
Notes on Project 1
version 1.44

September 01, 2014

1 Definitions

Your program will keep a collection of rectangles which we refer to by C and a rectangle-quadtree which we
refer to by T . The collection C will contain all the rectangles that have been created so far. T may only
contain a subset of C as we may add/remove rectangles to T . Each rectangle has an associated name. The
rectangles in C are sorted by their name. Rectangle names may only contain letters and digits. To sort the
names you should use the standard collating sequence (i.e. the default ordering of characters/strings). Also,
all coordinate values will be integer and in the range [0, 224].

Definition 1 (Rectangle) We will represent a rectangle by a pair of coordinates corresponding to its lower
left corner and upper right corner. Although we only use integer coordinate values, you should think of
these as real coordinate values. For example, a rectangle that spans from (2, 1) to (4, 2) includes the point
(3.9, 1.99). Note that a rectangle is closed on its left and bottom side and open on its top and right side.
Figure 1 illustrates a rectangle from (2, 1) to (4, 2). Note that the rectangle contains all the points in the
gray area and on the black border. Formally, a rectangle that spans from (x1, y1) to (x2, y2) includes a point
(x, y) if and only if x1 ≤ x < x2 and y1 ≤ y < y2. In particular, this means a rectangle does not contain
any of its corners except for its bottom left corner. You will see that this definition of rectangles will simplify
your task when you divide a rectangular region to smaller rectangular regions as each point will then belong
to exactly one of the sub-regions. Since we are assuming integer coordinate values, the smallest rectangle in
this project will be of size 1× 1.

0

1

2

3

4Y

0 1 2 3 4 5 6
X0

1

2

3

4Y

X

R

Figure 1: A rectangle from (2, 1) to (4, 2).

Definition 2 (Intersection) We say two objects (e.g. rectangles) intersect if their overlapping region has
a non-zero area. For example in Figure 2, the rectangle R1 = ((2, 1), (4, 2)) and R2 = ((0, 0), (2, 4)) do not
intersect but R3 = ((1, 0), (3, 1)) intersects with R1. Also R3 and R1 do not intersect.

1

0

1

2

3

4Y

0 1 2 3 4 5 6
X0

1

2

3

4Y

X

R2

R3

R1

Figure 2: R2 and R3 intersect, R1 touches both R2 and R3.

Definition 3 (Touch) We say two objects (e.g. rectangles) touch if their distance is 0 but they do not
intersect. The distance between two objects is the length of the shortest line connecting them. For example
in Figure 2, the rectangle R1 touches both R2 and R3.

Definition 4 (Horizontal Distance) The horizontal distance between two objects is defined as the distance
between the projection of the two objects on the X-axis. The projection of a rectangle R = ((x1, y1), (x2, y2))
on the X-axis is the half-open interval [x1, x2). So, the horizontal distance between two rectangles is just
the distance between their projections on the X-axis. So, given the rectangle R′ = ((x′

1, y
′
1), (x′

2, y
′
2)), we can

compute the horizontal distance of R and R′ by max(x1 − x′
2, x

′
1 − x2). Notice that if the projections of R

and R′ overlap then this distance could be negative.

Definition 5 (Vertical Distance) The vertical distance between two objects is defined as the distance
between the projections of the two objects on the Y-axis. This is defined similarly to the horizontal distance
(See the Def. 4).

Definition 6 (Quadtree Traversal) When visiting the children of a quadtree node, you should visit them
in the order NW , NE, SW , SE. This is important to get the correct ordering of output of some of the opera-
tions. Also, when processing a query, you should avoid visiting child nodes that do not intersect/touch/contain
the queried rectangle/point.

2 Input/Output

You program should read from the standard input. We will redirect the standard input to read from a file.
The input contains one operation per each line. For each operation in the input, you should first print the
operation name along with its argument(s) to the output. You should then process it. For each operation,
you should output one line as follows unless stated otherwise. See the sample input/output in the appendix
to get the idea of this. Also, note that we will ignore the white space when comparing you output against
the correct output so don’t worry about spaces.

• If the operation does not produce any result/message then just print the operation and its arguments
like:

OPERATION(ARG1, ..., ARGN)

• If the operation produces the output message MESSAGE then print the operation name and its argument
and its output message like:

OPERATION(ARG1, ..., ARGN) : MESSAGE

You can find an example input/output in the appendix.

2

3 Operations

The following is a description of the operations:

• INIT_QUADTREE(int w): (OPCODE = 1)
Initialize a new empty quad-tree T that covers the area from (0, 0) to (2w, 2w). Any existing quad-tree
should be deleted. Print the message “initialized a quadtree of width D” where D is 2w.

• DISPLAY() : (OPCODE = 2)
This operation should be implemented as specified in the original project description. There will be
no automated test for this operation.

• LIST_RECTANGLES() : (OPCODE = 3)
Print the message “listing N rectangles: ” where N is the total number of rectangles in C.
Then, starting from the next line, print a list of all the rectangles in the collection C in the ascending
order of their names. Print each rectangle in one line. For each rectangle print its name, its lower left
x and y coordinate values and its upper right x and y coordinate values in order and separate them
by spaces.

• CREATE_RECTANGLE(string R, int x1, int y1, int x2, int y2) : (OPCODE = 4)
Create a new rectangle with the name R and lower left corner at (x1, y1) and upper right corner at
(x2, y2) and add it to the collection C. Note that the rectangle does not need to be within the valid
range of the rectangle tree T . Print the message “created rectangle R” where R is the name of the
rectangle.

• CREATE_RECTANGLE_RANDOM(string R) : (OPCODE = 4)
Create a new rectangle with the name R and random coordinate values and add it to C. Print the
message “created rectangle R X1 Y1 X2 Y2” where R is the name of the rectangle and (X1, Y 1)
and (X2, Y 2) are the coordinate values of its lower left corner and upper right corner, respectively.

• RECTANGLE_SEARCH(string R) : (OPCODE = 5)
Search for all the rectangles in T that intersect with the rectangle R. Print the message “found N
rectangles: R1 R2 ... ” where N is the number of rectangles in T that intersect R. and R1,
R2, . . . are the names of those rectangles.

If R itself is in T then it should be printed as well. You should print the intersecting rectangles in the
order they were visited first. You should traverse the quadtree int the order of NW , NE, SW , SE to
visit/print the rectangles in the correct order. You should avoid visiting quadtree nodes that do not
intersect with R.

• INSERT(string R) : (OPCODE = 6)
Add the rectangle R to the rectangle tree T . Then print the message “inserted rectangle R”. If R
intersects another rectangle in T or if it is already in T then print the message “failed: intersects
with S” where S is the name of the rectangle already in T that would intersect with R. If the
rectangle R is not entirely contained in the region covered by T then print the message “failed: out
of range”

• SEARCH_POINT(int x, int y) : (OPCODE = 7)
Find the rectangle in T that contains (x, y) and print the message “found rectangle R” where R
is the name of the rectangle. If no such rectangle was found then print the message “no rectangle
found”. See Def. 1 for an explanation of when a point belongs to a rectangle.

• DELETE_RECTANGLE(string R) : (OPCODE = 8)
Delete the rectangle R from the quadtree T . If successful, print the message “deleted rectangle R”
where R is the name of the rectangle being deleted. Note that this operation deletes the rectangle from
T not from C. If the rectangle is in C but not in the quadtree T then print the message “rectangle
not found R”.

3

• DELETE_POINT(int x, int y) : (OPCODE = 8)
Find the rectangle in the quadtree T containing the point (x, y) and then delete it from the quadtree.
If successful, print the message “deleted rectangle R” where R is the name of the rectangle being
deleted. If no such rectangle was found then print the message “no rectangle found at (x, y)”
where (x, y) is the coordinate values of the point. See Def. 1 for an explanation of when a point belongs
to a rectangle.

• TRACE ON and TRACE OFF:
These commands enable/disable trace output. When tracing is on, you should print the node number
of the quadtree nodes that were visited in the order that they were visited (pre-order) during the
operation. The root of the quadtree has node number 0. Children of a quadtree node with number N
are numbered as 4N + 1 to 4N + 4 in the order NW , NE, SW , SE.

You should traverse the children of a quadtree node in the order of NW , NE, SW , SE to print the
node numbers is the correct order. When trace is on, the node numbers should be printed in the same
line between a pair of brackets after the operation name/arguments like:

OPERATION(ARG1, ..., ARGN) [NODE1 NODE2]: MESSAGE

Where NODE1, NODE2, . . . are the node numbers for the quadtree nodes that were visited.

Note that only the following operations should print a trace output: RECTANGLE_SEARCH, SEARCH_POINT,
TOUCH, WITHIN, HORIZ_NEIGHBOR, VERT_NEIGHBOR, NEAREST_RECTANGLE, WINDOW and NEAREST_NEIGHBOR.
All the other operations are not affected.

• TOUCH(string R) : (OPCODE = 9)
Search for all the rectangles in T that touch the rectangle R (but don’t intersect it). Print the message
“found N rectangles: R1 R2 ... ” where N is the number of rectangles in T that touch R. and
R1, R2, . . . are the names of those rectangles.

You should print the touching rectangles in the order they were visited first. You should traverse the
quadtree int the order of NW , NE, SW , SE to visit/print the rectangles in the correct order.

• WITHIN(string R, int d) : (OPCODE = 10)
Assume that R = ((x1, y1), (x2, y2)). Define the expansion of rectangle R by distance d to be the
rectangle R+d = ((x1 − d, y1 − d), (x2 + d, y2 + d)). Search for all the rectangles in T that intersect
the donut shaped region contained between R and R+d. A rectangle intersects the region contained
between R and R+d if and only if it intersects R+d and it is not contained in R. Print the message
“found N rectangles: R1 R2 ... ” where N is the number of rectangles in T that intersect the
region in R+d −R and R1, R2, . . . are the names of those rectangles.

You should print the intersecting rectangles in the order they were visited first. You should traverse
the quadtree int the order of NW , NE, SW , SE to visit/print the rectangles in the correct order.
Remember that you should avoid visiting quadtree nodes whose region do not intersect the query, for
example if a quadtree node is entirely contained in R.

• HORIZ_NEIGHBOR(string R) : (OPCODE = 11)
Find the rectangle in the quadtree T with the minimum non-negative horizontal distance to R. In
other words, find the rectangle in T whose projection on the X-axis is closest to the projection of R
on the X-axis but does not intersect it. For a definition of horizontal distance see Def. 4. If there are
multiple rectangles that have the minimum non-negative horizonal distance to R then choose the one
that was visited first during the traversal of the quadtree.

Note that to implement this operation correctly you will need to use a priority queue. The priority
queue will contain the nodes to be visited in the increasing order of their horizontal distance from the
query rectangle. That is, nodes that have smaller horizontal distance to the query rectangle should be
visited first. All the nodes with negative horizontal distance should be treated as having a horizontal
distance of 0. If there are multiple nodes with the same horizontal distance then the one with a smaller
node number should be visited first. You should avoid visiting quadtree nodes that are farther from
the query rectangle than the nearest rectangle found so far.

4

You should print the message “found rectangle S” where S is the result of the query. If no such
rectangle was found (i.e. if the quadtree is either empty or if all the rectangle in the quadtree have
negative horizontal distance to the query rectangle) then print the message “no rectangle found”.

• VERT_NEIGHBOR(string R) : (OPCODE = 11)
Find the rectangle in the quadtree T with the minimum non-negative vertical distance to R. For
a definition of vertical distance see Def. 5. If there are multiple rectangles that have the minimum
non-negative vertical distance to R then choose the one that was visited first during the traversal of
the quadtree. Traversal order and output message is similar to HORIZ_NEIGHBOR except that instead
of horizontal distance, vertical distance should be used.

• NEAREST_RECTANGLE(int x, int y) : (OPCODE = 12)
Find the rectangle in the quadtree T with the minimum distance to the point (x, y). The distance of a
rectangle to the point (x, y) is the length of the shortest line segment connecting the two. In particular,
if the point lies on the boundary or inside a rectangle then its distance to the rectangle by the previous
definition is 0. If there are multiple rectangles that have the minimum distance to (x, y) then choose
the one that was visited first during the traversal of the quadtree. Traversal order and output message
is similar to HORIZ_NEIGHBOR except that instead of horizontal distance, euclidian distance to (x, y)
should be used. Also note that this operation should always find some rectangle unless the quadtree
is empty!

• WINDOW(int x1, int y1, int x2, int y2) : (OPCODE = 13)
Search for all the rectangles in T that are entirely contained in the rectangle with lower left corner
at (x1, y1) and upper right corner at (x2, y2). Print the message “found N rectangles: R1 R2 ...
” where N is the number of rectangles in T that are entirely within the query rectangle and R1, R2,
. . . are the names of those rectangles.

You should print the contained rectangles in the order they were visited first. You should traverse the
quadtree in the order of NW , NE, SW , SE to visit/print the rectangles in the correct order.

• NEAREST_NEIGHBOR(string R) : (OPCODE = 14)
Find the rectangle in the quadtree T that is closest to R but does not intersect R. The distance
between two rectangles is the length of the shortest line segment connecting them. If there are multiple
rectangles that have the minimum distance to R then choose the one that was visited first during the
traversal of the quadtree. Traversal order and output message is similar to HORIZ_NEIGHBOR except
that instead of horizontal distance, the euclidian distance of the quadtree nodes to R should be used.
If a quadtree node intersects with R then its distance to R is considered to be 0. Also note that you
should not visit quadtree nodes that are entirely contained in R because they cannot possibly contain
a rectangle that does not intersect with R.

• LEXICALLY_GREATER_NEAREST_NEIGHBOR(string R) : (OPCODE = 15)
This is similar to NEAREST_NEIGHBOR except that you should only consider the rectangles in T whose
names are lexicographically greater than R. The traversal order and output message is also similar.
Note that if there are multiple rectangles with the same minimum distance to R, you should choose
the one that was visited first during the traversal of the quadtree.

• LABEL() : (OPCODE = 16)
You should do a connected component labeling of the rectangles in the quadtree. Two rectangles
are considered to be connected if they are touching (either a side or a corner). You should then
print the message “found N connected components: ” where N is the total number of connected
components. Then, starting from the next line, print a list of all the rectangles in the quadtree in the
ascending order of their names. For each rectangle print one line containing its name followed by the
name of the rectangle in its connected component that has the lexicographically smallest name in that
connected component.

5

4 Hints

In the following, we represent every point by its x and y coordinate values and every rectangle by a pair
of points. For example, R = (p1, p2), is a rectangle with lower left corner at p1 = (x1, y1) and upper right
corner at p2 = (x2, y2).

Because we represent points by two dimensional vectors, we can define algebraic operations on points.
For example given two points p1 = (x1, y1) and p2 = (x2, y2), we can define p1 + p2 to be the point
(x1 + x2, y1 + y2). Similarly, we can define scalar multiplication (e.g. 5p1 = (5x1, 5y1)), subtraction, etc.
Given a vector v = (x, y), we denote the length of the vector v by ||v|| which is given by ||v|| =

√
(x2 + y2).

Notice that for a point p = (x, y), ||p|| is the length of the vector from (0, 0) to p.

• Comparing Points:
Let p1 = (x1, y1) and p2 = (x2, y2). We say p1 < p2 if and only if both x1 < x2 and y1 < y2. Similarly,
we say p1 ≤ p2 if and only if both x1 ≤ x2 and y1 ≤ y2. Note that based on this definition it is possible
that neither p1 ≤ p2 nor p2 ≤ p1 (e.g. consider the two points p1 = (0, 1) and p2 = (1, 0)).

• Inside:
Given a point p and a rectangle R = (p1, p2), the point p is inside R if and only if p1 ≤ p < p2.

• Min/Max:
Given two points p1 = (x1, y1) and p2 = (x2, y2), we define the min and max operations as follows:

min(p1, p2) = (min(x1, x2), min(y1, y2))
max(p1, p2) = (max(x1, x2), max(y1, y2))

Similarly, we can define the min and max for more that two points (e.g. max(p1, p2, · · · , pn)). In other
words, the minimum/mamximum of several points is a point that has the minimum/maximum of their
coordinate values.

• Valid Rectangle:
Given a rectangle R = (p1, p2), we say a rectangle is valid if and only if p1 ≤ p2, otherwise the rectangle
R is invalid.

• Empty Rectangle:
A rectangle R = (p1, p2) is empty if and only if R is a valid rectangle and p1 < p2 is false. In other
words, R is a valid but empty rectangle if and only if p1 ≤ p2 is true but p1 < p2 is false.

• Intersection:
Given two rectangles R = (p1, p2) and R′ = (p′

1, p
′
2), let p′′

1 = max(p1, p
′
1) and p′′

2 = min(p2, p
′
2). Then

R and R′ intersect if and only if the rectangle R′′ = (p′′
1 , p′′

2) is a valid and not empty rectangle. In
other words, they intersect if and only if p′′

1 < p′′
2 . If they do intersect then their intersection is given

by the rectangle R′′ defined above.

• Touch:
Given two rectangles R = (p1, p2) and R′ = (p′

1, p
′
2), we say that R and R′ touch if their intersection

is a valid but empty rectangle. In other words: Let p′′
1 = max(p1, p

′
1) and p′′

2 = min(p2, p
′
2). Then R

and R′ touch if and only if p′′
1 ≤ p′′

2 is true but p′′
1 < p′′

2 is false.

• Rectangle Containment:
Given two rectangles R = (p1, p2) and R′ = (p′

1, p
′
2), we say R′ is contained in R if and only if p1 ≤ p′

1

and p′
2 ≤ p2. This is also equivalent to saying R′ is contained in R if and only if the intersection of R′

and R is R′ itself.

• Point-Point Distance:
Given two points p1 = (x1, y1) and p2 = (x2, y2) let d = p1 − p2 be their difference vector (i.e. the
vector connecting p1 to p2). The distance between p1 and p2 is given by ||d||. In other words the
distance between p1 and p2 is ||p1 − p2|| which is

√
(x1 − x2)2 + (y1 − y2)2.

6

• Point-Rectangle Distance:
Given a point p and a rectangle R = (p1, p2), let d = max(p1 − p, p − p2, (0, 0)) be their difference
vector. Then, the distance between p and R is given by ||d||.

• Rectangle-Rectangle Distance:
Given two rectangles R = (p1, p2) and R′ = (p′

1, p
′
2), let d = max(p1 − p′

2, p
′
1 − p2, (0, 0)) be their

difference vector. Then, the distance between R and R′ is given by ||d||.

• Rectangle-Rectangle Vertical/Horizontal Distance:
See Def. 4 and Def. 5.

You will need to use a priority queue to implement some of the operation (i.e. HORIZ_NEIGHBOR,
VERT_NEIGHBOR, NEAREST_RECTANGLE, NEAREST_NEIGHBOR, and LEXICALLY_GREATER_NEAREST_NEIGHBOR).
The following is a pseudo-code which should give you an idea of how you should implement these operations.
Note that the following may miss the details specific to each operation so you may need to modify it or add
to it to implement each operations correctly.

Find Nearest (Object query);1

Let Q be a priority queue of quad-tree nodes ;2

min dist ←∞ ;3

closest rect ← null ;4

Push the root of the quad-tree into Q ;5

while Q is not empty do6

p← pop the next quad-tree node from the head of Q ;7

d← distance of p from the query;8

if d < min dist then // You may need to check for other conditions as well9

if tracing is enabled then10

print the quad-tree node number of p ;11

if p is a gray node then12

Push all of the child nodes of p into Q ;13

else if p is a black node then14

r ← the rectangle in p ;15

d′ ← distance of r from the query;16

else if d′ < min dist then // You need to check for other conditions as well17

min dist ← d′ ;18

closest rect ← p ;19

end20

return closest rect ;21

Notice that Q is a priority queue of quad-tree nodes in which nodes with shorter distance to the query
come first. If two nodes have the same distance to the query then the one with a lower quad-tree number
comes first. Also, notice that distance is defined based on the operation you are implementing. For each
specific operation you may need to check for other conditions. For example, if you are implementing the
VERT_NEIGHBOR then at line 9 you should also check that the image of p on the vertical axis is not entirely
contained in the image of the query on the vertical axis (because if it is so then p cannot possible contain
the solution). Similarly, at line 17 you should check that the image of r on the vertical axis does not overlap
the image of the query on the vertical axis (remember that this is for VERT_NEIGHBOR, for other operations
you need to check for other conditions).

7

A Sample Input/Output

Here is a sample input:

INIT_QUADTREE(8)
LIST_RECTANGLES()
CREATE_RECTANGLE(R1,5,5,25,25)
CREATE_RECTANGLE(R2,20,20,31,31)
CREATE_RECTANGLE(R3,30,30,40,40)
CREATE_RECTANGLE(R4,200,200,210,210)
TRACE ON
INSERT(R4)
SEARCH_POINT(1,1)
INSERT(R1)
INSERT(R4)
INSERT(R2)
SEARCH_POINT(1,1)
INSERT(R3)
SEARCH_POINT(5,5)
TRACE OFF
LIST_RECTANGLES()
RECTANGLE_SEARCH(R2)
SEARCH_POINT(1,1)
INSERT(R2)
SEARCH_POINT(7,7)
INSERT(R2)
DELETE_POINT(10,10)
INSERT(R2)
INIT_QUADTREE(8)
INSERT(R4)
INSERT(R4)
CREATE_RECTANGLE(S1,5,5,10,10)
CREATE_RECTANGLE(S2,10,10,13,13)
CREATE_RECTANGLE(S3,14,14,20,20)
CREATE_RECTANGLE(S4,13,2,14,24)
INSERT(S1)
INSERT(S3)
TOUCH(S2)
TRACE ON
HORIZ_NEIGHBOR(R2)
TRACE OFF
VERT_NEIGHBOR(R4)
INSERT(R3)
VERT_NEIGHBOR(R4)
INSERT(R4)
INSERT(R4)
INSERT(R4)
NEAREST_RECTANGLE(27,26)
NEAREST_RECTANGLE(50,50)
NEAREST_RECTANGLE(130,130)
NEAREST_RECTANGLE(160,160)
INSERT(S2)
LABEL()
INSERT(S4)
LABEL()

8

Here is the corresponding output:

INIT_QUADTREE(8): initialized a quadtree of width 256
LIST_RECTANGLES(): listing 0 rectangles:
CREATE_RECTANGLE(R1,5,5,25,25): created rectangle R1
CREATE_RECTANGLE(R2,20,20,31,31): created rectangle R2
CREATE_RECTANGLE(R3,30,30,40,40): created rectangle R3
CREATE_RECTANGLE(R4,200,200,210,210): created rectangle R4
TRACE ON
INSERT(R4): inserted rectangle R4
SEARCH_POINT(1,1)[0]: no rectangle found
INSERT(R1): inserted rectangle R1
INSERT(R4): failed: intersects with R4
INSERT(R2): failed: intersects with R1
SEARCH_POINT(1,1)[0 3]: no rectangle found
INSERT(R3): inserted rectangle R3
SEARCH_POINT(5,5)[0 3 15 63 255]: found rectangle R1
TRACE OFF
LIST_RECTANGLES(): listing 4 rectangles:
R1 5 5 25 25
R2 20 20 31 31
R3 30 30 40 40
R4 200 200 210 210
RECTANGLE_SEARCH(R2): found 2 rectangles: R1 R3
SEARCH_POINT(1,1): no rectangle found
INSERT(R2): failed: intersects with R1
SEARCH_POINT(7,7): found rectangle R1
INSERT(R2): failed: intersects with R1
DELETE_POINT(10,10): deleted rectangle R1
INSERT(R2): failed: intersects with R3
INIT_QUADTREE(8): initialized a quadtree of width 256
INSERT(R4): inserted rectangle R4
INSERT(R4): failed: intersects with R4
CREATE_RECTANGLE(S1,5,5,10,10): created rectangle S1
CREATE_RECTANGLE(S2,10,10,13,13): created rectangle S2
CREATE_RECTANGLE(S3,14,14,20,20): created rectangle S3
CREATE_RECTANGLE(S4,13,2,14,24): created rectangle S4
INSERT(S1): inserted rectangle S1
INSERT(S3): inserted rectangle S3
TOUCH(S2): found 1 rectangles: S1
TRACE ON
HORIZ_NEIGHBOR(R2)[0 1 3 13 15 61 63 254]: found rectangle S3
TRACE OFF
VERT_NEIGHBOR(R4): found rectangle S3
INSERT(R3): inserted rectangle R3
VERT_NEIGHBOR(R4): found rectangle R3
INSERT(R4): failed: intersects with R4
INSERT(R4): failed: intersects with R4
INSERT(R4): failed: intersects with R4
NEAREST_RECTANGLE(27,26): found rectangle R3
NEAREST_RECTANGLE(50,50): found rectangle R3
NEAREST_RECTANGLE(130,130): found rectangle R4
NEAREST_RECTANGLE(160,160): found rectangle R4
INSERT(S2): inserted rectangle S2

9

LABEL(): found 4 connected components:
R3 R3
R4 R4
S1 S1
S2 S1
S3 S3
INSERT(S4): inserted rectangle S4
LABEL(): found 3 connected components:
R3 R3
R4 R4
S1 S1
S2 S1
S3 S1
S4 S1

10

	Definitions
	Input/Output
	Operations
	Hints
	Sample Input/Output

