
Copyright © 1996 Hanan Samet

These notes may not be reproduced by any means (mechanical or elec-
tronic or any other) without the express written permission of Hanan Samet

QUADTREE BACKGROUND

Hanan Samet

Computer Science Department and
Center for Automation Research and

Institute for Advanced Computer Studies
University of Maryland

College Park, Maryland 20742
e-mail: hjs@umiacs.umd.edu

Copyright © 1998 by Hanan Samet

bg1
HISTORY

1. Linearization or ordering of higher dimensional space
• space filling curves — e.g., Peano (1891)
• spatial index — Morton (1966)

2. Computer graphics
• sorting objects for display
• Warnock’s algorithm (1968)

a. vector: hidden-line elimination
b. raster: hidden-surface elimination

• animation — Hunter (1978)
• BSP trees — Fuchs, Kedem, and Naylor (1980)

3. Image processing and pattern recognition
• Klinger (1971)
• split-and-merge segmentation methods — Horowitz

and Pavlidis (1976)
4. Multidimensional point representation

• multidimensional binary search trees — Finkel and
Bentley (1974)

• k-d trees — Bentley (1975)
5. Volume data for solid modeling and computer vision

• bounding boxes — Reddy and Rubin (1978)
• octrees — Hunter (1978)

6. Finite element mesh generation — Rheinboldt and
Mesztenyi (1980)

7. Fast matrix operations — Strassen (1969)
8. Computational complexity

• dimension reducing device — Hunter (1978)
• optimal placement — Li, Grosky, and Jain (1981)

Copyright © 1998 by Hanan Samet

bg2
SPLIT-AND-MERGE SEGMENTATION

• Subdivide an image until a homogeneity criterion is
satisfied — e.g., standard deviation of gray levels is
below a particular threshold

• Group adjacent blocks into maximal homogeneous
regions

• Ex:

1
b

Copyright © 1998 by Hanan Samet

bg2
SPLIT-AND-MERGE SEGMENTATION

• Subdivide an image until a homogeneity criterion is
satisfied — e.g., standard deviation of gray levels is
below a particular threshold

• Group adjacent blocks into maximal homogeneous
regions

• Ex:

1
b

Copyright © 1998 by Hanan Samet

bg22
r

1. initial image decomposition into cells of uniform size

Copyright © 1998 by Hanan Samet

bg2
SPLIT-AND-MERGE SEGMENTATION

• Subdivide an image until a homogeneity criterion is
satisfied — e.g., standard deviation of gray levels is
below a particular threshold

• Group adjacent blocks into maximal homogeneous
regions

• Ex:

1
b

Copyright © 1998 by Hanan Samet

bg22
r

1. initial image decomposition into cells of uniform size

Copyright © 1998 by Hanan Samet

bg23
z

2. merge homogeneous brothers

Copyright © 1998 by Hanan Samet

bg2
SPLIT-AND-MERGE SEGMENTATION

• Subdivide an image until a homogeneity criterion is
satisfied — e.g., standard deviation of gray levels is
below a particular threshold

• Group adjacent blocks into maximal homogeneous
regions

• Ex:

1
b

Copyright © 1998 by Hanan Samet

bg22
r

1. initial image decomposition into cells of uniform size

Copyright © 1998 by Hanan Samet

bg23
z

2. merge homogeneous brothers

Copyright © 1998 by Hanan Samet

bg24
g

3. split blocks that are not homogeneous

Copyright © 1998 by Hanan Samet

bg2
SPLIT-AND-MERGE SEGMENTATION

• Subdivide an image until a homogeneity criterion is
satisfied — e.g., standard deviation of gray levels is
below a particular threshold

• Group adjacent blocks into maximal homogeneous
regions

• Ex:

1
b

Copyright © 1998 by Hanan Samet

bg22
r

1. initial image decomposition into cells of uniform size

Copyright © 1998 by Hanan Samet

bg23
z

2. merge homogeneous brothers

Copyright © 1998 by Hanan Samet

bg24
g

3. split blocks that are not homogeneous

Copyright © 1998 by Hanan Samet

bg25
v

4. group identical blocks into regions

Copyright © 1998 by Hanan Samet

bg3

SPACE ORDERING METHODS

• Linearization of higher dimensional spaces
• Space-filling curves
• Examples:

Row order Row-prime order

Morton order Peano-Hilbert order

Cantor order Spiral order

Copyright © 1998 by Hanan Samet

bg4

CONVERTING BETWEEN POINTS AND CURVES

• Need to know size of image for all but the Morton
order

• Relatively easy for all but the Peano-Hilbert order
which is difficult (although possible) to decode
and encode to obtain the corresponding x and y
coordinate values

• Morton order

1. use bit interleaving of binary representation of
the x and y coordinates of the point

2. also known as Z-order

0 0 1

1 1 0

y

x

3. Ex: Atlanta (6,1) 0 1 0 1 1 0 = 22

Copyright © 1998 by Hanan Samet

bg51
b

STABILITY OF SPACE ORDERING METHODS

• An order is stable if the relative order of the individual
pixels is maintained when the resolution (i.e., the size of
the space in which the cells are embedded) is doubled or
halved

• Morton order is stable while the Peano-Hilbert order is not

• Ex:

 Morton: Peano-Hilbert:

1

32

0 1

23

0

Copyright © 1998 by Hanan Samet

bg51
b

STABILITY OF SPACE ORDERING METHODS

• An order is stable if the relative order of the individual
pixels is maintained when the resolution (i.e., the size of
the space in which the cells are embedded) is doubled or
halved

• Morton order is stable while the Peano-Hilbert order is not

• Ex:

 Morton: Peano-Hilbert:

1

32

0 1

23

0

Copyright © 1998 by Hanan Samet

bg5

1215 1011

2
r

• Result of doubling the resolution (i.e., the coverage)

1

32

0

9

1110

8
13

1514

12

5

76

4
3

21

0

1314 9
8

5

6
7

4

Copyright © 1998 by Hanan Samet

bg51
b

STABILITY OF SPACE ORDERING METHODS

• An order is stable if the relative order of the individual
pixels is maintained when the resolution (i.e., the size of
the space in which the cells are embedded) is doubled or
halved

• Morton order is stable while the Peano-Hilbert order is not

• Ex:

 Morton: Peano-Hilbert:

1

32

0 1

23

0

Copyright © 1998 by Hanan Samet

bg5

1215 1011

2
r

• Result of doubling the resolution (i.e., the coverage)

1

32

0

9

1110

8
13

1514

12

5

76

4
3

21

0

1314 9
8

5

6
7

4

Copyright © 1998 by Hanan Samet

bg53
z

in which case the circled points do not maintain the same
relative order in the Peano-Hilbert order while they do in
the Morton order

Copyright © 1998 by Hanan Samet

bg6

DESIRABLE PROPERTIES OF SPACE FILLING CURVES

1. Pass through each point in the space once and only
once

2. Two points that are neighbors in space are neighbors
along the curve and vice versa
• impossible to satisfy for all points at all resolutions

3. Easy to retrieve neighbors of a point

4. Curve should be stable as the space grows and
contracts by powers of two w ith the same origin
• yes for Morton and Cantor orders

• no for row, row-prime, Peano-Hilbert, and spiral
orders

5. Curve should be admissible
• at each step at least one horizontal and one vertical

neighbor must have already been encountered
• used by active border algorithms - e.g., connected

component labeling algorithm
• row and Morton orders are admissible
• Peano-Hilbert order is not admissible
• row-prime, Cantor, and spiral orders are admissible if

permit the direction of the horizontal and vertical
neighbors to vary from point to point

6. Easy to convert between two-dimensional data and the
curve and vice-versa
• easy for Morton order
• difficult for Peano-Hilbert order
• relatively easy for row, row-prime, Cantor, and spiral

orders
Copyright © 1998 by Hanan Samet

bg7
SPACE REQUIREMENTS

1. Rationale for using quadtrees/octrees is not so much for
saving space but for saving execution time

2. Execution time of standard image processing algorithms
that are based on traversing the entire image and
performing a computation at each image element is
proportional to the number of blocks in the
decomposition of the image rather than their size
• aggregation of space leads directly to execution time

savings as the aggregate (i.e., block) is visited just
once instead of once for each image element (i.e.,
pixel, voxel) in the aggregate (e.g., connected
component labeling)

3. If want to save space, then, in general, statistical image
compression methods are superior
• drawback: statistical methods are not progressive as

need to transmit the entire image whereas quadtrees
lend themselves to progressive approximation

• quadtrees, though, do achieve compression as a
result of use of common subexpression elimination
techniques
a. e.g., checkerboard image
b. see also vector quantization

4. Sensitive to positioning of the origin of the decomposition
• for an n x n image, the optimal positioning requires an

O(n 2 log2n) dynamic programming algorithm
(Li, Grosky, and Jain)

Copyright © 1998 by Hanan Samet

bg8
DIMENSION REDUCTION

1. Number of blocks necessary to store a simple polygon as a
region quadtree is proportional to its perimeter (Hunter)

• implies that many quadtree algorithms execute in
O(perimeter) time as they are tree traversals

• the region quadtree is a dimension reducing device as
perimeter (ignoring fractal effects) is a one-
dimensional measure and we are starting with two-
dimensional data

• generalizes to higher dimensions

a. region octree takes O (surface area) time and space
(Meagher)

b. d-dimensional data take time and space proportional
to a O (d-1)-dimensional quantity (Walsh)

2. Alternatively, for a region quadtree, the space
requirements double as the resolution doubles

• in contrast with quadrupling in the array representation

• for a region octree the space requirements quadruple
as the resolution doubles

• ex.

1
b

array region quadtree

Copyright © 1998 by Hanan Samet

bg8
DIMENSION REDUCTION

1. Number of blocks necessary to store a simple polygon as a
region quadtree is proportional to its perimeter (Hunter)

• implies that many quadtree algorithms execute in
O(perimeter) time as they are tree traversals

• the region quadtree is a dimension reducing device as
perimeter (ignoring fractal effects) is a one-
dimensional measure and we are starting with two-
dimensional data

• generalizes to higher dimensions

a. region octree takes O (surface area) time and space
(Meagher)

b. d-dimensional data take time and space proportional
to a O (d-1)-dimensional quantity (Walsh)

2. Alternatively, for a region quadtree, the space
requirements double as the resolution doubles

• in contrast with quadrupling in the array representation

• for a region octree the space requirements quadruple
as the resolution doubles

• ex.

1
b

array region quadtree

Copyright © 1998 by Hanan Samet

bg82
r

Copyright © 1998 by Hanan Samet

bg8
DIMENSION REDUCTION

1. Number of blocks necessary to store a simple polygon as a
region quadtree is proportional to its perimeter (Hunter)

• implies that many quadtree algorithms execute in
O(perimeter) time as they are tree traversals

• the region quadtree is a dimension reducing device as
perimeter (ignoring fractal effects) is a one-
dimensional measure and we are starting with two-
dimensional data

• generalizes to higher dimensions

a. region octree takes O (surface area) time and space
(Meagher)

b. d-dimensional data take time and space proportional
to a O (d-1)-dimensional quantity (Walsh)

2. Alternatively, for a region quadtree, the space
requirements double as the resolution doubles

• in contrast with quadrupling in the array representation

• for a region octree the space requirements quadruple
as the resolution doubles

• ex.

1
b

array region quadtree

Copyright © 1998 by Hanan Samet

bg82
r

Copyright © 1998 by Hanan Samet

bg83
z

Copyright © 1998 by Hanan Samet

bg8
DIMENSION REDUCTION

1. Number of blocks necessary to store a simple polygon as a
region quadtree is proportional to its perimeter (Hunter)

• implies that many quadtree algorithms execute in
O(perimeter) time as they are tree traversals

• the region quadtree is a dimension reducing device as
perimeter (ignoring fractal effects) is a one-
dimensional measure and we are starting with two-
dimensional data

• generalizes to higher dimensions

a. region octree takes O (surface area) time and space
(Meagher)

b. d-dimensional data take time and space proportional
to a O (d-1)-dimensional quantity (Walsh)

2. Alternatively, for a region quadtree, the space
requirements double as the resolution doubles

• in contrast with quadrupling in the array representation

• for a region octree the space requirements quadruple
as the resolution doubles

• ex.

1
b

array region quadtree

Copyright © 1998 by Hanan Samet

bg82
r

Copyright © 1998 by Hanan Samet

bg83
z

Copyright © 1998 by Hanan Samet

bg84
g

Copyright © 1998 by Hanan Samet

bg8
DIMENSION REDUCTION

1. Number of blocks necessary to store a simple polygon as a
region quadtree is proportional to its perimeter (Hunter)

• implies that many quadtree algorithms execute in
O(perimeter) time as they are tree traversals

• the region quadtree is a dimension reducing device as
perimeter (ignoring fractal effects) is a one-
dimensional measure and we are starting with two-
dimensional data

• generalizes to higher dimensions

a. region octree takes O (surface area) time and space
(Meagher)

b. d-dimensional data take time and space proportional
to a O (d-1)-dimensional quantity (Walsh)

2. Alternatively, for a region quadtree, the space
requirements double as the resolution doubles

• in contrast with quadrupling in the array representation

• for a region octree the space requirements quadruple
as the resolution doubles

• ex.

1
b

array region quadtree

Copyright © 1998 by Hanan Samet

bg82
r

Copyright © 1998 by Hanan Samet

bg83
z

Copyright © 1998 by Hanan Samet

bg84
g

Copyright © 1998 by Hanan Samet

bg85
r

• easy to see dependence on perimeter as decomposition
only takes place on the boundary as the resolution
increases

Copyright © 1998 by Hanan Samet

ar0

Copyright © 1994 Hanan Samet

These notes may not be reproduced by any means (mechanical or elec-
tronic or any other) without the express written permission of Hanan Samet

ALTERNATIVE REPRESENTATIONS

Hanan Samet

Computer Science Department and
Center for Automation Research and

Institute for Advanced Computer Studies
University of Maryland

College Park, Maryland 20742
e-mail: hjs@umiacs.umd.edu

Copyright © 1998 by Hanan Samet

ar1

BINTREES (Tamminen, Knowlton)

• In higher dimensions (e.g., >3) branching factor of
quadtree and octree is too high

• Bintree: regular decomposition binary tree for high
dimensional data

1. at each level split on the basis of another attribute

2. cycle through the attributes at the different levels

• Ex:

3
1

2

4

6

5

8

9
7 11

10

13

14

12

15

16

F

3 4

E

5

D

2

C

1

B

J

8 9

I

7

H

10

K

11 12

N

13 14

O

15 16

MG

L

A

6

Copyright © 1998 by Hanan Samet

ar2

BSP TREES (Fuchs, Kedem, Naylor)

• Like a bintree except that the decomposition lines are at
arbitrary orientations (i.e., they need not be parallel or
orthogonal)

• For data of arbitrary dimensions

• In 2D (3D), partition along the edges (faces) of a polygon
(polyhedron)

• Ex: arrows indicate direction of positive area

B

C

A

2

3
4

5

1

D

B

C

A

2 3

4 51

D

• Usually used for hidden-surface elimination

1. domain is a set of polygons in three dimensions

2. position of viewpoint determines the order in which the
BSP tree is traversed

• A polygon’s plane is extended infinitely to partition the
entire space

Copyright © 1998 by Hanan Samet

ar3
DRAWBACKS OF BSP TREES

• A polygon may be included in both the left and right
subtrees of node

• Same issues of duplicate reporting as in representations
based on a disjoint decomposition of the underlying space

• Shape of the BSP tree depends on the order in which the
polygons are processed and on the polygons chosen to
serve as the partitioning plane

• Not based on a regular decomposition thereby
complicating the performance of set-theoretic operations

• Ex: use line segments
 in two dimensions

1
b

C
D

A
B

Copyright © 1998 by Hanan Samet

ar3
DRAWBACKS OF BSP TREES

• A polygon may be included in both the left and right
subtrees of node

• Same issues of duplicate reporting as in representations
based on a disjoint decomposition of the underlying space

• Shape of the BSP tree depends on the order in which the
polygons are processed and on the polygons chosen to
serve as the partitioning plane

• Not based on a regular decomposition thereby
complicating the performance of set-theoretic operations

• Ex: use line segments
 in two dimensions

1
b

C
D

A
B

Copyright © 1998 by Hanan Samet

ar32
r

1. partition
induced by
choosing B as
the root

B

C D

A D

3 4 1 2

5 6 C
D

A B

1

2

3

4
5

6

Copyright © 1998 by Hanan Samet

ar3
DRAWBACKS OF BSP TREES

• A polygon may be included in both the left and right
subtrees of node

• Same issues of duplicate reporting as in representations
based on a disjoint decomposition of the underlying space

• Shape of the BSP tree depends on the order in which the
polygons are processed and on the polygons chosen to
serve as the partitioning plane

• Not based on a regular decomposition thereby
complicating the performance of set-theoretic operations

• Ex: use line segments
 in two dimensions

1
b

C
D

A
B

Copyright © 1998 by Hanan Samet

ar32
r

1. partition
induced by
choosing B as
the root

B

C D

A D

3 4 1 2

5 6 C
D

A B

1

2

3

4
5

6

Copyright © 1998 by Hanan Samet

ar33
z

2. partition
induced by
choosing C as
the root

C
D

A B

1
4

5
2

3

C

D

B

1 2

3

A

4 5

Copyright © 1998 by Hanan Samet

ar4

POINTER-LESS QUADTREE REPRESENTATIONS

• Central idea in the quadtree data structure is the recursive
decomposition of space into blocks

• The tree is an implementation convenience to enable
logarithmic searches for the block associated with a
particular point

• Unlike the pyramid, no information is associated with the
internal nodes of the quadtree

• Can represent the blocks in a list of numbers where each
block has a unique number (termed a location code)
formed by concatenating

1. the sequence of n (assuming a 2n
 ×2n image) two bit

codes corresponding to each step in the path from the
root of the tree to the block’s node
• let 0, 1, 2, 3 correspond to SW, SE, NW, NE branches,

respectively
• absent steps are encoded with a 0
• equivalent to interleaving the binary representations

of the x and y coordinate values of a particular pixel
(e.g., at the lower left corner)

2. the depth of the block’s node
• necessary to distinguish between paths having

trailing digits whose value is 0
 Ex:

1
b

Copyright © 1998 by Hanan Samet

ar4

POINTER-LESS QUADTREE REPRESENTATIONS

• Central idea in the quadtree data structure is the recursive
decomposition of space into blocks

• The tree is an implementation convenience to enable
logarithmic searches for the block associated with a
particular point

• Unlike the pyramid, no information is associated with the
internal nodes of the quadtree

• Can represent the blocks in a list of numbers where each
block has a unique number (termed a location code)
formed by concatenating

1. the sequence of n (assuming a 2n
 ×2n image) two bit

codes corresponding to each step in the path from the
root of the tree to the block’s node
• let 0, 1, 2, 3 correspond to SW, SE, NW, NE branches,

respectively
• absent steps are encoded with a 0
• equivalent to interleaving the binary representations

of the x and y coordinate values of a particular pixel
(e.g., at the lower left corner)

2. the depth of the block’s node
• necessary to distinguish between paths having

trailing digits whose value is 0
 Ex:

1
b

Copyright © 1998 by Hanan Samet

ar42
r

path from root = NE, SW

locational code = 310,2

Copyright © 1998 by Hanan Samet

ar5

PROPERTIES OF LOCATIONAL CODES

• Locational codes can be stored in a B-tree

• Locational codes are equivalent to a hashing function and
are the basis of techniques known as order preserving
linear hashing

• Sorting locational codes in increasing order has the effect
of a space-filling curve and is equivalent to traversing the
leaf nodes of the tree in SW, SE, NW, NE order

• Neighbor finding is easy at pixel level but cumbersome at
other levels although feasible

• Many alternative locational code implementations exist

1. variable length locational codes where the depth is
omitted and a don’t care code (e.g., 4) is used as a
sentinel

2. fixed length locational codes with a don’t care symbol
to indicate that no further decomposition takes place

Copyright © 1998 by Hanan Samet

ar6

TRAVERSAL-BASED QUADTREE REPRESENTATIONS

• Preorder traversal of the nodes in the quadtree

• Result is a string over the alphabet (DF-expression):

 G = GRAY node B = BLACK node W = WHITE node

• Ex: NW, NE, SW, SE traversal order

1
b

• Drawback: random access is impossible (e.g., for
neighbor finding — must always start at the first element
in the list and visit all elements prior to the one being
searched for

• Useful whenever have to process entire set of nodes in
preorder (e.g., NW, NE, SW, SE)

1. centroid computation

2. set-theoretic operations

3. image transformations involving translation, rotation,
scaling

9
6

12

7

1

8

18

1615
19

13

4

2

14

5

3

10

17
11

7 8 9 10

D

6 12

C

11

15 16 17 18

13 14 19

F

E

2 3 5

B

4

A

1

NW

NE SW

SE

Copyright © 1998 by Hanan Samet

ar6

TRAVERSAL-BASED QUADTREE REPRESENTATIONS

• Preorder traversal of the nodes in the quadtree

• Result is a string over the alphabet (DF-expression):

 G = GRAY node B = BLACK node W = WHITE node

• Ex: NW, NE, SW, SE traversal order

1
b

• Drawback: random access is impossible (e.g., for
neighbor finding — must always start at the first element
in the list and visit all elements prior to the one being
searched for

• Useful whenever have to process entire set of nodes in
preorder (e.g., NW, NE, SW, SE)

1. centroid computation

2. set-theoretic operations

3. image transformations involving translation, rotation,
scaling

9
6

12

7

1

8

18

1615
19

13

4

2

14

5

3

10

17
11

7 8 9 10

D

6 12

C

11

15 16 17 18

13 14 19

F

E

2 3 5

B

4

A

1

NW

NE SW

SE

Copyright © 1998 by Hanan Samet

ar62
r

G WG WWBB G WG WBBB WB G BBG BBBW W

Copyright © 1998 by Hanan Samet

tl0

Copyright © 1994 Hanan Samet

These notes may not be reproduced by any means (mechanical or elec-
tronic or any other) without the express written permission of Hanan Samet

TESSELLATIONS

Hanan Samet

Computer Science Department and
Center for Automation Research and

Institute for Advanced Computer Studies
University of Maryland

College Park, Maryland 20742
e-mail: hjs@umiacs.umd.edu

Copyright © 1998 by Hanan Samet

tl1
ALTERNATIVE DECOMPOSITION METHODS

• A planar decomposition for image representation should be:
1. infinitely repetitive
2. infinitely decomposable into successively finer patterns

• Classification of tilings (Bell, Diaz, Holroyd, and Jackson)
1. isohedral — all tiles are equivalent under the symmetry

group of the tiling (i.e., when stand in one tile and look
around, the view is independent of the tile)

1
b

B A
1

2

3

[36]

[34.6]

[33.42]

[32.4.3.2]

[3.4.6.4]

[3.6.3.6]

[3.122]

[44]

[4.6.12]

[63]

[4.82]

2. regular — each tile is a regular polygon

• There are 81 types if classify by their symmetry groups

• Only 11 types if classify by their adjacency structure

• [3.122] means 3 edges at the first vertex of the polygonal
tile followed by 12 edges at the next two vertices

Copyright © 1998 by Hanan Samet

tl1
ALTERNATIVE DECOMPOSITION METHODS

• A planar decomposition for image representation should be:
1. infinitely repetitive
2. infinitely decomposable into successively finer patterns

• Classification of tilings (Bell, Diaz, Holroyd, and Jackson)
1. isohedral — all tiles are equivalent under the symmetry

group of the tiling (i.e., when stand in one tile and look
around, the view is independent of the tile)

1
b

B A
1

2

3

[36]

[34.6]

[33.42]

[32.4.3.2]

[3.4.6.4]

[3.6.3.6]

[3.122]

[44]

[4.6.12]

[63]

[4.82]

2. regular — each tile is a regular polygon

• There are 81 types if classify by their symmetry groups

• Only 11 types if classify by their adjacency structure

• [3.122] means 3 edges at the first vertex of the polygonal
tile followed by 12 edges at the next two vertices

Copyright © 1998 by Hanan Samet

tl12
r

YESNO

Copyright © 1998 by Hanan Samet

tl21
b

• Limited ≡ NOT similar (i.e., cannot be decomposed
infinitely into smaller tiles of the same shape)

• Unlimited: each edge of each tile lies on an infinitely
straight line composed entirely of edges

• Only 4 unlimited tilings [44], [63], [4.82], and [4.6.12]

• Two additional hierarchies:

 Note: [4.82] and [4.6.12] are not regular

rotation of 135° between levels reflection between levels

[4.82] [4.6.12]

[63] [44] [36]

PROPERTIES OF TILINGS — SIMILARITY

• Similarity — a tile at level k has the same shape as a tile
at level 0 (basic tile shape)

Copyright © 1998 by Hanan Samet

tl21
b

• Limited ≡ NOT similar (i.e., cannot be decomposed
infinitely into smaller tiles of the same shape)

• Unlimited: each edge of each tile lies on an infinitely
straight line composed entirely of edges

• Only 4 unlimited tilings [44], [63], [4.82], and [4.6.12]

• Two additional hierarchies:

 Note: [4.82] and [4.6.12] are not regular

rotation of 135° between levels reflection between levels

[4.82] [4.6.12]

[63] [44] [36]

PROPERTIES OF TILINGS — SIMILARITY

• Similarity — a tile at level k has the same shape as a tile
at level 0 (basic tile shape)

Copyright © 1998 by Hanan Samet

tl22
r

YES YES NO

Copyright © 1998 by Hanan Samet

tl3
PROPERTIES OF TILINGS — ADJACENCY

• Adjacency — two tiles are neighbors if they are adjacent
along an edge or at a vertex

• Uniform adjacency ≡ distances between the centroid of
one tile and the centroids of all its neighbors are the same

• Adjacency number of a tiling (A) ≡ number of different
adjacency distances

1
b

[36] [44] [63]

Copyright © 1998 by Hanan Samet

tl3
PROPERTIES OF TILINGS — ADJACENCY

• Adjacency — two tiles are neighbors if they are adjacent
along an edge or at a vertex

• Uniform adjacency ≡ distances between the centroid of
one tile and the centroids of all its neighbors are the same

• Adjacency number of a tiling (A) ≡ number of different
adjacency distances

1
b

[36] [44] [63]

Copyright © 1998 by Hanan Samet

tl32
r

A=1 A=2 A=3

Copyright © 1998 by Hanan Samet

tl4

[44] [63] [36]

PROPERTIES OF TILINGS — UNIFORM ORIENTATION

• Uniform orientation

• All tiles with the same orientation can be mapped into
each other by translations of the plane which do not
involve rotation for reflection

1
b

Conclusion:

• [44] has a lower adjacency number than [63]

• [44] has a uniform orientation while [63] does not

• [44] is unlimited while [36] is limited

 Use [44]!

Copyright © 1998 by Hanan Samet

tl4

[44] [63] [36]

PROPERTIES OF TILINGS — UNIFORM ORIENTATION

• Uniform orientation

• All tiles with the same orientation can be mapped into
each other by translations of the plane which do not
involve rotation for reflection

1
b

Conclusion:

• [44] has a lower adjacency number than [63]

• [44] has a uniform orientation while [63] does not

• [44] is unlimited while [36] is limited

 Use [44]!

Copyright © 1998 by Hanan Samet

tl42
r

YES NO YES

Copyright © 1998 by Hanan Samet

tl5
HEXAGONAL TESSELLATIONS [36]

1. Still of interest

• regular

• uniform orientation

• uniform adjacency

2. Several tiling hierarchies (n -shapes) NOT UNIQUE!

• n ≡ number of atomic tiles in the first level molecular tile

• 4-shape and 9-shape have unusual adjacency behavior
a. contact with two of the neighboring molecular tiles is

along only one edge of a molecular tile while contact
with the remaining four tiles is nearly along 1/4 of the
perimeter

b. molecular tile has the shape of a rhombus

• 7-shape
a. uniform contact with all six neighboring molecular

tiles
b. the shape of the molecular tile is more like a

hexagon (≡ rosette and termed a septree)

4-shape 7-shape 9-shape

Copyright © 1998 by Hanan Samet

Copyright © 1996 Hanan Samet

These notes may not be reproduced by any means (mechanical or elec-
tronic or any other) without the express written permission of Hanan Samet

NEIGHBOR FINDING METHODS IN QUADTREES

Hanan Samet

Computer Science Department and
Center for Automation Research and

Institute for Advanced Computer Studies
University of Maryland

College Park, Maryland 20742
e-mail: hjs@umiacs.umd.edu

Copyright © 1998 by Hanan Samet

nf11
b

NEIGHBOR FINDING OPERATIONS USING QUADTREES

• Many image processing operations involve traversing an
image and applying an operation to a pixel and some of its
neighboring (i.e., adjacent) pixels

• For quadtree/octree
representations replace
pixel/voxel by block

• Neighbor is defined to be an
adjacent block of greater than
or equal size

• Desirable to be able to locate neighbors in a manner that
1. is position-independent
2. is size-independent
3. makes no use of additional links to adjacent nodes (e.g.,

ropes and nets a la Hunter)
4. just uses the structure of the tree or configuration of the

blocks

A 1
3 24

5

A has neighbors5

Copyright © 1998 by Hanan Samet

nf11
b

NEIGHBOR FINDING OPERATIONS USING QUADTREES

• Many image processing operations involve traversing an
image and applying an operation to a pixel and some of its
neighboring (i.e., adjacent) pixels

• For quadtree/octree
representations replace
pixel/voxel by block

• Neighbor is defined to be an
adjacent block of greater than
or equal size

• Desirable to be able to locate neighbors in a manner that
1. is position-independent
2. is size-independent
3. makes no use of additional links to adjacent nodes (e.g.,

ropes and nets a la Hunter)
4. just uses the structure of the tree or configuration of the

blocks

A 1
3 24

5

A has neighbors5

Copyright © 1998 by Hanan Samet

nf12
r

6

6

Copyright © 1998 by Hanan Samet

nf11
b

NEIGHBOR FINDING OPERATIONS USING QUADTREES

• Many image processing operations involve traversing an
image and applying an operation to a pixel and some of its
neighboring (i.e., adjacent) pixels

• For quadtree/octree
representations replace
pixel/voxel by block

• Neighbor is defined to be an
adjacent block of greater than
or equal size

• Desirable to be able to locate neighbors in a manner that
1. is position-independent
2. is size-independent
3. makes no use of additional links to adjacent nodes (e.g.,

ropes and nets a la Hunter)
4. just uses the structure of the tree or configuration of the

blocks

A 1
3 24

5

A has neighbors5

Copyright © 1998 by Hanan Samet

nf12
r

6

6

Copyright © 1998 by Hanan Samet

nf13
z

7

7

Copyright © 1998 by Hanan Samet

nf11
b

NEIGHBOR FINDING OPERATIONS USING QUADTREES

• Many image processing operations involve traversing an
image and applying an operation to a pixel and some of its
neighboring (i.e., adjacent) pixels

• For quadtree/octree
representations replace
pixel/voxel by block

• Neighbor is defined to be an
adjacent block of greater than
or equal size

• Desirable to be able to locate neighbors in a manner that
1. is position-independent
2. is size-independent
3. makes no use of additional links to adjacent nodes (e.g.,

ropes and nets a la Hunter)
4. just uses the structure of the tree or configuration of the

blocks

A 1
3 24

5

A has neighbors5

Copyright © 1998 by Hanan Samet

nf12
r

6

6

Copyright © 1998 by Hanan Samet

nf13
z

7

7

Copyright © 1998 by Hanan Samet

nf14
g

8

8

Copyright © 1998 by Hanan Samet

nf11
b

NEIGHBOR FINDING OPERATIONS USING QUADTREES

• Many image processing operations involve traversing an
image and applying an operation to a pixel and some of its
neighboring (i.e., adjacent) pixels

• For quadtree/octree
representations replace
pixel/voxel by block

• Neighbor is defined to be an
adjacent block of greater than
or equal size

• Desirable to be able to locate neighbors in a manner that
1. is position-independent
2. is size-independent
3. makes no use of additional links to adjacent nodes (e.g.,

ropes and nets a la Hunter)
4. just uses the structure of the tree or configuration of the

blocks

A 1
3 24

5

A has neighbors5

Copyright © 1998 by Hanan Samet

nf12
r

6

6

Copyright © 1998 by Hanan Samet

nf13
z

7

7

Copyright © 1998 by Hanan Samet

nf14
g

8

8

Copyright © 1998 by Hanan Samet

nf15
v

• Some block configurations are impossible, thereby
simplifying a number of algorithms
1. impossible for a node A to have

two larger neighbors B and C
on directly opposite sides or
touching corners

2. partial overlap of two blocks B
and C with A is impossible
since a quadtree is constructed
by recursively splitting blocks
into blocks that have side
lengths that are powers of 2

A

A

Copyright © 1998 by Hanan Samet

nf11
b

NEIGHBOR FINDING OPERATIONS USING QUADTREES

• Many image processing operations involve traversing an
image and applying an operation to a pixel and some of its
neighboring (i.e., adjacent) pixels

• For quadtree/octree
representations replace
pixel/voxel by block

• Neighbor is defined to be an
adjacent block of greater than
or equal size

• Desirable to be able to locate neighbors in a manner that
1. is position-independent
2. is size-independent
3. makes no use of additional links to adjacent nodes (e.g.,

ropes and nets a la Hunter)
4. just uses the structure of the tree or configuration of the

blocks

A 1
3 24

5

A has neighbors5

Copyright © 1998 by Hanan Samet

nf12
r

6

6

Copyright © 1998 by Hanan Samet

nf13
z

7

7

Copyright © 1998 by Hanan Samet

nf14
g

8

8

Copyright © 1998 by Hanan Samet

nf15
v

• Some block configurations are impossible, thereby
simplifying a number of algorithms
1. impossible for a node A to have

two larger neighbors B and C
on directly opposite sides or
touching corners

2. partial overlap of two blocks B
and C with A is impossible
since a quadtree is constructed
by recursively splitting blocks
into blocks that have side
lengths that are powers of 2

A

A

Copyright © 1998 by Hanan Samet

nf16
r

C

B

C
B

Copyright © 1998 by Hanan Samet

nf2

FINDING LATERAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor

1. Ascend the tree if the node is a son of the same type as
the direction of the neighbor (ADJ)

2. Otherwise, the father F is the nearest common ancestor
and retrace the path starting at F making mirror image
moves about the edge shared by the neighboring blocks

Ex: E neighbor of A (i.e., G)

1
b

A

D

C E

G

FB

Copyright © 1998 by Hanan Samet

nf2

FINDING LATERAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor

1. Ascend the tree if the node is a son of the same type as
the direction of the neighbor (ADJ)

2. Otherwise, the father F is the nearest common ancestor
and retrace the path starting at F making mirror image
moves about the edge shared by the neighboring blocks

Ex: E neighbor of A (i.e., G)

1
b

A

D

C E

G

FB

Copyright © 1998 by Hanan Samet

nf22
r

1

2

3 4

5

6

NE
NE

NW

NW

NE

NW

Copyright © 1998 by Hanan Samet

nf2

FINDING LATERAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor

1. Ascend the tree if the node is a son of the same type as
the direction of the neighbor (ADJ)

2. Otherwise, the father F is the nearest common ancestor
and retrace the path starting at F making mirror image
moves about the edge shared by the neighboring blocks

Ex: E neighbor of A (i.e., G)

1
b

A

D

C E

G

FB

Copyright © 1998 by Hanan Samet

nf22
r

1

2

3 4

5

6

NE
NE

NW

NW

NE

NW

Copyright © 1998 by Hanan Samet

nf23
z

D

C

B

A

E

F

G

SW SE
NW NE

NE

NE
NW

NW

Copyright © 1998 by Hanan Samet

nf2

FINDING LATERAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor

1. Ascend the tree if the node is a son of the same type as
the direction of the neighbor (ADJ)

2. Otherwise, the father F is the nearest common ancestor
and retrace the path starting at F making mirror image
moves about the edge shared by the neighboring blocks

Ex: E neighbor of A (i.e., G)

1
b

A

D

C E

G

FB

Copyright © 1998 by Hanan Samet

nf22
r

1

2

3 4

5

6

NE
NE

NW

NW

NE

NW

Copyright © 1998 by Hanan Samet

nf23
z

D

C

B

A

E

F

G

SW SE
NW NE

NE

NE
NW

NW

Copyright © 1998 by Hanan Samet

nf24
b

node procedure EQUAL_LATERAL_NEIGHBOR(P,D);
/* Find = size neighbor of P in direction D */
begin
 value pointer node P;
 value direction D;
 return(SON(if ADJ(D,SONTYPE(P)) then
 EQUAL_LATERAL_NEIGHBOR(FATHER(P),D)
 else FATHER(P),
 REFLECT(D,SONTYPE(P))));
end;

Copyright © 1998 by Hanan Samet

nf2

FINDING LATERAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor

1. Ascend the tree if the node is a son of the same type as
the direction of the neighbor (ADJ)

2. Otherwise, the father F is the nearest common ancestor
and retrace the path starting at F making mirror image
moves about the edge shared by the neighboring blocks

Ex: E neighbor of A (i.e., G)

1
b

A

D

C E

G

FB

Copyright © 1998 by Hanan Samet

nf22
r

1

2

3 4

5

6

NE
NE

NW

NW

NE

NW

Copyright © 1998 by Hanan Samet

nf23
z

D

C

B

A

E

F

G

SW SE
NW NE

NE

NE
NW

NW

Copyright © 1998 by Hanan Samet

nf24
b

node procedure EQUAL_LATERAL_NEIGHBOR(P,D);
/* Find = size neighbor of P in direction D */
begin
 value pointer node P;
 value direction D;
 return(SON(if ADJ(D,SONTYPE(P)) then
 EQUAL_LATERAL_NEIGHBOR(FATHER(P),D)
 else FATHER(P),
 REFLECT(D,SONTYPE(P))));
end;

Copyright © 1998 by Hanan Samet

nf25
r

P D

NW
T
F
F
T

NE
T
T
F
F

SW
F
F
T
T

SE
F
T
T
F

ADJ(A,B)
N
E
S
W

A
B

Copyright © 1998 by Hanan Samet

nf2

FINDING LATERAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor

1. Ascend the tree if the node is a son of the same type as
the direction of the neighbor (ADJ)

2. Otherwise, the father F is the nearest common ancestor
and retrace the path starting at F making mirror image
moves about the edge shared by the neighboring blocks

Ex: E neighbor of A (i.e., G)

1
b

A

D

C E

G

FB

Copyright © 1998 by Hanan Samet

nf22
r

1

2

3 4

5

6

NE
NE

NW

NW

NE

NW

Copyright © 1998 by Hanan Samet

nf23
z

D

C

B

A

E

F

G

SW SE
NW NE

NE

NE
NW

NW

Copyright © 1998 by Hanan Samet

nf24
b

node procedure EQUAL_LATERAL_NEIGHBOR(P,D);
/* Find = size neighbor of P in direction D */
begin
 value pointer node P;
 value direction D;
 return(SON(if ADJ(D,SONTYPE(P)) then
 EQUAL_LATERAL_NEIGHBOR(FATHER(P),D)
 else FATHER(P),
 REFLECT(D,SONTYPE(P))));
end;

Copyright © 1998 by Hanan Samet

nf25
r

P D

NW
T
F
F
T

NE
T
T
F
F

SW
F
F
T
T

SE
F
T
T
F

ADJ(A,B)
N
E
S
W

A
B

Copyright © 1998 by Hanan Samet

nf26
z

P D

Copyright © 1998 by Hanan Samet

nf2

FINDING LATERAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor

1. Ascend the tree if the node is a son of the same type as
the direction of the neighbor (ADJ)

2. Otherwise, the father F is the nearest common ancestor
and retrace the path starting at F making mirror image
moves about the edge shared by the neighboring blocks

Ex: E neighbor of A (i.e., G)

1
b

A

D

C E

G

FB

Copyright © 1998 by Hanan Samet

nf22
r

1

2

3 4

5

6

NE
NE

NW

NW

NE

NW

Copyright © 1998 by Hanan Samet

nf23
z

D

C

B

A

E

F

G

SW SE
NW NE

NE

NE
NW

NW

Copyright © 1998 by Hanan Samet

nf24
b

node procedure EQUAL_LATERAL_NEIGHBOR(P,D);
/* Find = size neighbor of P in direction D */
begin
 value pointer node P;
 value direction D;
 return(SON(if ADJ(D,SONTYPE(P)) then
 EQUAL_LATERAL_NEIGHBOR(FATHER(P),D)
 else FATHER(P),
 REFLECT(D,SONTYPE(P))));
end;

Copyright © 1998 by Hanan Samet

nf25
r

P D

NW
T
F
F
T

NE
T
T
F
F

SW
F
F
T
T

SE
F
T
T
F

ADJ(A,B)
N
E
S
W

A
B

Copyright © 1998 by Hanan Samet

nf26
z

P D

Copyright © 1998 by Hanan Samet

nf27
g

NW
SW
NE
SW
NE

NE
SE
NW
SE
NW

SW
NW
SE
NW
SE

SE
NE
SW
NE
SW

REFLECT(A,B)
N
E
S
W

A
B

Copyright © 1998 by Hanan Samet

nf3
FINDING NEIGHBORS IN A
POINTERLESS REPRESENTATION

• Assume a bit-interleaved
representation that also indicates
the depth of each block

• Ex: y bit is more significant than x
bit — i.e., yn xn … y1 x1 y0 x0

1
b

1. Mimic tree algorithm in the sense that to find a lateral
neighbor (say in the x direction), search for the first x bit
position that is different while complementing the bits
encountered in the process
Ex: find pixel-sized eastern neighbor of 213 = 10 01 11

210

220 230

212

000

213

301

303302
310

320

100

330

211 300
200

Copyright © 1998 by Hanan Samet

nf3
FINDING NEIGHBORS IN A
POINTERLESS REPRESENTATION

• Assume a bit-interleaved
representation that also indicates
the depth of each block

• Ex: y bit is more significant than x
bit — i.e., yn xn … y1 x1 y0 x0

1
b

1. Mimic tree algorithm in the sense that to find a lateral
neighbor (say in the x direction), search for the first x bit
position that is different while complementing the bits
encountered in the process
Ex: find pixel-sized eastern neighbor of 213 = 10 01 11

210

220 230

212

000

213

301

303302
310

320

100

330

211 300
200

Copyright © 1998 by Hanan Samet

nf32
r

• search for an x bit with a value of 0

Copyright © 1998 by Hanan Samet

nf3
FINDING NEIGHBORS IN A
POINTERLESS REPRESENTATION

• Assume a bit-interleaved
representation that also indicates
the depth of each block

• Ex: y bit is more significant than x
bit — i.e., yn xn … y1 x1 y0 x0

1
b

1. Mimic tree algorithm in the sense that to find a lateral
neighbor (say in the x direction), search for the first x bit
position that is different while complementing the bits
encountered in the process
Ex: find pixel-sized eastern neighbor of 213 = 10 01 11

210

220 230

212

000

213

301

303302
310

320

100

330

211 300
200

Copyright © 1998 by Hanan Samet

nf32
r

• search for an x bit with a value of 0

Copyright © 1998 by Hanan Samet

nf33
z

• result is 302 = 11 00 10

Copyright © 1998 by Hanan Samet

nf3
FINDING NEIGHBORS IN A
POINTERLESS REPRESENTATION

• Assume a bit-interleaved
representation that also indicates
the depth of each block

• Ex: y bit is more significant than x
bit — i.e., yn xn … y1 x1 y0 x0

1
b

1. Mimic tree algorithm in the sense that to find a lateral
neighbor (say in the x direction), search for the first x bit
position that is different while complementing the bits
encountered in the process
Ex: find pixel-sized eastern neighbor of 213 = 10 01 11

210

220 230

212

000

213

301

303302
310

320

100

330

211 300
200

Copyright © 1998 by Hanan Samet

nf32
r

• search for an x bit with a value of 0

Copyright © 1998 by Hanan Samet

nf33
z

• result is 302 = 11 00 10

Copyright © 1998 by Hanan Samet

nf34
g

• cumbersome as many bit operations are required

Copyright © 1998 by Hanan Samet

nf3
FINDING NEIGHBORS IN A
POINTERLESS REPRESENTATION

• Assume a bit-interleaved
representation that also indicates
the depth of each block

• Ex: y bit is more significant than x
bit — i.e., yn xn … y1 x1 y0 x0

1
b

1. Mimic tree algorithm in the sense that to find a lateral
neighbor (say in the x direction), search for the first x bit
position that is different while complementing the bits
encountered in the process
Ex: find pixel-sized eastern neighbor of 213 = 10 01 11

210

220 230

212

000

213

301

303302
310

320

100

330

211 300
200

Copyright © 1998 by Hanan Samet

nf32
r

• search for an x bit with a value of 0

Copyright © 1998 by Hanan Samet

nf33
z

• result is 302 = 11 00 10

Copyright © 1998 by Hanan Samet

nf34
g

• cumbersome as many bit operations are required

Copyright © 1998 by Hanan Samet

nf35
r

2. Use arithmetic by adding or subtracting from the
appropriate x (y) bit and skip the positions
corresponding to the y (or x) bits
• save the contents of the y (x) bit positions
• load a 1 in every y (x) bit position of the addend —

enables propagation of the carry (if one is present) to
the next x (y) bit position

Ex: find pixel-sized eastern neighbor of 213 = 10 01 11

 the addend 00 00 01 becomes + 10 10 11

Copyright © 1998 by Hanan Samet

nf3
FINDING NEIGHBORS IN A
POINTERLESS REPRESENTATION

• Assume a bit-interleaved
representation that also indicates
the depth of each block

• Ex: y bit is more significant than x
bit — i.e., yn xn … y1 x1 y0 x0

1
b

1. Mimic tree algorithm in the sense that to find a lateral
neighbor (say in the x direction), search for the first x bit
position that is different while complementing the bits
encountered in the process
Ex: find pixel-sized eastern neighbor of 213 = 10 01 11

210

220 230

212

000

213

301

303302
310

320

100

330

211 300
200

Copyright © 1998 by Hanan Samet

nf32
r

• search for an x bit with a value of 0

Copyright © 1998 by Hanan Samet

nf33
z

• result is 302 = 11 00 10

Copyright © 1998 by Hanan Samet

nf34
g

• cumbersome as many bit operations are required

Copyright © 1998 by Hanan Samet

nf35
r

2. Use arithmetic by adding or subtracting from the
appropriate x (y) bit and skip the positions
corresponding to the y (or x) bits
• save the contents of the y (x) bit positions
• load a 1 in every y (x) bit position of the addend —

enables propagation of the carry (if one is present) to
the next x (y) bit position

Ex: find pixel-sized eastern neighbor of 213 = 10 01 11

 the addend 00 00 01 becomes + 10 10 11

Copyright © 1998 by Hanan Samet

nf36
z

 result 01 00 10

• perform the addition or subtraction

Copyright © 1998 by Hanan Samet

nf3
FINDING NEIGHBORS IN A
POINTERLESS REPRESENTATION

• Assume a bit-interleaved
representation that also indicates
the depth of each block

• Ex: y bit is more significant than x
bit — i.e., yn xn … y1 x1 y0 x0

1
b

1. Mimic tree algorithm in the sense that to find a lateral
neighbor (say in the x direction), search for the first x bit
position that is different while complementing the bits
encountered in the process
Ex: find pixel-sized eastern neighbor of 213 = 10 01 11

210

220 230

212

000

213

301

303302
310

320

100

330

211 300
200

Copyright © 1998 by Hanan Samet

nf32
r

• search for an x bit with a value of 0

Copyright © 1998 by Hanan Samet

nf33
z

• result is 302 = 11 00 10

Copyright © 1998 by Hanan Samet

nf34
g

• cumbersome as many bit operations are required

Copyright © 1998 by Hanan Samet

nf35
r

2. Use arithmetic by adding or subtracting from the
appropriate x (y) bit and skip the positions
corresponding to the y (or x) bits
• save the contents of the y (x) bit positions
• load a 1 in every y (x) bit position of the addend —

enables propagation of the carry (if one is present) to
the next x (y) bit position

Ex: find pixel-sized eastern neighbor of 213 = 10 01 11

 the addend 00 00 01 becomes + 10 10 11

Copyright © 1998 by Hanan Samet

nf36
z

 result 01 00 10

• perform the addition or subtraction

Copyright © 1998 by Hanan Samet

nf37
g

 restoring y bit positions to previous 11 00 10 = 302

• reset the y (x) bit positions to their previous value

Copyright © 1998 by Hanan Samet

nf3
FINDING NEIGHBORS IN A
POINTERLESS REPRESENTATION

• Assume a bit-interleaved
representation that also indicates
the depth of each block

• Ex: y bit is more significant than x
bit — i.e., yn xn … y1 x1 y0 x0

1
b

1. Mimic tree algorithm in the sense that to find a lateral
neighbor (say in the x direction), search for the first x bit
position that is different while complementing the bits
encountered in the process
Ex: find pixel-sized eastern neighbor of 213 = 10 01 11

210

220 230

212

000

213

301

303302
310

320

100

330

211 300
200

Copyright © 1998 by Hanan Samet

nf32
r

• search for an x bit with a value of 0

Copyright © 1998 by Hanan Samet

nf33
z

• result is 302 = 11 00 10

Copyright © 1998 by Hanan Samet

nf34
g

• cumbersome as many bit operations are required

Copyright © 1998 by Hanan Samet

nf35
r

2. Use arithmetic by adding or subtracting from the
appropriate x (y) bit and skip the positions
corresponding to the y (or x) bits
• save the contents of the y (x) bit positions
• load a 1 in every y (x) bit position of the addend —

enables propagation of the carry (if one is present) to
the next x (y) bit position

Ex: find pixel-sized eastern neighbor of 213 = 10 01 11

 the addend 00 00 01 becomes + 10 10 11

Copyright © 1998 by Hanan Samet

nf36
z

 result 01 00 10

• perform the addition or subtraction

Copyright © 1998 by Hanan Samet

nf37
g

 restoring y bit positions to previous 11 00 10 = 302

• reset the y (x) bit positions to their previous value

Copyright © 1998 by Hanan Samet

nf38
v

• only requires 4 instructions regardless of resolution of
image and bit position of nearest common ancestor

Copyright © 1998 by Hanan Samet

nf4
ANALYSIS OF NEIGHBOR FINDING

1. Bottom-up random image model where each pixel has
an equal probability of being black or white
• probability of the existence of a 2x2 block at a

particular position is 1/8
• OK for a checkerboard image but inappropriate for

maps as it means that there is a very low probability of
aggregation

• problem is that such a model assumes independence
• in contrast, a pixel’s value is typically related to that of

its neighbors

2. Top-down random image model where the probability of
a node being black or white is p and 1-2p for being gray
• model does not make provisions for merging
• uses a branching process model and analysis is in

terms of extinct branching processes

3. Use a model based on positions of the blocks in the
decomposition
• a block is equally likely to be at any position and depth

in the tree
• compute an average case based on all the possible

positions of a block of size 1x1, 2x2, 4x4, etc.
• 1 case at depth 0, 4 cases at depth 1, 16 cases at

depth 2, etc.
• this is not a realizable situation but in practice does

model the image accurately

Copyright © 1998 by Hanan Samet

nf5

ANALYSIS OF FINDING LATERAL NEIGHBORS

1
b

23·(23–1) neighbor pairs of equal
sized nodes in direction E
NCA = nearest common ancestor

Copyright © 1998 by Hanan Samet

nf5

ANALYSIS OF FINDING LATERAL NEIGHBORS

1
b

23·(23–1) neighbor pairs of equal
sized nodes in direction E
NCA = nearest common ancestor

Copyright © 1998 by Hanan Samet

nf52
r

1–8 have NCA at level 3

1

2

4

3

5

6

8

7

Copyright © 1998 by Hanan Samet

nf5

ANALYSIS OF FINDING LATERAL NEIGHBORS

1
b

23·(23–1) neighbor pairs of equal
sized nodes in direction E
NCA = nearest common ancestor

Copyright © 1998 by Hanan Samet

nf52
r

1–8 have NCA at level 3

1

2

4

3

5

6

8

7

Copyright © 1998 by Hanan Samet

nf53
z

9–24 have NCA at level 2

12

1810

9

11

17

19

20

16

2214

13

15

21

23

24

Copyright © 1998 by Hanan Samet

nf5

ANALYSIS OF FINDING LATERAL NEIGHBORS

1
b

23·(23–1) neighbor pairs of equal
sized nodes in direction E
NCA = nearest common ancestor

Copyright © 1998 by Hanan Samet

nf52
r

1–8 have NCA at level 3

1

2

4

3

5

6

8

7

Copyright © 1998 by Hanan Samet

nf53
z

9–24 have NCA at level 2

12

1810

9

11

17

19

20

16

2214

13

15

21

23

24

Copyright © 1998 by Hanan Samet

nf54
g

27

41

34

25

42

49

4436

35 43

33

26

28 52

50

51

31

45

38

29

46

53

4840

39 47

37

30

32 56

54

55

25–56 have NCA at level 1

Copyright © 1998 by Hanan Samet

nf5

ANALYSIS OF FINDING LATERAL NEIGHBORS

1
b

23·(23–1) neighbor pairs of equal
sized nodes in direction E
NCA = nearest common ancestor

Copyright © 1998 by Hanan Samet

nf52
r

1–8 have NCA at level 3

1

2

4

3

5

6

8

7

Copyright © 1998 by Hanan Samet

nf53
z

9–24 have NCA at level 2

12

1810

9

11

17

19

20

16

2214

13

15

21

23

24

Copyright © 1998 by Hanan Samet

nf54
g

27

41

34

25

42

49

4436

35 43

33

26

28 52

50

51

31

45

38

29

46

53

4840

39 47

37

30

32 56

54

55

25–56 have NCA at level 1

Copyright © 1998 by Hanan Samet

nf55
v

Theorem: average number of nodes visited by
EQUAL_LATERAL_NEIGHBOR is ≤ 4

Proof:

• Let node A be at level i (i.e., a 2i
 ×2i block)

• There are 2n

–i·(2n

–i

 –1) possible positions for
node A such that an equal sized neighbor exists
in a given horizontal or vertical direction

2n

–i rows

2n

–i

 –1 adjacencies per row
2n

–i

 ·20 have NCA at level n
2n

–i

 ·21 have NCA at level n –1
…
2n

–i

 ·2n

–i

–1 have NCA at level i +1

Copyright © 1998 by Hanan Samet

nf5

ANALYSIS OF FINDING LATERAL NEIGHBORS

1
b

23·(23–1) neighbor pairs of equal
sized nodes in direction E
NCA = nearest common ancestor

Copyright © 1998 by Hanan Samet

nf52
r

1–8 have NCA at level 3

1

2

4

3

5

6

8

7

Copyright © 1998 by Hanan Samet

nf53
z

9–24 have NCA at level 2

12

1810

9

11

17

19

20

16

2214

13

15

21

23

24

Copyright © 1998 by Hanan Samet

nf54
g

27

41

34

25

42

49

4436

35 43

33

26

28 52

50

51

31

45

38

29

46

53

4840

39 47

37

30

32 56

54

55

25–56 have NCA at level 1

Copyright © 1998 by Hanan Samet

nf55
v

Theorem: average number of nodes visited by
EQUAL_LATERAL_NEIGHBOR is ≤ 4

Proof:

• Let node A be at level i (i.e., a 2i
 ×2i block)

• There are 2n

–i·(2n

–i

 –1) possible positions for
node A such that an equal sized neighbor exists
in a given horizontal or vertical direction

2n

–i rows

2n

–i

 –1 adjacencies per row
2n

–i

 ·20 have NCA at level n
2n

–i

 ·21 have NCA at level n –1
…
2n

–i

 ·2n

–i

–1 have NCA at level i +1

Copyright © 1998 by Hanan Samet

nf56
b

• For node A at level i, direction D, and the NCA
at level j, 2·(j –i) nodes are visited in locating
an equal-sized neighbor at level i

Copyright © 1998 by Hanan Samet

nf5

ANALYSIS OF FINDING LATERAL NEIGHBORS

1
b

23·(23–1) neighbor pairs of equal
sized nodes in direction E
NCA = nearest common ancestor

Copyright © 1998 by Hanan Samet

nf52
r

1–8 have NCA at level 3

1

2

4

3

5

6

8

7

Copyright © 1998 by Hanan Samet

nf53
z

9–24 have NCA at level 2

12

1810

9

11

17

19

20

16

2214

13

15

21

23

24

Copyright © 1998 by Hanan Samet

nf54
g

27

41

34

25

42

49

4436

35 43

33

26

28 52

50

51

31

45

38

29

46

53

4840

39 47

37

30

32 56

54

55

25–56 have NCA at level 1

Copyright © 1998 by Hanan Samet

nf55
v

Theorem: average number of nodes visited by
EQUAL_LATERAL_NEIGHBOR is ≤ 4

Proof:

• Let node A be at level i (i.e., a 2i
 ×2i block)

• There are 2n

–i·(2n

–i

 –1) possible positions for
node A such that an equal sized neighbor exists
in a given horizontal or vertical direction

2n

–i rows

2n

–i

 –1 adjacencies per row
2n

–i

 ·20 have NCA at level n
2n

–i

 ·21 have NCA at level n –1
…
2n

–i

 ·2n

–i

–1 have NCA at level i +1

Copyright © 1998 by Hanan Samet

nf56
b

• For node A at level i, direction D, and the NCA
at level j, 2·(j –i) nodes are visited in locating
an equal-sized neighbor at level i

Copyright © 1998 by Hanan Samet

nf57
z

A
i

j

i

Copyright © 1998 by Hanan Samet

nf5

ANALYSIS OF FINDING LATERAL NEIGHBORS

1
b

23·(23–1) neighbor pairs of equal
sized nodes in direction E
NCA = nearest common ancestor

Copyright © 1998 by Hanan Samet

nf52
r

1–8 have NCA at level 3

1

2

4

3

5

6

8

7

Copyright © 1998 by Hanan Samet

nf53
z

9–24 have NCA at level 2

12

1810

9

11

17

19

20

16

2214

13

15

21

23

24

Copyright © 1998 by Hanan Samet

nf54
g

27

41

34

25

42

49

4436

35 43

33

26

28 52

50

51

31

45

38

29

46

53

4840

39 47

37

30

32 56

54

55

25–56 have NCA at level 1

Copyright © 1998 by Hanan Samet

nf55
v

Theorem: average number of nodes visited by
EQUAL_LATERAL_NEIGHBOR is ≤ 4

Proof:

• Let node A be at level i (i.e., a 2i
 ×2i block)

• There are 2n

–i·(2n

–i

 –1) possible positions for
node A such that an equal sized neighbor exists
in a given horizontal or vertical direction

2n

–i rows

2n

–i

 –1 adjacencies per row
2n

–i

 ·20 have NCA at level n
2n

–i

 ·21 have NCA at level n –1
…
2n

–i

 ·2n

–i

–1 have NCA at level i +1

Copyright © 1998 by Hanan Samet

nf56
b

• For node A at level i, direction D, and the NCA
at level j, 2·(j –i) nodes are visited in locating
an equal-sized neighbor at level i

Copyright © 1998 by Hanan Samet

nf57
z

A
i

j

i

Copyright © 1998 by Hanan Samet

nf58
g

 nodes are visited on the average ≤ 4

2n −i ⋅ 2n − j ⋅ 2 ⋅(j − i)
j =i +1

n

∑
i =0

n−1

∑

2n −i ⋅ (2n − i −1)
i =0

n −1

∑

Copyright © 1998 by Hanan Samet

nf61
b

A

D

C

B

E

F

G

FINDING DIAGONAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor
1. Ascend the tree if the node is a son of the same type as

the direction of the neighbor (ADJ)
2. If the father and an ancestor A

of the desired neighbor are
adjacent along an edge
(COMMON_EDGE), then calculate
the desired neighbor with
EQUAL_LATERAL_NEIGHBOR and
apply the retracing step in 3

3. Otherwise, the father F is the
nearest common ancestor
and now retrace the path
starting at F making
diagonally opposite moves

Ex: SE neighbor of A (i.e., G)

Copyright © 1998 by Hanan Samet

nf61
b

A

D

C

B

E

F

G

FINDING DIAGONAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor
1. Ascend the tree if the node is a son of the same type as

the direction of the neighbor (ADJ)
2. If the father and an ancestor A

of the desired neighbor are
adjacent along an edge
(COMMON_EDGE), then calculate
the desired neighbor with
EQUAL_LATERAL_NEIGHBOR and
apply the retracing step in 3

3. Otherwise, the father F is the
nearest common ancestor
and now retrace the path
starting at F making
diagonally opposite moves

Ex: SE neighbor of A (i.e., G)

Copyright © 1998 by Hanan Samet

nf62
r

NE
NE

NW
NW

NE

1

3 4

2

SW

56

Copyright © 1998 by Hanan Samet

nf61
b

A

D

C

B

E

F

G

FINDING DIAGONAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor
1. Ascend the tree if the node is a son of the same type as

the direction of the neighbor (ADJ)
2. If the father and an ancestor A

of the desired neighbor are
adjacent along an edge
(COMMON_EDGE), then calculate
the desired neighbor with
EQUAL_LATERAL_NEIGHBOR and
apply the retracing step in 3

3. Otherwise, the father F is the
nearest common ancestor
and now retrace the path
starting at F making
diagonally opposite moves

Ex: SE neighbor of A (i.e., G)

Copyright © 1998 by Hanan Samet

nf62
r

NE
NE

NW
NW

NE

1

3 4

2

SW

56

Copyright © 1998 by Hanan Samet

nf6

D

C

B

A

E

F

G

SW SE
NW NE

NE

NE
SW

NW

3
z

Copyright © 1998 by Hanan Samet

nf61
b

A

D

C

B

E

F

G

FINDING DIAGONAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor
1. Ascend the tree if the node is a son of the same type as

the direction of the neighbor (ADJ)
2. If the father and an ancestor A

of the desired neighbor are
adjacent along an edge
(COMMON_EDGE), then calculate
the desired neighbor with
EQUAL_LATERAL_NEIGHBOR and
apply the retracing step in 3

3. Otherwise, the father F is the
nearest common ancestor
and now retrace the path
starting at F making
diagonally opposite moves

Ex: SE neighbor of A (i.e., G)

Copyright © 1998 by Hanan Samet

nf62
r

NE
NE

NW
NW

NE

1

3 4

2

SW

56

Copyright © 1998 by Hanan Samet

nf6

D

C

B

A

E

F

G

SW SE
NW NE

NE

NE
SW

NW

3
z

Copyright © 1998 by Hanan Samet

nf64
b

node procedure EQUAL_DIAGONAL_NEIGHBOR(P,C);
/* Find = size neighbor of P towards quadrant C */
begin
 value pointer node P;
 value quadrant C;
 return(SON(if ADJ(C,SONTYPE(P)) then
 EQUAL_DIAGONAL_NEIGHBOR(FATHER(P),C)
 else if COMMON_EDGE(C,SONTYPE(P)) ≠Ω then
 EQUAL_LATERAL_NEIGHBOR(FATHER(P),
 COMMON_EDGE(C,SONTYPE(P)))
 else FATHER(P),
 OPQUAD(SONTYPE(P))));
end;

Copyright © 1998 by Hanan Samet

nf61
b

A

D

C

B

E

F

G

FINDING DIAGONAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor
1. Ascend the tree if the node is a son of the same type as

the direction of the neighbor (ADJ)
2. If the father and an ancestor A

of the desired neighbor are
adjacent along an edge
(COMMON_EDGE), then calculate
the desired neighbor with
EQUAL_LATERAL_NEIGHBOR and
apply the retracing step in 3

3. Otherwise, the father F is the
nearest common ancestor
and now retrace the path
starting at F making
diagonally opposite moves

Ex: SE neighbor of A (i.e., G)

Copyright © 1998 by Hanan Samet

nf62
r

NE
NE

NW
NW

NE

1

3 4

2

SW

56

Copyright © 1998 by Hanan Samet

nf6

D

C

B

A

E

F

G

SW SE
NW NE

NE

NE
SW

NW

3
z

Copyright © 1998 by Hanan Samet

nf64
b

node procedure EQUAL_DIAGONAL_NEIGHBOR(P,C);
/* Find = size neighbor of P towards quadrant C */
begin
 value pointer node P;
 value quadrant C;
 return(SON(if ADJ(C,SONTYPE(P)) then
 EQUAL_DIAGONAL_NEIGHBOR(FATHER(P),C)
 else if COMMON_EDGE(C,SONTYPE(P)) ≠Ω then
 EQUAL_LATERAL_NEIGHBOR(FATHER(P),
 COMMON_EDGE(C,SONTYPE(P)))
 else FATHER(P),
 OPQUAD(SONTYPE(P))));
end;

Copyright © 1998 by Hanan Samet

nf65
r

P

C

ADJ(A,B)

NW
T
F
F
F

NE
F
T
F
F

SW
F
F
T
F

SE
F
F
F
T

NW
NE
SW
SE

A
B

Copyright © 1998 by Hanan Samet

nf61
b

A

D

C

B

E

F

G

FINDING DIAGONAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor
1. Ascend the tree if the node is a son of the same type as

the direction of the neighbor (ADJ)
2. If the father and an ancestor A

of the desired neighbor are
adjacent along an edge
(COMMON_EDGE), then calculate
the desired neighbor with
EQUAL_LATERAL_NEIGHBOR and
apply the retracing step in 3

3. Otherwise, the father F is the
nearest common ancestor
and now retrace the path
starting at F making
diagonally opposite moves

Ex: SE neighbor of A (i.e., G)

Copyright © 1998 by Hanan Samet

nf62
r

NE
NE

NW
NW

NE

1

3 4

2

SW

56

Copyright © 1998 by Hanan Samet

nf6

D

C

B

A

E

F

G

SW SE
NW NE

NE

NE
SW

NW

3
z

Copyright © 1998 by Hanan Samet

nf64
b

node procedure EQUAL_DIAGONAL_NEIGHBOR(P,C);
/* Find = size neighbor of P towards quadrant C */
begin
 value pointer node P;
 value quadrant C;
 return(SON(if ADJ(C,SONTYPE(P)) then
 EQUAL_DIAGONAL_NEIGHBOR(FATHER(P),C)
 else if COMMON_EDGE(C,SONTYPE(P)) ≠Ω then
 EQUAL_LATERAL_NEIGHBOR(FATHER(P),
 COMMON_EDGE(C,SONTYPE(P)))
 else FATHER(P),
 OPQUAD(SONTYPE(P))));
end;

Copyright © 1998 by Hanan Samet

nf65
r

P

C

ADJ(A,B)

NW
T
F
F
F

NE
F
T
F
F

SW
F
F
T
F

SE
F
F
F
T

NW
NE
SW
SE

A
B

Copyright © 1998 by Hanan Samet

nf66
z

COMMON_EDGE(A,B)

NW
Ω
N
W
Ω

NE
N
Ω
Ω
E

SW
W
Ω
Ω
S

SE
Ω
E
S
Ω

NW
NE
SW
SE

A
B

P

C

Copyright © 1998 by Hanan Samet

nf61
b

A

D

C

B

E

F

G

FINDING DIAGONAL NEIGHBORS OF EQUAL SIZE

Algorithm: based on finding the nearest common ancestor
1. Ascend the tree if the node is a son of the same type as

the direction of the neighbor (ADJ)
2. If the father and an ancestor A

of the desired neighbor are
adjacent along an edge
(COMMON_EDGE), then calculate
the desired neighbor with
EQUAL_LATERAL_NEIGHBOR and
apply the retracing step in 3

3. Otherwise, the father F is the
nearest common ancestor
and now retrace the path
starting at F making
diagonally opposite moves

Ex: SE neighbor of A (i.e., G)

Copyright © 1998 by Hanan Samet

nf62
r

NE
NE

NW
NW

NE

1

3 4

2

SW

56

Copyright © 1998 by Hanan Samet

nf6

D

C

B

A

E

F

G

SW SE
NW NE

NE

NE
SW

NW

3
z

Copyright © 1998 by Hanan Samet

nf64
b

node procedure EQUAL_DIAGONAL_NEIGHBOR(P,C);
/* Find = size neighbor of P towards quadrant C */
begin
 value pointer node P;
 value quadrant C;
 return(SON(if ADJ(C,SONTYPE(P)) then
 EQUAL_DIAGONAL_NEIGHBOR(FATHER(P),C)
 else if COMMON_EDGE(C,SONTYPE(P)) ≠Ω then
 EQUAL_LATERAL_NEIGHBOR(FATHER(P),
 COMMON_EDGE(C,SONTYPE(P)))
 else FATHER(P),
 OPQUAD(SONTYPE(P))));
end;

Copyright © 1998 by Hanan Samet

nf65
r

P

C

ADJ(A,B)

NW
T
F
F
F

NE
F
T
F
F

SW
F
F
T
F

SE
F
F
F
T

NW
NE
SW
SE

A
B

Copyright © 1998 by Hanan Samet

nf66
z

COMMON_EDGE(A,B)

NW
Ω
N
W
Ω

NE
N
Ω
Ω
E

SW
W
Ω
Ω
S

SE
Ω
E
S
Ω

NW
NE
SW
SE

A
B

P

C

Copyright © 1998 by Hanan Samet

nf67
g

P

C

Copyright © 1998 by Hanan Samet

nf7

ANALYSIS OF FINDING DIAGONAL NEIGHBORS

1
b

(23–1)2 neighbor pairs of equal
sized nodes in direction NE
NCA = nearest common ancestor

Copyright © 1998 by Hanan Samet

nf7

ANALYSIS OF FINDING DIAGONAL NEIGHBORS

1
b

(23–1)2 neighbor pairs of equal
sized nodes in direction NE
NCA = nearest common ancestor

Copyright © 1998 by Hanan Samet

nf72
r

1–13 have NCA at level 3

8

10

9

4

11

13

12

2 651 73

Copyright © 1998 by Hanan Samet

nf7

ANALYSIS OF FINDING DIAGONAL NEIGHBORS

1
b

(23–1)2 neighbor pairs of equal
sized nodes in direction NE
NCA = nearest common ancestor

Copyright © 1998 by Hanan Samet

nf72
r

1–13 have NCA at level 3

8

10

9

4

11

13

12

2 651 73

Copyright © 1998 by Hanan Samet

nf73
z

14–33 have NCA at level 2

18

2217

15 20

23

28

3227

25 30

33

14 16 19 21

24 26 29 31

Copyright © 1998 by Hanan Samet

nf7

ANALYSIS OF FINDING DIAGONAL NEIGHBORS

1
b

(23–1)2 neighbor pairs of equal
sized nodes in direction NE
NCA = nearest common ancestor

Copyright © 1998 by Hanan Samet

nf72
r

1–13 have NCA at level 3

8

10

9

4

11

13

12

2 651 73

Copyright © 1998 by Hanan Samet

nf73
z

14–33 have NCA at level 2

18

2217

15 20

23

28

3227

25 30

33

14 16 19 21

24 26 29 31

Copyright © 1998 by Hanan Samet

nf74
g

35 38

4037

34

36 41

39

43 46

4845

42

44 49

47

34–49 have NCA at level 1

Copyright © 1998 by Hanan Samet

nf7

ANALYSIS OF FINDING DIAGONAL NEIGHBORS

1
b

(23–1)2 neighbor pairs of equal
sized nodes in direction NE
NCA = nearest common ancestor

Copyright © 1998 by Hanan Samet

nf72
r

1–13 have NCA at level 3

8

10

9

4

11

13

12

2 651 73

Copyright © 1998 by Hanan Samet

nf73
z

14–33 have NCA at level 2

18

2217

15 20

23

28

3227

25 30

33

14 16 19 21

24 26 29 31

Copyright © 1998 by Hanan Samet

nf74
g

35 38

4037

34

36 41

39

43 46

4845

42

44 49

47

34–49 have NCA at level 1

Copyright © 1998 by Hanan Samet

nf75
v

Theorem: average number of nodes visited by
EQUAL_DIAGONAL_NEIGHBOR is ≤ 16/3

Proof:

• Let node A be at level i (i.e., a 2i
 ×2i block)

• There are (2n

–i

 –1)2 possible positions for node A such that
an equal size neighbor exists in a given corner direction

40·(2·(2n

–i

 –1)–1) have NCA at level n
41·(2·(2n

–i

–1

 –1)–1) have NCA at level n –1
…
4n

–i

–1·(2·(2n

–i

–(n

–i

–1)

 –1)–1) have NCA at level i +1

Copyright © 1998 by Hanan Samet

nf7

ANALYSIS OF FINDING DIAGONAL NEIGHBORS

1
b

(23–1)2 neighbor pairs of equal
sized nodes in direction NE
NCA = nearest common ancestor

Copyright © 1998 by Hanan Samet

nf72
r

1–13 have NCA at level 3

8

10

9

4

11

13

12

2 651 73

Copyright © 1998 by Hanan Samet

nf73
z

14–33 have NCA at level 2

18

2217

15 20

23

28

3227

25 30

33

14 16 19 21

24 26 29 31

Copyright © 1998 by Hanan Samet

nf74
g

35 38

4037

34

36 41

39

43 46

4845

42

44 49

47

34–49 have NCA at level 1

Copyright © 1998 by Hanan Samet

nf75
v

Theorem: average number of nodes visited by
EQUAL_DIAGONAL_NEIGHBOR is ≤ 16/3

Proof:

• Let node A be at level i (i.e., a 2i
 ×2i block)

• There are (2n

–i

 –1)2 possible positions for node A such that
an equal size neighbor exists in a given corner direction

40·(2·(2n

–i

 –1)–1) have NCA at level n
41·(2·(2n

–i

–1

 –1)–1) have NCA at level n –1
…
4n

–i

–1·(2·(2n

–i

–(n

–i

–1)

 –1)–1) have NCA at level i +1

Copyright © 1998 by Hanan Samet

nf76
b

• For node A at level i, direction D, and the NCA
at level j, 2·(j –i) nodes are visited in locating
an equal-sized neighbor at level i

Copyright © 1998 by Hanan Samet

nf7

ANALYSIS OF FINDING DIAGONAL NEIGHBORS

1
b

(23–1)2 neighbor pairs of equal
sized nodes in direction NE
NCA = nearest common ancestor

Copyright © 1998 by Hanan Samet

nf72
r

1–13 have NCA at level 3

8

10

9

4

11

13

12

2 651 73

Copyright © 1998 by Hanan Samet

nf73
z

14–33 have NCA at level 2

18

2217

15 20

23

28

3227

25 30

33

14 16 19 21

24 26 29 31

Copyright © 1998 by Hanan Samet

nf74
g

35 38

4037

34

36 41

39

43 46

4845

42

44 49

47

34–49 have NCA at level 1

Copyright © 1998 by Hanan Samet

nf75
v

Theorem: average number of nodes visited by
EQUAL_DIAGONAL_NEIGHBOR is ≤ 16/3

Proof:

• Let node A be at level i (i.e., a 2i
 ×2i block)

• There are (2n

–i

 –1)2 possible positions for node A such that
an equal size neighbor exists in a given corner direction

40·(2·(2n

–i

 –1)–1) have NCA at level n
41·(2·(2n

–i

–1

 –1)–1) have NCA at level n –1
…
4n

–i

–1·(2·(2n

–i

–(n

–i

–1)

 –1)–1) have NCA at level i +1

Copyright © 1998 by Hanan Samet

nf76
b

• For node A at level i, direction D, and the NCA
at level j, 2·(j –i) nodes are visited in locating
an equal-sized neighbor at level i

Copyright © 1998 by Hanan Samet

nf77
z

A
i

j

i

Copyright © 1998 by Hanan Samet

nf7

ANALYSIS OF FINDING DIAGONAL NEIGHBORS

1
b

(23–1)2 neighbor pairs of equal
sized nodes in direction NE
NCA = nearest common ancestor

Copyright © 1998 by Hanan Samet

nf72
r

1–13 have NCA at level 3

8

10

9

4

11

13

12

2 651 73

Copyright © 1998 by Hanan Samet

nf73
z

14–33 have NCA at level 2

18

2217

15 20

23

28

3227

25 30

33

14 16 19 21

24 26 29 31

Copyright © 1998 by Hanan Samet

nf74
g

35 38

4037

34

36 41

39

43 46

4845

42

44 49

47

34–49 have NCA at level 1

Copyright © 1998 by Hanan Samet

nf75
v

Theorem: average number of nodes visited by
EQUAL_DIAGONAL_NEIGHBOR is ≤ 16/3

Proof:

• Let node A be at level i (i.e., a 2i
 ×2i block)

• There are (2n

–i

 –1)2 possible positions for node A such that
an equal size neighbor exists in a given corner direction

40·(2·(2n

–i

 –1)–1) have NCA at level n
41·(2·(2n

–i

–1

 –1)–1) have NCA at level n –1
…
4n

–i

–1·(2·(2n

–i

–(n

–i

–1)

 –1)–1) have NCA at level i +1

Copyright © 1998 by Hanan Samet

nf76
b

• For node A at level i, direction D, and the NCA
at level j, 2·(j –i) nodes are visited in locating
an equal-sized neighbor at level i

Copyright © 1998 by Hanan Samet

nf77
z

A
i

j

i

Copyright © 1998 by Hanan Samet

nf78
g

 nodes are visited on the average ≤ 16/3

4n − j ⋅ (2 ⋅(2n − i −(n − j) −1) −1) ⋅ 2 ⋅(j − i)
j =i +1

n

∑
i =0

n−1

∑

(2n−i −1)2

i =0

n −1

∑

Copyright © 1998 by Hanan Samet

nf8
FINDING NEIGHBORS IN HIGHER DIMENSIONS

1. Three dimensions
• need direction of a vertex
• direction of an edge = direction of a vertex in two

dimensions
• direction of a face = direction of an edge in two

dimensions

2. Arbitrary dimensions (d): neighbor of node N
• use induction and routines for adjacencies along

1, 2, ... d - 1 dimensions
• add one new routine for a d -dimensional adjacency

(e.g., vertex in three dimensions)

a. ascend the tree if the node is a son of the same type
as the direction of the neighbor (ADJ)

b. for i = d - 1 step -1 until 1
• determine if the father of N and the ancestor of the

desired neighbor have an i -dimensional
adjacency in which case apply the algorithm for
obtaining such a neighbor in d - 1 dimensions

• exit loop upon success

c. father of N is the desired nearest common ancestor
• retrace path making directly opposite moves

about the vertex shared by node N and its
neighbor

Copyright © 1998 by Hanan Samet

nf9
PERFORMANCE FOR TWO-DIMENSIONAL DATA

• Assume 512x512 images

• Results correlate well with the model

• Average cost of neighbor finding for neighbors of greater
than or equal size using the position model

Flood Topo Land Pebble Average Predicted

lateral neighbor 3.50 3.60 3.59 3.56 3.57 3.46
diagonal neighbor 4.47 4.68 4.63 4.60 4.60 4.44

• Average cost of stage 1 of neighbor finding (i.e., just
locating the nearest common ancestor

Flood Topo Land Pebble Average Predicted

lateral neighbor 2.01 2.00 2.00 1.99 2.00 1.98
diagonal neighbor 2.69 2.67 2.66 2.65 2.67 2.62

• Average cost of stage 2 of neighbor finding (i.e.,
descending the tree once the nearest common ancestor
has been located)

Flood Topo Land Pebble Average Predicted

lateral neighbor 1.49 1.60 1.59 1.57 1.57 1.48
diagonal neighbor 1.79 2.00 1.97 1.95 1.94 1.82

Copyright © 1998 by Hanan Samet

hp11
FINDING THE NEAREST OBJECT

• Ex: find the nearest object to P

1
b

P

12 8 7 6

13 9 1 4 5

2 3

10 11

D

E C

F

A

B

• Assume PR quadtree for points (i.e., at most one point
 per block)
• Search neighbors of block 1 in counterclockwise order
• Points are sorted with respect to the space they occupy
 which enables pruning the search space
• Algorithm:

Copyright © 1998 by Hanan Samet

hp11
FINDING THE NEAREST OBJECT

• Ex: find the nearest object to P

1
b

P

12 8 7 6

13 9 1 4 5

2 3

10 11

D

E C

F

A

B

• Assume PR quadtree for points (i.e., at most one point
 per block)
• Search neighbors of block 1 in counterclockwise order
• Points are sorted with respect to the space they occupy
 which enables pruning the search space
• Algorithm:

Copyright © 1998 by Hanan Samet

hp112
r

1. start at block 2 and compute distance to P from A

Copyright © 1998 by Hanan Samet

hp11
FINDING THE NEAREST OBJECT

• Ex: find the nearest object to P

1
b

P

12 8 7 6

13 9 1 4 5

2 3

10 11

D

E C

F

A

B

• Assume PR quadtree for points (i.e., at most one point
 per block)
• Search neighbors of block 1 in counterclockwise order
• Points are sorted with respect to the space they occupy
 which enables pruning the search space
• Algorithm:

Copyright © 1998 by Hanan Samet

hp112
r

1. start at block 2 and compute distance to P from A

Copyright © 1998 by Hanan Samet

hp113
z

2. ignore block 3 whether or not it is empty as A is closer
 to P than any point in 3

Copyright © 1998 by Hanan Samet

hp11
FINDING THE NEAREST OBJECT

• Ex: find the nearest object to P

1
b

P

12 8 7 6

13 9 1 4 5

2 3

10 11

D

E C

F

A

B

• Assume PR quadtree for points (i.e., at most one point
 per block)
• Search neighbors of block 1 in counterclockwise order
• Points are sorted with respect to the space they occupy
 which enables pruning the search space
• Algorithm:

Copyright © 1998 by Hanan Samet

hp112
r

1. start at block 2 and compute distance to P from A

Copyright © 1998 by Hanan Samet

hp113
z

2. ignore block 3 whether or not it is empty as A is closer
 to P than any point in 3

Copyright © 1998 by Hanan Samet

hp114
g

3. examine block 4 as distance to SW corner is shorter
 than the distance from P to A; however, reject B as it is
 further from P than A

Copyright © 1998 by Hanan Samet

hp11
FINDING THE NEAREST OBJECT

• Ex: find the nearest object to P

1
b

P

12 8 7 6

13 9 1 4 5

2 3

10 11

D

E C

F

A

B

• Assume PR quadtree for points (i.e., at most one point
 per block)
• Search neighbors of block 1 in counterclockwise order
• Points are sorted with respect to the space they occupy
 which enables pruning the search space
• Algorithm:

Copyright © 1998 by Hanan Samet

hp112
r

1. start at block 2 and compute distance to P from A

Copyright © 1998 by Hanan Samet

hp113
z

2. ignore block 3 whether or not it is empty as A is closer
 to P than any point in 3

Copyright © 1998 by Hanan Samet

hp114
g

3. examine block 4 as distance to SW corner is shorter
 than the distance from P to A; however, reject B as it is
 further from P than A

Copyright © 1998 by Hanan Samet

hp115
v

4. ignore blocks 6, 7, 8, 9, and 10 as the minimum
 distance to them from P is greater than the distance
 from P to A

Copyright © 1998 by Hanan Samet

hp11
FINDING THE NEAREST OBJECT

• Ex: find the nearest object to P

1
b

P

12 8 7 6

13 9 1 4 5

2 3

10 11

D

E C

F

A

B

• Assume PR quadtree for points (i.e., at most one point
 per block)
• Search neighbors of block 1 in counterclockwise order
• Points are sorted with respect to the space they occupy
 which enables pruning the search space
• Algorithm:

Copyright © 1998 by Hanan Samet

hp112
r

1. start at block 2 and compute distance to P from A

Copyright © 1998 by Hanan Samet

hp113
z

2. ignore block 3 whether or not it is empty as A is closer
 to P than any point in 3

Copyright © 1998 by Hanan Samet

hp114
g

3. examine block 4 as distance to SW corner is shorter
 than the distance from P to A; however, reject B as it is
 further from P than A

Copyright © 1998 by Hanan Samet

hp115
v

4. ignore blocks 6, 7, 8, 9, and 10 as the minimum
 distance to them from P is greater than the distance
 from P to A

Copyright © 1998 by Hanan Samet

hp116
z

5. examine block 11 as the distance from P to the southern
 border of 1 is shorter than the distance from P to A;
 however, reject F as it is further from P than A

Copyright © 1998 by Hanan Samet

hp11
FINDING THE NEAREST OBJECT

• Ex: find the nearest object to P

1
b

P

12 8 7 6

13 9 1 4 5

2 3

10 11

D

E C

F

A

B

• Assume PR quadtree for points (i.e., at most one point
 per block)
• Search neighbors of block 1 in counterclockwise order
• Points are sorted with respect to the space they occupy
 which enables pruning the search space
• Algorithm:

Copyright © 1998 by Hanan Samet

hp112
r

1. start at block 2 and compute distance to P from A

Copyright © 1998 by Hanan Samet

hp113
z

2. ignore block 3 whether or not it is empty as A is closer
 to P than any point in 3

Copyright © 1998 by Hanan Samet

hp114
g

3. examine block 4 as distance to SW corner is shorter
 than the distance from P to A; however, reject B as it is
 further from P than A

Copyright © 1998 by Hanan Samet

hp115
v

4. ignore blocks 6, 7, 8, 9, and 10 as the minimum
 distance to them from P is greater than the distance
 from P to A

Copyright © 1998 by Hanan Samet

hp116
z

5. examine block 11 as the distance from P to the southern
 border of 1 is shorter than the distance from P to A;
 however, reject F as it is further from P than A

Copyright © 1998 by Hanan Samet

hp117
r

• If F was moved, a better order would have started with
block 11, the southern neighbor of 1, as it is closest

new F

Copyright © 1998 by Hanan Samet

nf11

USE OF NEIGHBOR FINDING IN RAY TRACING

• Goal: sort the faces of the objects to reduce the number
of necessary ray-object intersection tests

• Trace each ray by checking the blocks through which it
passes

• Ex: two-dimensional object

9

6

12

71 8

4

2

5
3

10

11

(0,0) 32

32

x

y

S

R

S

S C

Copyright © 1998 by Hanan Samet

QUADTREES FROM BI

• Traverse pixels in Mor

• No need to merge four
only create maximal le

• Execution time proport

• Ex:

Copyright © 1998 by Hanan Samet

QUADTREES FROM BI

• Traverse pixels in Mor

• No need to merge four
only create maximal le

• Execution time proport

• Ex:

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

QUADTREES FROM BI

• Traverse pixels in Mor

• No need to merge four
only create maximal le

• Execution time proport

• Ex:

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

QUADTREES FROM BI

• Traverse pixels in Mor

• No need to merge four
only create maximal le

• Execution time proport

• Ex:

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

QUADTREES FROM BI

• Traverse pixels in Mor

• No need to merge four
only create maximal le

• Execution time proport

• Ex:

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

QUADTREES FROM BI

• Traverse pixels in Mor

• No need to merge four
only create maximal le

• Execution time proport

• Ex:

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

QUADTREES FROM BI

• Traverse pixels in Mor

• No need to merge four
only create maximal le

• Execution time proport

• Ex:

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

BUILDING QUADTREES

• Using a variant of EQU
neighbors in the easte
adding them if they are

Algorithm: process array

• Odd row — add nodes

Copyright © 1998 by Hanan Samet

BUILDING QUADTREES

• Using a variant of EQU
neighbors in the easte
adding them if they are

Algorithm: process array

• Odd row — add nodes

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

BUILDING QUADTREES

• Using a variant of EQU
neighbors in the easte
adding them if they are

Algorithm: process array

• Odd row — add nodes

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

BUILDING QUADTREES

• Using a variant of EQU
neighbors in the easte
adding them if they are

Algorithm: process array

• Odd row — add nodes

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

BUILDING QUADTREES

• Using a variant of EQU
neighbors in the easte
adding them if they are

Algorithm: process array

• Odd row — add nodes

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

INITIAL RASTER TO QU

• Ex: build quadtree for
four pixels in the first r

Copyright © 1998 by Hanan Samet

INITIAL RASTER TO QU

• Ex: build quadtree for
four pixels in the first r

Copyright © 1998 by Hanan Samet

• Use a variant of
EQUAL_LATERAL_NEIGHB
find neighbors in the
eastern direction and a

Copyright © 1998 by Hanan Samet

INITIAL RASTER TO QU

• Ex: build quadtree for
four pixels in the first r

Copyright © 1998 by Hanan Samet

• Use a variant of
EQUAL_LATERAL_NEIGHB
find neighbors in the
eastern direction and a

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

OPTIMAL QUADTREE B

I = cost of a block (i.e., no
c = cost of examining a p
2n ×2n image
N = number of blocks in t

Naive algorithm:
• Examine each pixel an

Copyright © 1998 by Hanan Samet

OPTIMAL ALGORITHM

• When building a quadt
unprocessed part of th
have been assigned

Def: a block is active if a
pixels, covered by
differs in color from

E bl k A d B

Copyright © 1998 by Hanan Samet

OPTIMAL ALGORITHM

• When building a quadt
unprocessed part of th
have been assigned

Def: a block is active if a
pixels, covered by
differs in color from

E bl k A d B

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

OPTIMAL ALGORITHM

• When building a quadt
unprocessed part of th
have been assigned

Def: a block is active if a
pixels, covered by
differs in color from

E bl k A d B

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

OPTIMAL ALGORITHM

• When building a quadt
unprocessed part of th
have been assigned

Def: a block is active if a
pixels, covered by
differs in color from

E bl k A d B

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

IMPLEMENTATION

• The algorithm must kee
• For a 2n ×2n image the
• Use a data structure ca

active blocks organized
1. one row for each lev
2. row i has 2n –i entrie

Copyright © 1998 by Hanan Samet

EXAMPLE OF OPTIMAL

X(X,Y) 23×23 image

Copyright © 1998 by Hanan Samet

EXAMPLE OF OPTIMAL

X(X,Y) 23×23 image

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

EXAMPLE OF OPTIMAL

X(X,Y) 23×23 image

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

EXAMPLE OF OPTIMAL

X(X,Y) 23×23 image

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

EXAMPLE OF OPTIMAL

X(X,Y) 23×23 image

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

EXAMPLE OF OPTIMAL

X(X,Y) 23×23 image

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

EXAMPLE OF OPTIMAL

X(X,Y) 23×23 image

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

EXAMPLE OF OPTIMAL

X(X,Y) 23×23 image

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

EXAMPLE OF OPTIMAL

X(X,Y) 23×23 image

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

EXAMPLE OF OPTIMAL

X(X,Y) 23×23 image

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

EXAMPLE OF OPTIMAL

X(X,Y) 23×23 image

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

EXAMPLE OF OPTIMAL

X(X,Y) 23×23 image

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

EXAMPLE OF OPTIMAL

X(X,Y) 23×23 image

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

CONVERTING QUADTR

• Useful when outputting

• Generate row-by-row b
row that intersects it —

• Preferable to generatin
outputting as it takes t

Copyright © 1998 by Hanan Samet

CONVERTING QUADTR

• Useful when outputting

• Generate row-by-row b
row that intersects it —

• Preferable to generatin
outputting as it takes t

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

COMPLEXITY OF CONV
QUADTREES TO RAST

• Assume a 2n × 2n imag

• Top-down algorithm vi
outputs a node of size

• Bottom-up algorithm:

Copyright © 1998 by Hanan Samet

COMPLEXITY OF CONV
QUADTREES TO RAST

• Assume a 2n × 2n imag

• Top-down algorithm vi
outputs a node of size

• Bottom-up algorithm:

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

CHAIN CODE

• Records relative positio
valued adjacent grid sq

• Four directions

• Usually assume the im

• Assume four-connecte
are not in same region

Copyright © 1998 by Hanan Samet

CONVERTING FROM Q

• Trace the boundary of
once an appropriate st

• Starting point is an adj
and a WHITE block Q

• Assume P is to the nor

Copyright © 1998 by Hanan Samet

CONVERTING FROM Q

• Trace the boundary of
once an appropriate st

• Starting point is an adj
and a WHITE block Q

• Assume P is to the nor

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

CONVERTING FROM Q

• Trace the boundary of
once an appropriate st

• Starting point is an adj
and a WHITE block Q

• Assume P is to the nor

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

CONVERTING FROM Q

• Trace the boundary of
once an appropriate st

• Starting point is an adj
and a WHITE block Q

• Assume P is to the nor

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

ALGORITHM TO CONV
QUADTREES TO CHAIN

• Possible block configu

P

Q
X

P

Q

X

Copyright © 1998 by Hanan Samet

ALGORITHM TO CONV
QUADTREES TO CHAIN

• Possible block configu

P

Q
X

P

Q

X

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

ALGORITHM TO CONV
QUADTREES TO CHAIN

• Possible block configu

P

Q
X

P

Q

X

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

ALGORITHM TO CONV
QUADTREES TO CHAIN

• Possible block configu

P

Q
X

P

Q

X

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

ALGORITHM TO CONV
QUADTREES TO CHAIN

• Possible block configu

P

Q
X

P

Q

X

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

ALGORITHM TO CONV
QUADTREES TO CHAIN

• Possible block configu

P

Q
X

P

Q

X

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

CONVERTING FROM C

Algorithm:

1. traverse boundary in
quadtree with BLACK n
adjacent to the bound

• remaining nodes a

Copyright © 1998 by Hanan Samet

STEP 1 OF CHAIN COD
CONVERSION ALGORI

• Construct the tree by c
adjacent to the links in
relationship between s

P

OLD

Copyright © 1998 by Hanan Samet

STEP 1 OF CHAIN COD
CONVERSION ALGORI

• Construct the tree by c
adjacent to the links in
relationship between s

P

OLD

Copyright © 1998 by Hanan Samet

Q

NEW

Copyright © 1998 by Hanan Samet

EXAMPLE OF STEP 1 O
FROM CHAIN CODES T

• Ex:

• Use a variant of
EQUAL_LATERAL_NEIGHB
find neighbors in the
eastern direction and a
them if they are not pre

Copyright © 1998 by Hanan Samet

EXAMPLE OF STEP 1 O
FROM CHAIN CODES T

• Ex:

• Use a variant of
EQUAL_LATERAL_NEIGHB
find neighbors in the
eastern direction and a
them if they are not pre

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

EXAMPLE OF STEP 2 O
FROM CHAIN CODES T

• Need to determine wh
which ones are outside
nodes and merge if ne

• Could use seed filling
but cumbersome

• Instead use the codes

Copyright © 1998 by Hanan Samet

EXAMPLE OF STEP 2 O
FROM CHAIN CODES T

• Need to determine wh
which ones are outside
nodes and merge if ne

• Could use seed filling
but cumbersome

• Instead use the codes

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

EXAMPLE OF STEP 2 O
FROM CHAIN CODES T

• Need to determine wh
which ones are outside
nodes and merge if ne

• Could use seed filling
but cumbersome

• Instead use the codes

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

EXAMPLE OF STEP 2 O
FROM CHAIN CODES T

• Need to determine wh
which ones are outside
nodes and merge if ne

• Could use seed filling
but cumbersome

• Instead use the codes

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

EXAMPLE OF STEP 2 O
FROM CHAIN CODES T

• Need to determine wh
which ones are outside
nodes and merge if ne

• Could use seed filling
but cumbersome

• Instead use the codes

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

G O C O

Copyright © 1998 by Hanan Samet

CONNECTED COMPON

• Assign the same label
color (i.e., that share an

• Follows thresholding st
applications and is a p

• Two approaches

1. fill algorithm or polyg
f f

Copyright © 1998 by Hanan Samet

CONNECTED COMPO

• Assume predetermin

• Find all black-black a

• Ex:

Copyright © 1998 by Hanan Samet

CONNECTED COMPO

• Assume predetermin

• Find all black-black a

• Ex:

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

CONNECTED COMPO

• Assume predetermin

• Find all black-black a

• Ex:

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

CONNECTED COMPO

• Assume predetermin

• Find all black-black a

• Ex:

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

CONNECTED COMPO

• Assume predetermin

• Find all black-black a

• Ex:

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

PERIMETER

• Equivalent to first step
except that look for bla
black/black adjacencie

• Many definitions

Copyright © 1998 by Hanan Samet

PERIMETER

• Equivalent to first step
except that look for bla
black/black adjacencie

• Many definitions

Copyright © 1998 by Hanan Samet

1. crack perimeter (16

Copyright © 1998 by Hanan Samet

PERIMETER

• Equivalent to first step
except that look for bla
black/black adjacencie

• Many definitions

Copyright © 1998 by Hanan Samet

1. crack perimeter (16

Copyright © 1998 by Hanan Samet

2 outer perimeter (20

Copyright © 1998 by Hanan Samet

PERIMETER

• Equivalent to first step
except that look for bla
black/black adjacencie

• Many definitions

Copyright © 1998 by Hanan Samet

1. crack perimeter (16

Copyright © 1998 by Hanan Samet

2 outer perimeter (20

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

PERIMETER

• Equivalent to first step
except that look for bla
black/black adjacencie

• Many definitions

Copyright © 1998 by Hanan Samet

1. crack perimeter (16

Copyright © 1998 by Hanan Samet

2 outer perimeter (20

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

EULER NUMBER (GEN

• Graph-theoretic definit

• For a binary image: n
number of holes

• Can show that the sam
representation of a bin
analogy between verti

Copyright © 1998 by Hanan Samet

EULER NUMBER (GEN

• Graph-theoretic definit

• For a binary image: n
number of holes

• Can show that the sam
representation of a bin
analogy between verti

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

EULER NUMBER (GEN

• Graph-theoretic definit

• For a binary image: n
number of holes

• Can show that the sam
representation of a bin
analogy between verti

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

EULER NUMBER (GEN

• Graph-theoretic definit

• For a binary image: n
number of holes

• Can show that the sam
representation of a bin
analogy between verti

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

EULER NUMBER (GEN

• Graph-theoretic definit

• For a binary image: n
number of holes

• Can show that the sam
representation of a bin
analogy between verti

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

ALGORITHM FOR THE
OF THE EULER NUMBE

• Postorder tree traversa

• Analogous to step 1 of
O (B+W)

Algorithm:

Copyright © 1998 by Hanan Samet

ALGORITHM FOR THE
OF THE EULER NUMBE

• Postorder tree traversa

• Analogous to step 1 of
O (B+W)

Algorithm:

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

ALGORITHM FOR THE
OF THE EULER NUMBE

• Postorder tree traversa

• Analogous to step 1 of
O (B+W)

Algorithm:

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

ALGORITHM FOR THE
OF THE EULER NUMBE

• Postorder tree traversa

• Analogous to step 1 of
O (B+W)

Algorithm:

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

ALGORITHM FOR THE
OF THE EULER NUMBE

• Postorder tree traversa

• Analogous to step 1 of
O (B+W)

Algorithm:

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

SET OPERATIONS ON

UNION(S,T) : traverse S

1. GRAY(S) :
GRAY(T) : re

 m
BLACK(T) : re
WHITE(T) : re

2. BLACK(S) : re

Copyright © 1998 by Hanan Samet

SET OPERATIONS ON

UNION(S,T) : traverse S

1. GRAY(S) :
GRAY(T) : re

 m
BLACK(T) : re
WHITE(T) : re

2. BLACK(S) : re

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

SET OPERATIONS ON

UNION(S,T) : traverse S

1. GRAY(S) :
GRAY(T) : re

 m
BLACK(T) : re
WHITE(T) : re

2. BLACK(S) : re

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

SET OPERATIONS ON

UNION(S,T) : traverse S

1. GRAY(S) :
GRAY(T) : re

 m
BLACK(T) : re
WHITE(T) : re

2. BLACK(S) : re

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

SET OPERATIONS ON

UNION(S,T) : traverse S

1. GRAY(S) :
GRAY(T) : re

 m
BLACK(T) : re
WHITE(T) : re

2. BLACK(S) : re

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

SET OPERATIONS ON

UNION(S,T) : traverse S

1. GRAY(S) :
GRAY(T) : re

 m
BLACK(T) : re
WHITE(T) : re

2. BLACK(S) : re

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

SET OPERATIONS ON

UNION(S,T) : traverse S

1. GRAY(S) :
GRAY(T) : re

 m
BLACK(T) : re
WHITE(T) : re

2. BLACK(S) : re

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

WINDOWING

• General algorithm: ch
completely contained b
otherwise, decompose
process and possibly m
1. find smallest subtre
2. if subtree is a leaf, t
3. otherwise, subdivid

Copyright © 1998 by Hanan Samet

WINDOWING

• General algorithm: ch
completely contained b
otherwise, decompose
process and possibly m
1. find smallest subtre
2. if subtree is a leaf, t
3. otherwise, subdivid

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

WINDOWING

• General algorithm: ch
completely contained b
otherwise, decompose
process and possibly m
1. find smallest subtre
2. if subtree is a leaf, t
3. otherwise, subdivid

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

WINDOWING

• General algorithm: ch
completely contained b
otherwise, decompose
process and possibly m
1. find smallest subtre
2. if subtree is a leaf, t
3. otherwise, subdivid

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

WINDOWING

• General algorithm: ch
completely contained b
otherwise, decompose
process and possibly m
1. find smallest subtre
2. if subtree is a leaf, t
3. otherwise, subdivid

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

WINDOWING

• General algorithm: ch
completely contained b
otherwise, decompose
process and possibly m
1. find smallest subtre
2. if subtree is a leaf, t
3. otherwise, subdivid

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

WINDOWING

• General algorithm: ch
completely contained b
otherwise, decompose
process and possibly m
1. find smallest subtre
2. if subtree is a leaf, t
3. otherwise, subdivid

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

WINDOWING

• General algorithm: ch
completely contained b
otherwise, decompose
process and possibly m
1. find smallest subtre
2. if subtree is a leaf, t
3. otherwise, subdivid

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

WINDOWING (AN ALTE

• Def: extract a rectangu
build its quadtree

• Algorithm: analogous t
images

1. A1 is the image from
extracted

Copyright © 1998 by Hanan Samet

WINDOWING (AN ALTE

• Def: extract a rectangu
build its quadtree

• Algorithm: analogous t
images

1. A1 is the image from
extracted

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

WINDOWING (AN ALTE

• Def: extract a rectangu
build its quadtree

• Algorithm: analogous t
images

1. A1 is the image from
extracted

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

WINDOWING (AN ALTE

• Def: extract a rectangu
build its quadtree

• Algorithm: analogous t
images

1. A1 is the image from
extracted

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

SHIFTING A QUADTRE

• Equivalent to extractin
image with a different

• Shifting an input image
the window is at (–∆X,–

• Ex: shift by (3,1)

Copyright © 1998 by Hanan Samet

SHIFTING A QUADTRE

• Equivalent to extractin
image with a different

• Shifting an input image
the window is at (–∆X,–

• Ex: shift by (3,1)

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

SHIFTING A QUADTRE

• Equivalent to extractin
image with a different

• Shifting an input image
the window is at (–∆X,–

• Ex: shift by (3,1)

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

SHIFTING A QUADTRE

• Equivalent to extractin
image with a different

• Shifting an input image
the window is at (–∆X,–

• Ex: shift by (3,1)

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

ROTATING A QUADTR

• Easy for multiples of 9

• Harder for others beca
use a more general lin

• Ex: Rotate by 90° cou

Copyright © 1998 by Hanan Samet

ROTATING A QUADTR

• Easy for multiples of 9

• Harder for others beca
use a more general lin

• Ex: Rotate by 90° cou

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

LINEAR IMAGE TRANS

• Source tree and target

• General window algorit
tree is completely conta
otherwise, it decompos
repeats the process an

• Merges can be avoided

Copyright © 1998 by Hanan Samet

EXAMPLE OF A LINEAR

• Ex:

t

Copyright © 1998 by Hanan Samet

EXAMPLE OF A LINEAR

• Ex:

t

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

EXAMPLE OF A LINEAR

• Ex:

t

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

EXAMPLE OF A LINEAR

• Ex:

t

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

EXAMPLE OF A LINEAR

• Ex:

t

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

EXAMPLE OF A LINEAR

• Ex:

t

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

EXAMPLE OF A LINEAR

• Ex:

t

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

SPATIAL RANGE QUER

Ex: find all objects wi
Mississippi River,

Copyright © 1998 by Hanan Samet

SPATIAL RANGE QUER

Ex: find all objects wi
Mississippi River,

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

SPATIAL RANGE QUER

Ex: find all objects wi
Mississippi River,

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

SPATIAL RANGE QUER

Ex: find all objects wi
Mississippi River,

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

BUFFER1

• Algorithm:

1. expand each BLACK

2. decompose the res
3. insert the blocks on

• Drawbacks
1 excessive redundan

Copyright © 1998 by Hanan Samet

BUFFER1

• Algorithm:

1. expand each BLACK

2. decompose the res
3. insert the blocks on

• Drawbacks
1 excessive redundan

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

BUFFER1

• Algorithm:

1. expand each BLACK

2. decompose the res
3. insert the blocks on

• Drawbacks
1 excessive redundan

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

BUFFER1

• Algorithm:

1. expand each BLACK

2. decompose the res
3. insert the blocks on

• Drawbacks
1 excessive redundan

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

BUFFER1

• Algorithm:

1. expand each BLACK

2. decompose the res
3. insert the blocks on

• Drawbacks
1 excessive redundan

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

BUFFER1

• Algorithm:

1. expand each BLACK

2. decompose the res
3. insert the blocks on

• Drawbacks
1 excessive redundan

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

OBSERVATION

• Any WHITE block T of wi
result of expansion by r

• Rationale:

1. if block T has width ≤
brothers will have a
all of T is within R of

Copyright © 1998 by Hanan Samet

IMPROVING ON BUFFE

1. Reduce number of bl
result of expansion

• introduce concept o
a. a nonleaf node
b. such nodes can

Copyright © 1998 by Hanan Samet

MERGING CLUSTER

• Merging clusters are bl
nodes of width W(R) wh

• Expansion by radius R
become BLACK blocks

• Rationale:

Copyright © 1998 by Hanan Samet

VERTEX SET

• Vertex set of merging
(one for each of the di
blocks which must be
by the merging cluster

• Ex: merging cluster wi

Copyright © 1998 by Hanan Samet

VERTEX SET

• Vertex set of merging
(one for each of the di
blocks which must be
by the merging cluster

• Ex: merging cluster wi

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

VERTEX SET

• Vertex set of merging
(one for each of the di
blocks which must be
by the merging cluster

• Ex: merging cluster wi

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

a’NW

Copyright © 1998 by Hanan Samet

VERTEX SET

• Vertex set of merging
(one for each of the di
blocks which must be
by the merging cluster

• Ex: merging cluster wi

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

a’NW

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

VERTEX SET

• Vertex set of merging
(one for each of the di
blocks which must be
by the merging cluster

• Ex: merging cluster wi

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

a’NW

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

VERTEX SET

• Vertex set of merging
(one for each of the di
blocks which must be
by the merging cluster

• Ex: merging cluster wi

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

a’NW

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

VERTEX SET

• Vertex set of merging
(one for each of the di
blocks which must be
by the merging cluster

• Ex: merging cluster wi

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

a’NW

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

VERTEX SET

• Vertex set of merging
(one for each of the di
blocks which must be
by the merging cluster

• Ex: merging cluster wi

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

a’NW

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

VERTEX SET

• Vertex set of merging
(one for each of the di
blocks which must be
by the merging cluster

• Ex: merging cluster wi

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

a’NW

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

VERTEX SET

• Vertex set of merging
(one for each of the di
blocks which must be
by the merging cluster

• Ex: merging cluster wi

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

a’NW

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

CONSTRUCTION OF T

• For a BLACK node P in
VSd if

1. v is the d vertex of

2. v is not in the close
quadtree-like subdi
other BLACK node in

Copyright © 1998 by Hanan Samet

CONSTRUCTION OF T

• For a BLACK node P in
VSd if

1. v is the d vertex of

2. v is not in the close
quadtree-like subdi
other BLACK node in

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

CONSTRUCTION OF T

• For a BLACK node P in
VSd if

1. v is the d vertex of

2. v is not in the close
quadtree-like subdi
other BLACK node in

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

CONSTRUCTION OF T

• For a BLACK node P in
VSd if

1. v is the d vertex of

2. v is not in the close
quadtree-like subdi
other BLACK node in

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

EXPANDING THE VERT

1. Vertex sets guide th

2. Merging cluster can

3. Areas of expansion
form staircase-like re
• extreme points of t

images of the tran

Copyright © 1998 by Hanan Samet

EXPANDING THE VERT

1. Vertex sets guide th

2. Merging cluster can

3. Areas of expansion
form staircase-like re
• extreme points of t

images of the tran

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

EXPANDING THE VERT

1. Vertex sets guide th

2. Merging cluster can

3. Areas of expansion
form staircase-like re
• extreme points of t

images of the tran

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

EXPANDING THE VERT

1. Vertex sets guide th

2. Merging cluster can

3. Areas of expansion
form staircase-like re
• extreme points of t

images of the tran

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

EXPANDING THE VERT

1. Vertex sets guide th

2. Merging cluster can

3. Areas of expansion
form staircase-like re
• extreme points of t

images of the tran

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

EXPANDING THE VERT

1. Vertex sets guide th

2. Merging cluster can

3. Areas of expansion
form staircase-like re
• extreme points of t

images of the tran

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

EXPANDING THE VERT

1. Vertex sets guide th

2. Merging cluster can

3. Areas of expansion
form staircase-like re
• extreme points of t

images of the tran

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

EXPANDING THE VERT

1. Vertex sets guide th

2. Merging cluster can

3. Areas of expansion
form staircase-like re
• extreme points of t

images of the tran

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

EXPANDING THE VERT

1. Vertex sets guide th

2. Merging cluster can

3. Areas of expansion
form staircase-like re
• extreme points of t

images of the tran

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

AN UPPER BOUND ON

• The size of the union o
is ≤ W(R)+1, and this bo

• Since the vertex subse
of all the vertex subset

• Example of the worst c

Copyright © 1998 by Hanan Samet

ALTERNATIVE BOUND ON

• B(M) = number of BLACK bl
• The size of the union of th

is ≤ 2·B(M)+2, and this boun
• Examples for R =3

• Justification:

Copyright © 1998 by Hanan Samet

ALTERNATIVE BOUND ON

• B(M) = number of BLACK bl
• The size of the union of th

is ≤ 2·B(M)+2, and this boun
• Examples for R =3

• Justification:

Copyright © 1998 by Hanan Samet

1. block v that is not close

Copyright © 1998 by Hanan Samet

ALTERNATIVE BOUND ON

• B(M) = number of BLACK bl
• The size of the union of th

is ≤ 2·B(M)+2, and this boun
• Examples for R =3

• Justification:

Copyright © 1998 by Hanan Samet

1. block v that is not close

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

ALTERNATIVE BOUND ON

• B(M) = number of BLACK bl
• The size of the union of th

is ≤ 2·B(M)+2, and this boun
• Examples for R =3

• Justification:

Copyright © 1998 by Hanan Samet

1. block v that is not close

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

ALTERNATIVE BOUND ON

• B(M) = number of BLACK bl
• The size of the union of th

is ≤ 2·B(M)+2, and this boun
• Examples for R =3

• Justification:

Copyright © 1998 by Hanan Samet

1. block v that is not close

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

ALTERNATIVE BOUND ON

• B(M) = number of BLACK bl
• The size of the union of th

is ≤ 2·B(M)+2, and this boun
• Examples for R =3

• Justification:

Copyright © 1998 by Hanan Samet

1. block v that is not close

Copyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan SametCopyright © 1998 by Hanan Samet

EXAMPLE PERFORMAN

100

1000

Copyright © 1998 by Hanan Samet

OBSERVATIONS

• BUFFER2 is far superior

• Even values of R lead t
the effect of node aggre

• BUFFER2’s execution tim
1. remain constant or d
2 i f th

Copyright © 1998 by Hanan Samet

