
rc0

Copyright © 1998 Hanan Samet

These notes may not be reproduced by any means (mechanical or elec-
tronic or any other) without the express written permission of Hanan Samet

HIERARCHICAL REPRESENTATIONS OF
RECTANGLE DATA

Hanan Samet

Computer Science Department and
Center for Automation Research and

Institute for Advanced Computer Studies
University of Maryland

College Park, Maryland 20742
e-mail: hjs@umiacs.umd.edu

rc1

RECTANGLES

• Applications

1. geographic data

• can approximate lakes, forests, hills, etc. by minimum
enclosing rectangle

• number of elements is usually small

• size of collection is O (size of space) being represented

2. VLSI design rule checking

• determine if components intersect

• ensure satisfaction of constraints (e.g., minimum
separation widths, etc.)

• size of the collection is large (on the order of millions)

• rectangles are small — i.e., much smaller than the
O (size of space) from which they are drawn

• Choosing a representation

1. individual objects

2. collection of objects

• linked lists

• similar to representations used for collections of point
data

a. organize data to be stored (e.g., comparative search)

OR

b. organize embedding space from which the data is
drawn (e.g., address computation)

rc2
OPERATIONS ON RECTANGLES

1. Insertion

2. Deletion

3. Proximity queries
• distinguish between objects and points

point ≡ element in d -dimensional space from which the
objects are drawn and NOT an element of the
space into which the objects are mapped by the
representation

• Ex: a rectangle can be represented as a point in 4-d space
yet a point in it is an element of 2-d space

• operations:
a. point query — find all objects that overlap a given point
b. point query set — find all objects that overlap a given set

of points (e.g., rectangle, square, circle, ?)
• a window operation

c. geometric join

• relation ⊕ — e.g., intersection

• classes of objects with subsets S1, S2 — e.g.,
rectangles

• find all (P1, P2) such that P1∈ S1, P2∈ S2 and P1⊕ P2

rc3
REPRESENTATION BY CHARACTERISTIC PARTS

1. Based on interior (e.g., region quadtree)
• decompose into subunits where each one points to a

complete description of the object

2. Based on the boundary of the object
• polygons as ordered collections of vertices
• polygons as collections of line segments comprising their

boundaries

3. Procedural — combination of (a) and (b) by decomposition
into units of smaller dimension
• rectangle as the Cartesian product of two 1-d spheres

(e.g., intervals)

Problem: sometimes a query is specified in such a way that
none of the characteristic parts of an object, say O,
that satisfies the query will match the query’s
description; yet object O does not match the query

Ex: polygon P is represented by the line segments
comprising its edges and we want to know if
rectangle R is within P

Solution: store the identity of the polygon or objects associated
with each side of an edge

rc4
POINT-BASED RECTANGLE REPRESENTATIONS
• Parameterize the rectangles and represent the parameters

as a point (termed a representative point) in a higher
dimensional space

• Store points using data structures for multidimensional point
data (e.g., k-d trees, grid file, EXCELL, etc.)

• Can represent as the Cartesian product of two one-
dimensional intervals (Hinrichs and Nievergelt) where each
interval is a point in a two-dimensional space

rc5
POSSIBLE INTERVAL REPRESENTATIONS

1. left (L) and right (R) endpoints of interval
• drawback is a resulting clustering of the representative

points near and above the diagonal since L < R

A
E

G
F

D

C

B

10 20 30 40

X

0

12 3 P

G
F

D C

10 20 30 40

10 A

E
B

L

R

20

30

40

2. left endpoint of interval and width

A

E
G

F

D

C

B

10 20 30 40

10

W

L

3. center of interval and radius

A

E

G

F

D

CB

10 20 30 40

10

DX

CX

• Items satisfying proximity queries lie in cone-shaped regions

rc6
HIGHER-DIMENSIONAL POINT-BASED RECTANGLE
REPRESENTATIONS
• Use a point in a four-dimensional space
• Sample representations:

1. x, y coordinate values of diagonally opposite corners
2. location of corner plus horizontal and vertical extents
3. location of centroid plus half of each of the horizontal and

vertical extents
• Drawback: the representative points of two rectangles that

are physically close to each other in 2-d space may be very far
from each other in the higher dimensional space

• Ex:

A B

rc7
POINT QUERY

• Use Cartesian product of two one-dimensional intervals

• Represent interval by its center and radius

• Determine all intervals that contain a given point P

Ex: Point P

A

E 3

G

2 F

D

C1

B

10 20 30 40

10

20

30

40

PQ

• Intervals have cone-shaped regions whose tip is an interval of
width 0 centered at P

Horizontal Intervals = {C,D,G} Vertical Intervals = {A,C,D}

G F B

10 20 30 40

10

P

A

DY

CY
E D

C

A

E

G

F

D

CB

10 20 30 40

10

P

DX

CX

• Result is obtained by intersecting the contents of the cone-
shaped regions to yield {C,D}

rc8

WINDOW QUERY

• Use Cartesian product of two one-dimensional intervals

• Represent interval by its center and radius

• Determine all intervals that overlap a given interval

Ex: Rectangle 1

A

E 3

G

2 F

D

C1

B

10 20 30 40

10

20

30

40

PQ

• Like an infinite number of point queries centered at the points
comprising the query interval

Horizontal Intervals = {B,D,E,G} Vertical Intervals = {A,B,C,D}

G F B

10 20 30 40

10

A

DY

CY
E D

C

A

E
G

F

D

CB

10 20 30 40

10

DX

CX

• Result is obtained by intersecting the contents of the cone-
shaped regions to yield {B,D}

rc9

CONTAINMENT QUERY

• Use Cartesian product of two one-dimensional intervals

• Represent interval by its center and radius

• Determine all intervals totally contained within a given interval

Ex: Rectangle 2

A

E 3

G

2 F

D

C1

B

10 20 30 40

10

20

30

40

PQ

• The contained intervals form a cone-shaped region with a tip
at 2 and opening in the direction of smaller extent values

Horizontal Intervals = {F} Vertical Intervals = {F}

G F B

10 20 30 40

10

A

DY

CY
E D

C

A

E
G

F

D

CB

10 20 30 40

10

DX

CX

2 2

• Result is obtained by intersecting the contents of the cone-
shaped regions to yield {F}

rc10
ENCLOSURE QUERY

• Use Cartesian product of two one-dimensional intervals

• Represent interval by its center and radius

• Determine all intervals that enclose a given interval

Ex: Rectangle 3

A

E 3

G

2 F

D

C1

B

10 20 30 40

10

20

30

40

PQ

• The set of enclosing intervals form a cone-shaped region with
a tip at 3 and opening in the direction of larger extent values

Horizontal Intervals = {E} Vertical Intervals = {E}

G F B

10 20 30 40

10

A

DY

CY
E D

C

A

E
G

F

D

CB

10 20 30 40

10

DX

CX3 3

• Result is obtained by intersecting the contents of the cone-
shaped regions to yield {E}

rc11
AREA-BASED METHODS

• Partition space into cells (i.e., buckets)

1. contain pointers to rectangles that intersect them

2. can be disjoint or allowed to overlap

• even if allow overlap, as long as there is always at least
one cell that contains an object in its entirety, then no
problem with redundancy due to multiple references to
the object

• when cells overlap, the cost of query operations
increases because several cells can cover a query point

• Hierarchy of minimum bounding boxes

1. MX-CIF quadtrees

2. R-trees

• Decompose rectangle into characteristic parts

1. based on the interior of the rectangles

• R+-tree
• rectangle quadtree (based on region quadtree — i.e.,

decompose until each block is completely within or
completely outside a rectangle)

2. based on the boundary of the rectangles

• PMR quadtree — i.e., treat the boundaries of the
rectangles as line segments

rc12MX-CIF QUADTREE (Kedem)
1
b

Collections of small rectangles for VLSI applications

Each rectangle is associated with its minimum
enclosing quadtree block
Like hashing: quadtree blocks serve as hash buckets

1.

2.

3.

1

2

3

4
5

6

9

87

10 11

12

D {11}

F {12}E {3,4,5}

B {1}

A {2,6,7,8,9,10}

C {}

A

B
C

E

D

F

2
r

Collision = more than one rectangle in a block
resolve by using two one-dimensional MX-CIF trees to
store the rectangle intersecting the lines passing
through each subdivision point

4.

one for y-axis

Binary tree for y-
axis through A

Y1

Y2
10
Y4

2

Y5

Y3

6
Y7

8

Y6

3
g

if a rectangle intersects both x and y axes, then
associate it with the y axis

4
v

5
z

one for x-axis

Binary tree for x-
axis through A

X1

X3
9

X5

7

X4

X2

X6

Copyright © 1998 by Hanan Samet

rc13

1. between m M/2 and M entries in each node
except root

MINIMUM BOUNDING RECTANGLES

• Rectangle has single bounding rectangle, yet area it
spans may be included in several bounding rectangles

• Drawback: not a disjoint decomposition of space

• May have to visit several rectangles to determine the
presence/absence of a rectangle

1
b

• Order (m,M) R-tree

2. at least 2 entries in root unless a leaf node
• Ex: order (2,3) R-tree

• Rectangles grouped into hierarchies, stored in another
structure such as a B-tree

A

E 3

G

2 F

D

C1

B

2
r

3ER3: R4: R5: R6:

R3

R4

R5

R6

1A GF2DCB

3
z

R2:R1: R6R5R4R3

R1

R2

4
g

R0: R2R1

R0

Copyright © 1998 by Hanan Samet

rc14
UPDATING R-TREES

1
b

• Insertion

1. Shape of R-tree depends on the insertion order

2. Proceeds as in the B-tree; when overflow, must split

• Conflicting methods of distributing nodes upon a split

Rectangles

Ex:

2
r

1. Goal: Reduce likelihood of visiting the nodes in later
searches (i.e., minimize total area of covering
rectangle for the node)

Goal 1

3
z

2. Goal: Reduce likelihood that both nodes are visited
in later searches (i.e., minimize area common
to both nodes ≡ overlap)

Goal 2

4
g

• Deletion

1. Delete from the leaf node and adjust covering
rectangles in all nodes along the path from the root
node

2. Reinsert all nodes that underflowed rather than merging
adjacent nodes

3. Reinsertion is deemed preferable to merging because
there is no concept of adjacency in an R-tree

Copyright © 1998 by Hanan Samet

rc15SEARCHING FOR A RECTANGLE
CONTAINING A POINT IN AN R-TREE

1
b

• Drawback is that may have to examine many nodes
since a rectangle can be contained in the covering
rectangles of many nodes yet its record is contained in
only one leaf node (e.g., D in R0, R1, R2, R3, and R5)

 Ex: Search for the rectangle containing point Q

A

E 3

G

2 F

D

C1

B

3ER3: R4: R5: R6:1A GF2DCB

R2:R1: R6R5R4R3

R0: R2R1

R3

R4

R5

R6

R1

R2

Q

Q is in R0

2
v

Q can be in both R1 and R2

3
r

4
z

Searching R1 first means that R3 is searched but this leads
to failure even though Q is in a part of D which is in R3

5
g

Searching R2 finds that Q can only be in R5
Copyright © 1998 by Hanan Samet

rc16

R-TREE OVERFLOW NODE SPLITTING POLICIES

• Could use exhaustive search to look at all possible
partitions

• Usually two stages:
1. pick a pair of bounding boxes to serve as seeds for

resulting nodes (‘seed-picking’)
2. redistribute remaining nodes with goal of minimizing

the growth of the total area (‘seed-growing’)

• Different algorithms of varying time complexity
1. quadratic:

• find two boxes j and k that would waste the most
area if they were in the same node

• for each remaining box i, determine the increase in
area dij and dik of the bounding boxes of j and k
resulting from the addition of i and add the box r for
which |drj – drk| is a maximum to the node with the
smallest increase in area

• rationale: find box with most preference for one of j, k
2. linear:

• find two boxes with greatest normalized separation
along all of the dimensions

• add remaining boxes in arbitrary order to box
whose area is increased the least by the addition

3. linear (Ang/Tan)
• minimizes overlap
• for each dimension, associate each box with the

closest face of the box of the overflowing node
• pick partition that has most even distribution

a. if a tie, minimize overlap
b. if a tie, minimize coverage

rc17

R*-TREE

• Tries to minimize overlap in case of leaf nodes and
minimize increase in area for nonleaf nodes

• Changes from R-tree:
1. insert into leaf node p for which the resulting

bounding box has minimum increase in overlap with
bounding boxes of p’s brothers
• compare with R-tree where insert into leaf node for

which increase in area is a minimum (minimizes
coverage)

2. in case of overflow in p, instead of splitting p as in R-
tree, reinsert a fraction of objects in p
• known as ‘forced reinsertion’ and similar to

‘deferred splitting’ or ‘rotation’ in B-trees
• how do we pick objects to be reinserted? possibly

sort by distance from center of p and reinsert
furthest ones

3. in case of true overflow, use a two-stage process
• determine the axis along which the split takes place

a. sort bounding boxes for each axis to get d lists
b. choose the axis having the split value for which

the sum of the perimeters of the bounding boxes
of the resulting nodes is the smallest while still
satisfying the capacity constraints (reduces
coverage)

• determine the position of the split
a. position where overlap between two nodes is

minimized
b. resolve ties by minimizing total area of bounding

boxes (reduces coverage)

• Works very well but takes time due to reinsertion

rc18

EXAMPLE OF R-TREE NODE SPLITTING POLICIES

• Sample collection of 1700 lines using m=20 and M=50

Collection of lines R*-tree

Linear Quadratic

rc19
K-D-B-TREES

• Rectangular embedding space is hierarchically
decomposed into disjoint rectangular regions

• No dead space in the sense that at any level of the tree,
entire embedding space is covered by one of the nodes

• Blocks of k-d tree partition of space are aggregated into
nodes of a finite capacity

• When a node overflows, it is split along one of the axes
• Originally developed to store points but may be extended

to non-point objects represented by their minimum
bounding boxes

• Drawback: in order to determine area covered by object,
must retrieve all cells that it occupies

1
b

A

E 3

G

2 F

D

C1

B

2
r

R8: GE R9: F2R6: B1D R7: DCBR4: EA R5: D3E

R5

R6

R7

R9

R8

R4

3
z

R3: R9R8R2: R7R6R1: R5R4

R1

R2

R3

4
g

R0: R2R1 R3

R0

rc20
R+-TREES

• Rectangles are decomposed into disjoint subrectangles

• Subrectangles are aggregated hierarchically into larger
disjoint rectangles

• Equivalent to a k-d-B-tree with difference that a
rectangle at depth i is a minimum bounding rectangle of
the contained rectangles at depth i+1

• Advantage over k-d-B-tree in that false hits are reduced
• Same drawback of duplicate reporting as in k-d-B-tree

1
b

A

E 3

G

2 F

D

C1

B

2
r

R8: GE R9: F2R6: B1D R7: DCBR4: EA R5: D3E

R5

R6

R7

R9

R8

R4

3
z

R3: R9R8R2: R7R6R1: R5R4

R1

R2

R3

4
g

R0: R2R1 R3

R0

rc21
PLANE-SWEEP METHODS

• Representations for use with results from computational
geometry
1. segment trees
2. interval trees

• Solve geometric problems by sweeping a line (plane in 3-
d) across the plane (space in 3-d) and halting at points of
intersection with the objects being processed

sweep line

direction of sweep

x ≡ halting points

x x x
x

y

• Compute a partial solution so that at the end of the sweep
we have a final solution

• Assume 2-d data

• Organize two sets of data:
1. Halting points of the sweep line (i.e., x coordinates)

which are sorted in ascending order
2. Description of the status of the objects inserted by the

current position of the sweep line
• status is problem-dependent
• efficiency of solution depends on the data structure

• Basically, a multidimensional sort!

• Efficiency of solutions employing plane sweep are
constrained by how fast we can sort — i.e., O (N • log2N)

