
C E
3 4
D

node procedure EQUAL_LATERAL_NEIGHBOR(P,D);
[* Find = size neighbor of P in direction D */
begin
value pointer node P;
value direction D;
return(SON(if ADJ(D,SONTYPE(P)) then
EQUAL_LATERAL_NEIGHBOR(FATHER(P),D)
else FATHER(P),
REFLECT(D,SONTYPE(P))));
end;

Copyright © 1998 by Hanan Samet

O

Algorithm: based on finding the nearest common ancestor
1.

514)3]2[1]

rbzrb
FINDING LATERAL NEIGHBORS OF EQUAL SIZE

nf2 O

Ascend the tree if the node is a son of the same type as

the direction of the neighbor (ADJ)

Otherwise, the father F is the nearest common ancestor
and retrace the path starting at F making mirror image
moves about the edge shared by the neighboring blocks

Ex: E neighbor of A (i.e., G)

ADJAB) E|F

NE [NW
NE 1A | G NI NW
O
B F
NW [2 5\INE
C E
3 4
D

node procedure EQUAL_LATERAL_NEIGHBOR(P,D);
[* Find = size neighbor of P in direction D */
begin

value pointer node P;

value direction D;

return(SON(if ADJ(D,SONTYPE(P)) then
EQUAL_LATERAL_NEIGHBOR(FATHER(P),D)
else FATHER(P),
REFLECT(D,SONTYPE(P))));

end;

B
AN_ NW NE SW SE
N[T[T[F]|F

S| F
W| T

m|m| -

F
T
T

| =

Copyright © 1998 by Hanan Samet

Pe

> D

O

Algorithm: based on finding the nearest common ancestor
1.

654][21]

zrbzrb
FINDING LATERAL NEIGHBORS OF EQUAL SIZE

nf2 O

Ascend the tree if the node is a son of the same type as

the direction of the neighbor (ADJ)

Otherwise, the father F is the nearest common ancestor
and retrace the path starting at F making mirror image
moves about the edge shared by the neighboring blocks

Ex: E neighbor of A (i.e., G)

ADJAB) E|F

NE [NW
NE 1A | G NI NW
O
B F
NW [2 5\INE
C E
3 4
D

node procedure EQUAL_LATERAL_NEIGHBOR(P,D);
[* Find = size neighbor of P in direction D */
begin

value pointer node P;

value direction D;

return(SON(if ADJ(ID,SONTYPE(P)) then
EQUAL_LA%_‘TERAL_NEIGHBOR FATHER(P),D)
else FATHER(W
REFLECT(D,SONTYPE(P))));

B
AN_ NW NE SW SE
N[T[T[F]|F

end;

S| F
W| T

m|m| -

F
T
T

| =

Copyright © 1998 by Hanan Samet

Pe

> D

Pe

—=>D

O elslal2lt] pf2 O

gzrbzrhb
FINDING LATERAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor

1. Ascend the tree if the node is a son of the same type as
the direction of the neighbor (ADJ)

2. Otherwise, the father F is the nearest common ancestor
and retrace the path starting at F making mirror image
moves about the edge shared by the neighboring blocks

Ex: E neighbor of A (i.e., G)

NE [NW
NE 1A | G NI NW
O
B F
NW [2 5\INE
C E
3 4
D

node procedure EQUAL_LATERAL_NEIGHBOR(P,D);
[* Find = size neighbor of P in direction D */ Pe >D
begin
value pointer node P;
value direction D;

return(SON(if ADJ(D,SONTYPE(P)) then
EQUAL_LATERAL_NEIGHBOR(FATHER(P),D) Pe [>D
else FATHER(
REFLEC] ZD,SONTYPE%P%%}S;
end;
B B
A NW NE SW SE A NW NE SW SE
N|T|T|F|F N [SW SE|NW NE
ADJAB) E|F|T|F|T| REFLECT(AB) E |NE|NW SE|SW
S|F|F|T|T S | SW SE|NW NE
W| T|F|T]|F W [NE| NW SE| SW

Copyright © 1998 by Hanan Samet

O nf3 O
FINDING NEIGHBORS IN A b
POINTERLESS REPRESENTATION

220 230 320 330

« Assume a bit-interleaved
. . . 212)213]302(303
representation that also indicates 200 1 810
the depth of each block

« EXx: y bitis more significant than x 000 100
bit —i.e., ¥, X, ... Y1 X1 Yo Xo

1. Mimic tree algorithm in the sense that to find a lateral
neighbor (say in the x direction), search for the first x bit
position that is different while complementing the bits
encountered in the process

Ex: find pixel-sized eastern neighbor of 213 =1001 11

Copyright © 1998 by Hanan Samet

QO ni3 O
FINDING NEIGHBORS IN A rb
POINTERLESS REPRESENTATION

220 230 320 330

« Assume a bit-interleaved
. . . 212)213]302(303
representation that also indicates 200 1 810
the depth of each block

« EXx: y bitis more significant than x 000 100
bit —i.e., ¥, X, ... Y1 X1 Yo Xo

1. Mimic tree algorithm in the sense that to find a lateral
neighbor (say in the x direction), search for the first x bit
position that is different while complementing the bits
encountered in the process

Ex: find pixel-sized eastern neighbor of 213 =1001 11
» search for an x bit with a value of O

Copyright © 1998 by Hanan Samet

O ni3 O
FINDING NEIGHBORS IN A zrb
POINTERLESS REPRESENTATION

220 230 320 330

« Assume a bit-interleaved
. . . 212)213]302(303
representation that also indicates 200 1 810
the depth of each block

« EXx: y bitis more significant than x 000 100
bit —i.e., ¥, X, ... Y1 X1 Yo Xo

1. Mimic tree algorithm in the sense that to find a lateral
neighbor (say in the x direction), search for the first x bit
position that is different while complementing the bits
encountered in the process

Ex: find pixel-sized eastern neighbor of 213 =1001 11
e search for an x bit with a value of O
e result is 302 =1100 10

Copyright © 1998 by Hanan Samet

O ni3 O
FINDING NEIGHBORS IN A gzrb
POINTERLESS REPRESENTATION

220 230 320 330

« Assume a bit-interleaved
. . . 212)213]302(303
representation that also indicates 200 1 810
the depth of each block

« EXx: y bitis more significant than x 000 100
bit —i.e., ¥, X, ... Y1 X1 Yo Xo

1. Mimic tree algorithm in the sense that to find a lateral
neighbor (say in the x direction), search for the first x bit
position that is different while complementing the bits
encountered in the process

Ex: find pixel-sized eastern neighbor of 213 =1001 11
» search for an x bit with a value of O

e resultis 302=110010

e cumbersome as many bit operations are required

Copyright © 1998 by Hanan Samet

O ni3 O
FINDING NEIGHBORS IN A rgzrb
POINTERLESS REPRESENTATION

220 230 320 330

« Assume a bit-interleaved
. . . 212)213]302(303
representation that also indicates 200 1 810
the depth of each block

* Ex: ybitis more significant than x 000 100
bit —i.e., ¥, X, ... Y1 X1 Yo Xo

1. Mimic tree algorithm in the sense that to find a lateral
neighbor (say in the x direction), search for the first x bit
position that is different while complementing the bits
encountered in the process

Ex: find pixel-sized eastern neighbor of 213 =1001 11

» search for an x bit with a value of O

e result is 302 =1100 10

e cumbersome as many bit operations are required
2. Use arithmetic by adding or subtracting from the

appropriate x (y) bit and skip the positions
corresponding to the y (or x) bits

» save the contents of the y (x) bit positions

* load a 1 in every y (x) bit position of the addend —
enables propagation of the carry (if one is present) to
the next x (y) bit position

Ex: find pixel-sized eastern neighbor of 213 =1001 11
the addend 00 00 01 becomes +1010 11

Copyright © 1998 by Hanan Samet

O o[pg O
FINDING NEIGHBORS IN A zrgzrb
POINTERLESS REPRESENTATION

220 230 320 330

* Assume a bit-interleaved
. . . 212)213]302(303
representation that also indicates 200 1 810
the depth of each block

* Ex: ybitis more significant than x 000 100
bit —i.e., ¥, X, ... Y1 X1 Yo Xo

1. Mimic tree algorithm in the sense that to find a lateral
neighbor (say in the x direction), search for the first x bit
position that is different while complementing the bits
encountered in the process

Ex: find pixel-sized eastern neighbor of 213 =1001 11

» search for an x bit with a value of O

e result is 302 =1100 10

e cumbersome as many bit operations are required
2. Use arithmetic by adding or subtracting from the

appropriate x (y) bit and skip the positions
corresponding to the y (or x) bits

» save the contents of the y (x) bit positions

* load a 1 in every y (x) bit position of the addend —
enables propagation of the carry (if one is present) to
the next x (y) bit position

e perform the addition or subtraction

Ex: find pixel-sized eastern neighbor of 213 =1001 11
the addend 00 00 01 becomes +1010 11
result 01 00 10

Copyright © 1998 by Hanan Samet

O Tl i3 O
FINDING NEIGHBORS IN A gzrgzrhb
POINTERLESS REPRESENTATION

220 230 320 330
» Assume a bit-interleaved
. . . 212)213]302(303
representation that also indicates 200 P 310
the depth of each block

* Ex: ybitis more significant than x 000 100
bit —i.e., ¥, X, ... Y1 X1 Yo Xo

1. Mimic tree algorithm in the sense that to find a lateral
neighbor (say in the x direction), search for the first x bit
position that is different while complementing the bits
encountered in the process

Ex: find pixel-sized eastern neighbor of 213 =1001 11

» search for an x bit with a value of 0

e result is 302 =1100 10

e cumbersome as many bit operations are required
2. Use arithmetic by adding or subtracting from the

appropriate x (y) bit and skip the positions
corresponding to the y (or x) bits

» save the contents of the y (x) bit positions

* load a 1 in every y (x) bit position of the addend —
enables propagation of the carry (if one is present) to
the next x (y) bit position

e perform the addition or subtraction

* reset the y (x) bit positions to their previous value
Ex: find pixel-sized eastern neighbor of 213 =1001 11

the addend 00 00 01 becomes +1010 11

result 01 00 10
restoring y bit positions to previous 11 00 10 = 302

Copyright © 1998 by Hanan Samet

O elrelslalslzlt] pfz O
FINDING NEIGHBORS IN A vgzrgzrb
POINTERLESS REPRESENTATION

220 230 320 330

» Assume a bit-interleaved
. . . 212)213]302(303
representation that also indicates 200 P 310
the depth of each block

* Ex: ybitis more significant than x 000 100
bit —i.e., ¥, X, ... Y1 X1 Yo Xo

1. Mimic tree algorithm in the sense that to find a lateral
neighbor (say in the x direction), search for the first x bit
position that is different while complementing the bits
encountered in the process

Ex: find pixel-sized eastern neighbor of 213 =1001 11

» search for an x bit with a value of 0

e result is 302 =1100 10

e cumbersome as many bit operations are required
2. Use arithmetic by adding or subtracting from the

appropriate x (y) bit and skip the positions
corresponding to the y (or x) bits

» save the contents of the y (x) bit positions

* load a 1 in every y (x) bit position of the addend —
enables propagation of the carry (if one is present) to
the next x (y) bit position

e perform the addition or subtraction
* reset the y (x) bit positions to their previous value

Ex: find pixel-sized eastern neighbor of 213 =1001 11
the addend 00 00 01 becomes +1010 11
result 01 00 10
restoring y bit positions to previous 11 00 10 = 302

» only requires 4 instructions regardless of resolution of

image and bit position of nearest common ancestor
Copyright © 1998 by Hanan Samet

nf4
ANALYSIS OF NEIGHBOR FINDING

1. Bottom-up random image model where each pixel has
an equal probability of being black or white

 probability of the existence of a 2x2 block at a
particular position is 1/8

» OK for a checkerboard image but inappropriate for
maps as it means that there is a very low probability of
aggregation

» problem is that such a model assumes independence

 in contrast, a pixel’s value is typically related to that of
its neighbors

2. Top-down random image model where the probability of

a node being black or white is p and 1-2p for being gray

* model does not make provisions for merging

 uses a branching process model and analysis is in
terms of extinct branching processes

3. Use a model based on positions of the blocks in the
decomposition

» a block is equally likely to be at any position and depth
in the tree

e compute an average case based on all the possible
positions of a block of size 1x1, 2x2, 4x4, etc.

» 1 case at depth 0, 4 cases at depth 1, 16 cases at
depth 2, etc.

* this is not a realizable situation but in practice does
model the image accurately

Copyright © 1998 by Hanan Samet

O nfs O
ANALYSIS OF FINDING LATERAL NEIGHBORS

23.(23-1) neighbor pairs of equal
sized nodes in direction E
NCA = nearest common ancestor

Copyright © 1998 by Hanan Samet

O nfs O
ANALYSIS OF FINDING LATERAL NEIGHBORS

23.(23-1) neighbor pairs of equal
sized nodes in direction E
NCA = nearest common ancestor

1-8 have NcA at level 3

O |IN|o|o|BlwWIN]|F

Copyright © 1998 by Hanan Samet

O

s O

zrb

ANALYSIS OF FINDING LATERAL NEIGHBORS

9

17

10

18

11

19

12

20

13

21

14

22

15

O |IN|o|o|BlwWIN]|F

23

16

24

Copyright © 1998 by Hanan Samet

23.(23-1) neighbor pairs of equal
sized nodes in direction E

NCA = nearest common ancestor
1-8 have NCA at level 3

9-24 have NCA at level 2

nfs O

gzrb

ANALYSIS OF FINDING LATERAL NEIGHBORS

O
259 (33| 1 |41|17{49
26(10|34| 2 |142|18(50
27(11135] 3 143|19(51
28(12|36] 4 144|20(52
29(13|37| 5 145|21(53
30(14)38] 6 |46(22|54
31(15]39| 7 |47|23|55
32(16]40| 8 |48|24(56

Copyright © 1998 by Hanan Samet

23.(23-1) neighbor pairs of equal
sized nodes in direction E

NCA = nearest common ancestor
1-8 have NCA at level 3

9-24 have NCA at level 2

25-56 have NcaA at level 1

O

nfs O

vgzrhb

ANALYSIS OF FINDING LATERAL NEIGHBORS

25

9

33

41

17

49

26

10

34

42

18

50

27

11

35

43

19

51

28

12

36

44

20

52

29

13

37

45

21

53

30

14

38

46

22

54

31

15

39

47

O |IN|o|o|BlwWIN]|F

23

55

32

16

40

48

24

56

Theorem:

Proof:

23.(23-1) neighbor pairs of equal
sized nodes in direction E

NCA = nearest common ancestor
1-8 have NcA at level 3

9-24 have NcA at level 2

25-56 have NcA at level 1

average number of nodes visited by

EQUAL_LATERAL_NEIGHBOM < 4

« Let node A be at level i (i.e., a 2/x2/ block)

e There are 2n-/.(2n-/-1) possible positions for
node A such that an equal sized neighbor exists
in a given horizontal or vertical direction

2N—I rows

2n—-i—1 adjacencies per row
2n-1.20 have NcA at level n
2n-1.21 have NcA at level n-1

2n-i.2n-i-1 have NcA at level j+1

Copyright © 1998 by Hanan Samet

O

olol2s2t] pis O

bvgzrhb

ANALYSIS OF FINDING LATERAL NEIGHBORS

25

9

33

41

17

49

26

10

34

42

18

50

27

11

35

43

19

51

28

12

36

44

20

52

29

13

37

45

21

53

30

14

38

46

22

54

31

15

39

47

23

55

32

16

40

O |IN|o|o|BlwWIN]|F

48

24

56

Theorem:

Proof:

23.(23-1) neighbor pairs of equal
sized nodes in direction E

NCA = nearest common ancestor
1-8 have NcA at level 3

9-24 have NcA at level 2
25-56 have NcA at level 1

average number of nodes visited by

EQUAL_LATERAL_NEIGHBOM < 4

« Let node A be at level i (i.e., a 2/x2/ block)

e There are 2n-/.(2n-/-1) possible positions for
node A such that an equal sized neighbor exists
in a given horizontal or vertical direction

2N—I rows

2n—-i—1 adjacencies per row
2n-1.20 have NcA at level n
2n-1.21 have NcA at level n-1

2n-i.2n-i-1 have NcA at level j+1

* For node A at level j, direction D, and the NCA
at level j, 2-(j—i) nodes are visited in locating
an equal-sized neighbor at level /

Copyright © 1998 by Hanan Samet

O

7efsla2lt] pfs O

zbvgzrhb

ANALYSIS OF FINDING LATERAL NEIGHBORS

25

9

33

41

17

49

23.(23-1) neighbor pairs of equal

26

10

34

42

18

50

27

11

35

43

19

51

sized nodes in direction E

28

12

36

44

20

52

NCA = nearest common ancestor

29

13

37

45

21

53

1-8 have NcA at level 3

30

14

38

46

22

54

31

15

39

47

23

55

9-24 have NcA at level 2

32

16

40

O |IN|o|o|BlwWIN]|F

48

24

56

25-56 have NcA at level 1

Theorem:

Proof:

average number of nodes visited by

EQUAL_LATERAL_NEIGHBOM < 4

« Let node A be at level i (i.e., a 2/x2/ block)

e There are 2n-/.(2n-/-1) possible positions for
node A such that an equal sized neighbor exists
in a given horizontal or vertical direction

 For node A at leveli/direction b, and the Nca
at level j,

2N—I rows

2n—-i—1 adjacencies per row
2n-1.20 have NcA at level n
2n-1.21 have NcA at level n-1

2n-i.2n-i-1 have NcA at level j+1

2.(j—i

,) nodes are visited in locating
an equal-sized neighbor at levell] ;i

Copyright © 1998 by Hanan Samet

O

el7lelslslzlt] pis O
gzbvgzrhb

ANALYSIS OF FINDING LATERAL NEIGHBORS

25

9

33

41

17

49

23.(23-1) neighbor pairs of equal

26

10

34

42

18

50

27

11

35

43

19

51

sized nodes in direction E

28

12

36

44

20

52

NCA = nearest common ancestor

29

13

37

45

21

53

1-8 have NcA at level 3

30

14

38

46

22

54

31

15

39

47

23

55

9-24 have NcA at level 2

32

16

40

O |IN|o|o|BlwWIN]|F

48

24

56

25-56 have NcA at level 1

Theorem:

Proof:

average number of nodes visited by

EQUAL_LATERAL_NEIGHBOM < 4

« Let node A be at level i (i.e., a 2/x2/ block)

e There are 2n-/.(2n-/-1) possible positions for
node A such that an equal sized neighbor exists
in a given horizontal or vertical direction

 For node A at leveli/direction b, and the Nca

2N—I rows

2n—-i—1 adjacencies per row
2n-1.20 have NcA at level n
2n-1.21 have NcA at level n-1

2n-i.2n-i-1 have NcA at level j+1

at level j)|2-(j—i) nodes are visited in locating
an equal-sized neighbor at levell] ;i
n-1 n

D 2N~ "I p I - i)

i=0 j=i+1 j X
n-1 . .
22”_’ (2" -1 i i
i=0 A

nodes are visited on the average < 4
Copyright © 1998 by Hanan Samet

O nf6O

FINDING DIAGONAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor

1. Ascend the tree if the node is a son of the same type as
the direction of the neighbor (ADJ)

2. If the father and an ancestor A .

of the desired neighbor are 5
adjacent along an edge G

(coMMON_ED§Rhen calculate = E

the desired neighbor with
EQUAL_LATERAL_NEIGHBORNd

apply the retracing step in 3

3. Otherwise, the father F is the

nearest common ancestor
and now retrace the path

starting at F making

diagonally opposite moves
Ex: se neighbor of A (i.e., G)

Copyright © 1998 by Hanan Samet

O nfe O

rb

FINDING DIAGONAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor

1. Ascend the tree if the node is a son of the same type as
the direction of the neighbor (ADJ)

2. If the father and an ancestor A 1ME
of the desired neighbor are e A S W
adjacent along an edge NW [/ 2 G 6| 5\INE
(coMMON_ED§Rhen calculate = E
the desired neighbor with 3 2

EQUAL_LATERAL_NEIGHBORNd

apply the retracing step in 3

3. Otherwise, the father F is the

nearest common ancestor
and now retrace the path

starting at F making

diagonally opposite moves
Ex: se neighbor of A (i.e., G)

Copyright © 1998 by Hanan Samet

O nfe O

zrb
FINDING DIAGONAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor

1. Ascend the tree if the node is a son of the same type as
the direction of the neighbor (ADJ)

2. If the father and an ancestor A 1ME
of the desired neighbor are e A S W
adjacent along an edge NW [/ 2 G 6| 5\INE
(coMMON_ED§Rhen calculate = E
the desired neighbor with 3 2

EQUAL_LATERAL_NEIGHBORNd

apply the retracing step in 3

3. Otherwise, the father F is the

nearest common ancestor

and now retrace the path
starting at F making

diagonally opposite moves
Ex: se neighbor of A (i.e., G)

Copyright © 1998 by Hanan Samet

O nfe O

bzrb
FINDING DIAGONAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor

1. Ascend the tree if the node is a son of the same type as
the direction of the neighbor (ADJ)

2. If the father and an ancestor A 1ME
of the desired neighbor are e A S W
adjacent along an edge NW [/ 2 G 6| 5\INE
(coMMON_ED§Rhen calculate = E
the desired neighbor with 3 2

EQUAL_LATERAL_NEIGHBORNd
apply the retracing step in 3

3. Otherwise, the father F is the

nearest common ancestor

and now retrace the path
starting at F making

diagonally opposite moves
Ex: se neighbor of A (i.e., G)

node procedure EQUAL_DIAGONAL_NEIGHBOR(P,C);
[* Find = size neighbor of P towards quadrant C */
begin
value pointer node P;
value quadrant C;
return(SON(if ADJ(C,SONTYPE(P)) then
EQUAL_DIAGONAL_NEIGHBOR(FATHER(P),C)
else if COMMON_EDGE(C,SONTYPE(P)) #Q then
EQUAL_LATERAL_NEIGHBOR(FATHER(P),
COMMON_EDGE(C,SONTYPE(P)))
else FATHER(P),
OPQUAD(SONTYPE(P)));
end;

Copyright © 1998 by Hanan Samet

O

1.

2.

the direction of the neighbor (ADJ)

If the father and an ancestor A
of the desired neighbor are
adjacent along an edge
(commMON_ED§HEhen calculate
the desired neighbor with
EQUAL_LATERAL_NEIGHBORNd
apply the retracing step in 3

Otherwise, the father F is the
nearest common ancestor
and now retrace the path
starting at F making
diagonally opposite moves

Ex: se neighbor of A (i.e., G)

A NW NE

B

NW T [F
NE| F | T
SWF|F
SE| F | F

ADJ(A,B)

'r|—|'r|'r|£
(0))
—[n|n|m|4f

514)3]2[1]

rbzrb
FINDING DIAGONAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor
Ascend the tree if the node is a son of the same type as

nfe O

NE
NE [A|SWIF
B NW
NW [2 G 6| 5\INE
C E
3 4
D

node procedure EQUAL_DIAGONAL_NEIGHBOR(P,C);

[* Find = size neighbor of P towards quadrant C */

begin
value pointer node P;
value quadrant C;
return(SON(if ADJ(C,SONTYPE(P)) then |

EQUAL_DIAGONAL_NEIGHBOR(FATHER(P),C)

else if COMMON_EDGE(C,SONTYPE(P))
EQUAL_LATERAL_NEIGHBOR(FATHER(P),

COMMON_EDGE(C,SONTYPE(P)))
else FATHER(P),
OPQUAD(SONTYPE(P))));

end;

Copyright © 1998 by Hanan Samet

#Q then

Pe

O oislaslzlt] pis O

zrbzrb
FINDING DIAGONAL NEIGHBORS OF EQUAL SIZE
Algorithm: based on finding the nearest common ancestor

1. Ascend the tree if the node is a son of the same type as
the direction of the neighbor (ADJ)

2. If the father and an ancestor A 1ME
of the desired neighbor are N A S W
adjacent along an edge NW [/ 2 G 6| 5\INE
(coMMON_ED§Rhen calculate = E
the desired neighbor with 3 2

EQUAL_LATERAL_NEIGHBORNd

apply the retracing step in 3

3. Otherwise, the father F is the

nearest common ancestor

and now retrace the path
starting at F making

diagonally opposite moves
Ex: se neighbor of A (i.e., G)

B B
AN NWNE SWSE AN_NW NE SW SE
NWTJF[F]F NW Q[N[W[Q
NE[F[T|F|F NE[N|Q|QE
SWF|F[TJ|F swwlalals
SE[F|F|F][T SE[Q[E[S[Q
ADJ(A,B) COMMON_EDGE(A,B)

node procedure EQUAL_DIAGONAL_NEIGHBOR(P,C);

[* Find = size neighbor of P towards quadrant C */

begin Pe
value pointer node P;
value quadrant C;

return(SON(if ADJ(C,SONTYPE(P)) then | Pe | C
EQUAL_DIAGONAL NEIGHBOR(FATHER(P),C)
else if COMMON_EDGE(C,SONTYPE(P)) #Q) then c

EQUAL_LATERAL_NEIGHBOR(FATHER(P),
COMMON_EDGE(C,SONTYPE(P)))
else FATHER(P),
OPQUAD(SONTYPE(P)));
end;

Copyright © 1998 by Hanan Samet

O elslasl2lt] pie O

gzrbzrb
FINDING DIAGONAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor

1. Ascend the tree if the node is a son of the same type as
the direction of the neighbor (ADJ)

2. If the father and an ancestor A 1ME
of the desired neighbor are N A S W
adjacent along an edge NW [/ 2 G 6| 5\INE
(coMMON_ED§Rhen calculate = E
the desired neighbor with 3 2

EQUAL_LATERAL_NEIGHBORNd

apply the retracing step in 3

3. Otherwise, the father F is the

nearest common ancestor

and now retrace the path
starting at F making

diagonally opposite moves
Ex: se neighbor of A (i.e., G)

B B
AN NWNE SWSE AN_NW NE SW SE
NWTJF[F]F NW Q[N[W[Q
NE[F[T|F|F NE[N|Q|QE
SWF|F[TJ|F swwlalals
SE[F|F|F][T SE[Q[E[S[Q
ADJ(A,B) COMMON_EDGE(A,B)

node procedure EQUAL_DIAGONAL_NEIGHBOR(P,C);
[* Find = size neighbor of P towards quadrant C */
begin Pe
value pointer node P;
value quadrant C;
return(SON(if ADJ(C,SONTYPE(P)) then | Pe | C
EQUAL_DIAGONAL _NEIGHBOR(FATHER(P),C)
else if COMMON_EDGE(C,SONTYPE(P)) #Q|then C
EQUAL_LATERAL_NEIGHBOR(FATHER(P),

COMMON_EDGE(C,SONTYPE(P)))
else FATHER(Pe
OPQUAD(SONTYPE(P))));

end; C

Copyright © 1998 by Hanan Samet

O nfr O
ANALYSIS OF FINDING DIAGONAL NEIGHBORS

(23-1)2 neighbor pairs of equal
sized nodes in direction NE
NCA = nearest common ancestor

Copyright © 1998 by Hanan Samet

O nfz O
ANALYSIS OF FINDING DIAGONAL NEIGHBORS

(23-1)2 neighbor pairs of equal
sized nodes in direction NE
NCA = nearest common ancestor

10
112|3]4]5]|6]7 1-13 have NcA at level 3
11
12
13

Copyright © 1998 by Hanan Samet

O

nfz7 O

zrb

ANALYSIS OF FINDING DIAGONAL NEIGHBORS

17 8 22

14115(16{ 9 119]20

21

18 10 23

27 11 32

24125]26]12|29(30

31

28 13 33

Copyright © 1998 by Hanan Samet

(23-1)2 neighbor pairs of equal
sized nodes in direction NE

NCA = nearest common ancestor
1-13 have NcA at level 3

14-33 have NcA at level 2

O

nfr O

gzrb

ANALYSIS OF FINDING DIAGONAL NEIGHBORS

34117|35] 8 [38(22

39

14115(16{ 9 119]20

21

36(18|37]10(40(23

41

42127143|11(46(32

a7

24125]26]12|29(30

31

44128145(13(48|33

49

Copyright © 1998 by Hanan Samet

(23-1)2 neighbor pairs of equal
sized nodes in direction NE

NCA = nearest common ancestor
1-13 have NcA at level 3
14-33 have NcA at level 2

34—-49 have NcA at level 1

O nfr O

vgzrhb
ANALYSIS OF FINDING DIAGONAL NEIGHBORS

(23-1)2 neighbor pairs of equal
sized nodes in direction NE
NCA = nearest common ancestor

34(17(35] 8 138]22|39
14115(16(9 119]20(21
36(18(37]|10]40]23]41

112]3]4[5]|6]7 1-13 have NcA at level 3
42127143111146(32(47

e e e e 14-33 have NcA at level 2
a4|28[45(13]48]33[49 34-49 have NcA at level 1

Theorem: average number of nodes visited by
EQUAL_DIAGONAL_NEIGHBOR < 16/3
Proof:

« Let node A be at level i (i.e., a 2/x2/ block)

« There are (2"-'—1)2 possible positions for node A such that
an equal size neighbor exists in a given corner direction

40.(2-(2n-1 —1)-1) have Nca at level n
41.(2-(2n-i-1-1)-1) have Nca at level n—1

4n—i-1.(2.(2n-=(n-i-1) _1)-1) have NcA at level j+1

Copyright © 1998 by Hanan Samet

O

Blolasl2lt] pf7 O

bvgzrhb

ANALYSIS OF FINDING DIAGONAL NEIGHBORS

34

17

35

8

38

22

39

14

15

16

9

19

20

21

36

18

37

10

40

23

41

1

2

3

4

5

6

7

42

27

43

11

46

32

a7

24

25

26

12

29

30

31

44

28

45

13

48

33

49

(23-1)2 neighbor pairs of equal
sized nodes in direction NE

NCA = nearest common ancestor
1-13 have NcA at level 3
14—-33 have NCA at level 2
34-49 have NcA at level 1

Theorem: average number of nodes visited by
EQUAL_DIAGONAL_NEIGHBOR < 16/3

Proof:

« Let node A be at level i (i.e., a 2/x2/ block)

« There are (2"-'—1)2 possible positions for node A such that
an equal size neighbor exists in a given corner direction

40.(2-(2n-1 —1)-1) have NcA at level n

41.(2-(2n--1 -1)-1) have NcaA at level n—1

4n—i-1.(2.(2n-=(n-i-1) _1)-1) have NcA at level j+1

* For node A at level J, direction D, and the ncA
at level j, 2-(j—i) nodes are visited in locating
an equal-sized neighbor at level /

Copyright © 1998 by Hanan Samet

O

efslalzlzlt] pf7 O

zbvgzrb

ANALYSIS OF FINDING DIAGONAL NEIGHBORS

(23-1)2 neighbor pairs of equal

34

17

35

8

38(22]39

sized nodes in direction NE

14

15

16

9

1912021

36

18

37

10

40]23|41

NCA = nearest common ancestor

1

2

3

4

5(6|7

1-13 have NcA at level 3

42

27

43

11

46|32|47

24

25

26

12

29|30|31

14—-33 have NCA at level 2

44

28

45

13

48]33]49

34-49 have NcA at level 1

Theorem: average number of nodes visited by
EQUAL_DIAGONAL_NEIGHBOR < 16/3

Proof:

« Let node A be at level i (i.e., a 2/x2/ block)

« There are (2"-'—1)2 possible positions for node A such that
an equal size neighbor exists in a given corner direction

40.(2-(2n-1 —1)-1) have NcA at level n

41.(2-(2n--1 -1)-1) have NcaA at level n—1

4n—i-1.(2.(2n-=(n-i-1) _1)-1) have NcA at level j+1

» For node A at level|j|direction b, and the ncA
at level j||2-(j—i)
an equal-sized neighbor at level|i|

Copyright © 1998 by Hanan Samet

nodes are visited in locating

O gl7lelslalslolt] w7 O

gzbvgzrhb
ANALYSIS OF FINDING DIAGONAL NEIGHBORS

(23-1)2 neighbor pairs of equal
sized nodes in direction NE
NCA = nearest common ancestor

34(17(35] 8 138]22|39
14115(16(9 119]20(21
36(18(37]|10]40]23]41

112]3]4[5]|6]7 1-13 have NcA at level 3
42127143111146(32(47

e e e e 14-33 have NcA at level 2
a4|28[45(13]48]33[49 34-49 have NcA at level 1

Theorem: average number of nodes visited by
EQUAL_DIAGONAL_NEIGHBOR < 16/3
Proof:

« Let node A be at level i (i.e., a 2/x2/ block)

« There are (2"-'—1)2 possible positions for node A such that
an equal size neighbor exists in a given corner direction
40.(2-(2n-1 —1)-1) have NcA at level n
41.(2-(2n--1 -1)-1) have NcaA at level n—1

4n—i=1.(2.(2n-1-(n-i-1) —1)-1) have NcA at level j+1
» For node A at level|j|direction b, and the ncA

at level j)|2-(j—i) nodes are visited in locating
an equal-sized neighbor at level|i|

n-1 n J

Y YA ™) -y -neyj-) g
i=0 j=i+1
n-1 . , |
z(zn—l _1)2 ,’I
/=0 f X
nodes are visited on the average < 16/3 i i
A

Copyright © 1998 by Hanan Samet

nf8
FINDING NEIGHBORS IN HIGHER DIMENSIONS
1. Three dimensions
* need direction of a vertex

« direction of an edge = direction of a vertex in two
dimensions

« direction of a face = direction of an edge in two
dimensions
2. Arbitrary dimensions (d): neighbor of node N

 use induction and routines for adjacencies along
1, 2, ... d- 1 dimensions

» add one new routine for a d -dimensional adjacency
(e.g., vertex in three dimensions)

a. ascend the tree if the node is a son of the same type
as the direction of the neighbor (ADJ)
b. fori=d-1 step -1 until 1

» determine if the father of N and the ancestor of the
desired neighbor have an i/ -dimensional
adjacency in which case apply the algorithm for
obtaining such a neighbor in d - 1 dimensions

* exit loop upon success

c. father of Nis the desired nearest common ancestor

* retrace path making directly opposite moves
about the vertex shared by node N and its
neighbor

Copyright © 1998 by Hanan Samet

nf9
PERFORMANCE FOR TWO-DIMENSIONAL DATA

* Assume 512x512 images
» Results correlate well with the model

» Average cost of neighbor finding for neighbors of greater
than or equal size using the position model

Flood Topo Land Pebble Average Predicted

lateral neighbor 3.50 3.60 3.59 3.56 3.57 3.46
diagonal neighbor 4.47 4.68 4.63 4.60 4.60 4.44

» Average cost of stage 1 of neighbor finding (i.e., just
locating the nearest common ancestor

Flood Topo Land Pebble Average Predicted

lateral neighbor 2.01 2.00 2.00 1.99 2.00 1.98
diagonal neighbor 2.69 2.67 2.66 2.65 2.67 2.62

» Average cost of stage 2 of neighbor finding (i.e.,
descending the tree once the nearest common ancestor
has been located)

Flood Topo Land Pebble Average Predicted

lateral neighbor 1.49 1.60 1.59 1.57 1.57 1.48
diagonal neighbor 1.79 2.00 1.97 1.95 1.94 1.82

Copyright © 1998 by Hanan Samet

O FINDING THE NEAREST OBJECT

« EX: find the nearest object to P

12 8 7 6
oE «C
13 9 1 45
[]
. P, 2.A
10 11
F

hpll ()

« Assume PR quadtree for points (i.e., at most one point

per block)

« Search neighbors of block 1 in counterclockwise order
» Points are sorted with respect to the space they occupy

which enables pruning the search space

 Algorithm:

Copyright © 1998 by Hanan Samet

O FINDING THE NEAREST OBJECT hp1l

« EX: find the nearest object to P

12 8 7 6
oE «C
13 9 1 455
[J

10 N

« Assume PR quadtree for points (i.e., at most one point
per block)

« Search neighbors of block 1 in counterclockwise order

» Points are sorted with respect to the space they occupy
which enables pruning the search space

 Algorithm:

1. start at block 2 and compute distance to p from A

Copyright © 1998 by Hanan Samet

O FINDING THE NEAREST OBJECT hp1l

« EX: find the nearest object to P

12 8 7 6
oE «C
13 9 1 455
[J

10 N

« Assume PR quadtree for points (i.e., at most one point
per block)

« Search neighbors of block 1 in counterclockwise order

» Points are sorted with respect to the space they occupy
which enables pruning the search space

 Algorithm:

1. start at block 2 and compute distance to p from A

2.ignore block 3 whether or not it is empty as A is closer
to p than any pointin 3

Copyright © 1998 by Hanan Samet

O FINDING THE NEAREST OBJECT hp1l

« EX: find the nearest object to P

12 8 7 6
oE «C
13 9 1 455
\ []
D P A3
10 EN

« Assume PR quadtree for points (i.e., at most one point
per block)

« Search neighbors of block 1 in counterclockwise order

» Points are sorted with respect to the space they occupy
which enables pruning the search space

 Algorithm:

1. start at block 2 and compute distance to p from A

2.ignore block 3 whether or not it is empty as A is closer
to p than any pointin 3

3. examine block 4 as distance to sw corner is shorter
than the distance from P to A; however, reject B as it is
further from p than A

Copyright © 1998 by Hanan Samet

O FINDING THE NEAREST OBJECT hp1l

vgzrhb

» Ex: find the nearest object to P

12 8 7 6
oE «C
13 9 1 455
N @
D P A3
10 1IN/

» Assume PR quadtree for points (i.e., at most one point
per block)

» Search neighbors of block 1 in counterclockwise order

» Points are sorted with respect to the space they occupy
which enables pruning the search space

 Algorithm:

1. start at block 2 and compute distance to p from A

2.ignore block 3 whether or not it is empty as A is closer
to p than any pointin 3

3. examine block 4 as distance to sw corner is shorter
than the distance from p to A; however, reject B as it is
further from p than A

4.ignore blocks 6, 7, 8, 9, and 10 as the minimum
distance to them from p is greater than the distance
from P to A

Copyright © 1998 by Hanan Samet

O FINDING THE NEAREST OBJECT

654321 hpll (J

zvgzrhb
» Ex: find the nearest object to P
12 8 7 6
oE «C
13 9 1 455
\ []

.D A3

10 1IN/

Assume PR quadtree for points (i.e., at most one point
per block)

Search neighbors of block 1 in counterclockwise order
Points are sorted with respect to the space they occupy
which enables pruning the search space

Algorithm:

1. start at block 2 and compute distance to p from A

2.ignore block 3 whether or not it is empty as A is closer
to p than any pointin 3

3. examine block 4 as distance to sw corner is shorter
than the distance from p to A; however, reject B as it is
further from p than A

4.ignore blocks 6, 7, 8, 9, and 10 as the minimum
distance to them from p is greater than the distance
frompPto A

5. examine block 11 as the distance from p to the southern
border of 1 is shorter than the distance from p to A;
however, reject F as it is further from p than A

Copyright © 1998 by Hanan Samet

hpll
O FINDING THE NEAREST OBJECT 7ielsie3iza) hpll O)

rzvgzrhb

» Ex: find the nearest object to P

12 8 7 6
oE «C
13 9 1 4gl5
\ []
D (\ A3
10 1W
new F
JF

» Assume PR quadtree for points (i.e., at most one point
per block)

» Search neighbors of block 1 in counterclockwise order

» Points are sorted with respect to the space they occupy
which enables pruning the search space

 Algorithm:

1. start at block 2 and compute distance to p from A

2.ignore block 3 whether or not it is empty as A is closer
to p than any pointin 3

3. examine block 4 as distance to sw corner is shorter
than the distance from p to A; however, reject B as it is
further from p than A

4.ignore blocks 6, 7, 8, 9, and 10 as the minimum
distance to them from p is greater than the distance
frompPto A

5. examine block 11 as the distance from p to the southern
border of 1 is shorter than the distance from p to A;
however, reject F as it is further from p than A

* |f F was moved, a better order would have started with

block 11, the southern neighbor of 1, as it is closest
Copyright © 1998 by Hanan Samet

nfll
USE OF NEIGHBOR FINDING IN RAY TRACING

» Goal: sort the faces of the objects to reduce the number
of necessary ray-object intersection tests

» Trace each ray by checking the blocks through which it
passes

« Ex: two-dimensional object

Copyright © 1998 by Hanan Samet

