
st0

Copyright © 1997 Hanan Samet

These notes may not be reproduced by any means (mechanical or elec-
tronic or any other) without the express written permission of Hanan Samet

SORTING TECHNIQUES

Hanan Samet

Computer Science Department and
Center for Automation Research and

Institute for Advanced Computer Studies
University of Maryland

College Park, Maryland 20742
e-mail: hjs@umiacs.umd.edu

st1

ISSUES

1. Nature of storage media

• fast memory

• secondary storage

2. Random versus sequential access of the data

3. Space

• can we use space in excess of the space occupied by
the data?

4. Stability

• is the relative order of duplicate occurrences of a data
value preserved?

• useful as adds a dimension of priority (e.g., time
stamps in a scheduling application) for free

Copyright © 1998 by Hanan Samet

st21
bSELECTION SORT

• Find the smallest element and output it
113 400 818 612 411

113
113
113
113
113

2
r

400 818 612 411
400
400
400
400

3
z

818 612 411
411
411
411

4
g

818 612
612
612

5
v

818
818

6
b

 Step 1 causes no change as 113 is the smallest element

 Step 2 causes 311 in position 6 to be exchanged with 400
in position 2 resulting in the first instance of 400 becoming
the second instance

• In-place variant can be made stable:

1. use linked lists
• only n ·(n –1)/2 comparisons

2. exchange adjacent elements

• O (n
2) time as always n ·(n –1) comparisons

• Needs extra space for output

• In-place variant is not stable

• Ex: 1
113

2
400

3
818

4
400

5
411

6
311

7
412

8
420

1
113

2
311

3
818

4
400

5
411

6
400

7
412

8
4201 2

Copyright © 1998 by Hanan Samet

st3

BUBBLE SORT

• Smaller values filter their way to the start of the list while
the larger values filter their way to the end of the list

• Data is moved one position at a time and hence method is
stable

• In-place

Initially: 113 400 818 612 411

First pass: 113 400 818 612 411
113 400 818 612 411
113 400 818 612 411
113 400 612 818 411
113 400 612 411 818*

Second pass:

818*
818*
818*113 400 612 411

113 400 612 411
113 400 612 411
113 400 411 612* 818*

* denotes final position
denotes a key comparison
denotes a key comparison and a need to swap

• Procedure starts with the values at the right end of the
input list and works its way to the left in the sense that
larger values are placed in their proper position before
(timewise) the smaller value

• O (n 2) comparison and exchange operations

Copyright © 1998 by Hanan Samet

st4
INSERTION SORT

• Values on the input list are taken in sequence and put in
their proper position in the output list

• Previously moved values may have to be moved again

• Makes only one pass on the input list at cost of move
operations

1
b

113 400 818 612 411
113

2
r

400 818 612 411
113 400

3
z

818 612 411
113 400 818

4
g

612 411
113 400 612 818

5
v

411
113 400 411 612 818

• O (n
2) but almost always smaller number of operations

than selection sort

• Needs extra space for output

• Stable

• In-place variant exists and can also be made stable

6
b

Copyright © 1998 by Hanan Samet

st5

MECHANICS OF INSERTION

• Assume inserting x, the i th element

• Must search for position to make the insertion

• Two methods:
1. search in increasing order

• Ex: insert 411 in [113 400 612 818]

2. search in decreasing order
• Ex: insert 411 in [113 400 612 818]

Copyright © 1998 by Hanan Samet

st6

SEARCH IN INCREASING ORDER

• Ex: insert 411 in [113 400 612 818]

• Initialize the content of the output position i to ∞ so that
we don’t have to test if we are at end of current list

• Start at j=1 and find first position j where x belongs — i.e.,
x < out[j]

• Move all elements at positions k (k ≥ j) one to right (i.e., to
k+1)

• j comparisons and i –j+1 moves

• Total of i+1 operations for step i

• Total of (n+1)(n+2)/2–1 = n(n+3)/2 operations
independent of whether the file is initially sorted, not
sorted, or sorted in reverse order

Copyright © 1998 by Hanan Samet

st7

SEARCH IN DECREASING ORDER

• Ex: insert 411 in [113 400 612 818]

• Initialize the contents of the output position 0 to –∞ so that
we don’t have to test if we are at end (actually the start) of
the current list

• Start at j =i and find first position j where x belongs — i.e.,
out[j –1] ≤ x

• Each time test is false, move the element tested (i.e., at
j –1) one to the right (i.e., j)

• i –j +1 comparisons and i –j moves for step i

• Total of as many as n(n+1)/2 comparisons and n(n–1)/2
moves when data is sorted in reverse order

• Total of as few as n comparisons and 0 moves when the
data is already sorted in increasing order

• Superior to a search increasing order

Copyright © 1998 by Hanan Samet

st8

SORTING BY DISTRIBUTION COUNTING

• Insertion sort must perform move operations because
when a value is inserted in the output list, we don’t know
its final position

• If we know the distribution of the various values, then we
can calculate their final position in advance

• If range of values is finite, use an extra array of counters

• Algorithm:

1. count frequency of each value

2. calculate the destination address for each value by
making a pass over the array of counters in reverse
order and reuse the counter field

3. place the values in the right place in the output list

• O (m +n) time for n values in the range 0 … m –1 and stable

• Not in-place because on the final step we can’t tell if a
value is in its proper location as values are not inserted in
the output list in sorted order

• Ex:

input 0 1 2 3 4 5 6 7
 list: 3a 0a 8a 2a 1a 1b 2b 0b

counter: 0 1 2 3 4 5 6 7 8 9
value: 2 2 2 1 0 0 0 0 1 0
position: 0 2 4 6 7 7 7 7 7 8

output 0 1 2 3 4 5 6 7
 list: 0a 0b 1a 1b 2a 2b 3a 8a

Copyright © 1998 by Hanan Samet

st9
SHELLSORT

• Drawback of insertion and bubble sort is that move
operations only involve adjacent elements

• If largest element is initially at the start, then by the end of
the sort it will have been the subject of n move or
exchange operations

• Can reduce number of move operations by allowing
values to make larger jumps

• Sort successively larger sublists

1. e.g., sort every fourth element
• elements 1, 5, 9, 13, 17 form one sorted list
• elements 2, 6, 10, 14, 18 form a second sorted list
• elements 3, 7, 11, 15, 19 form a third sorted list
• elements 4, 8, 12, 16, 20 form a fourth sorted list

2. apply same technique with successively shorter
increments

3. final step uses an increment of size 1

• Usually implement by using insertion sort (that searches
for position to make the insertion in decreasing order) at
each step

• Ex: with increment sequence of 4, 2, 1

1
b

1 2 3 4 5 6 7 8

start 113 400 818 612 411 311 412 420

2
r

h=4 113 311 412 420 411 400 818 612

3
z

h=2 113 311 411 400 412 420 818 612

4
g

h=1 113 311 400 411 412 420 612 818
Copyright © 1998 by Hanan Samet

st10

PROPERTIES OF SHELLSORT

• Difficult to analyze execution time but is good due to
being simple, having a fast inner loop, and no bad cases

• Some increment sequences yield O(n n)

• Others of form 2p3q (e.g., 1, 2, 3, 4, 6, 9, 16, 18, …) yield
O (n log2n)

• Some increment sequences are better than others

• Not stable but in-place

• 1, 2, 4, 8, … is not so good as doesn’t allow for interaction
between values in odd and even positions until final step

• Desirable for log2n increments in order to reduce the
number of passes that need to be made over the data

• Not stable as order of equal values is destroyed due to
application of sorting to overlapping lists

• In-place

Copyright © 1998 by Hanan Samet

st11

TOURNAMENT SORT

• Like a ladder

818

818

400 818

400 818113 612

420

411 420

311 412411 420

• Output value at the root, replace it by –∞, and rebuild the
ladder

612

612

400 612

400 −∞113 612

420

411 420

311 412411 420

• Sorting takes O (n log2n) once the ladder has been built

Copyright © 1998 by Hanan Samet

st12

HEAPSORT (TREESORT)

• Tournament ladder is wasteful of space as values are
repeated

• Need space to store the output of the sort

• Use a modified tournament ladder where only the winners
are retained

−∞−∞−∞−∞−∞

−∞

−∞

818

612

400

113

420

411 412

311

• Rearrange values so get a reasonably complete binary tree

818

612

400 311

113

420

411 412

• Result is a heap
1. each value is greater than its two sons
2. use a complete binary tree array representation

• sons of node at location x are at 2x and 2x +1

1 2 3 4 5 6 7 8
818 612 420 400 311 411 412 113

Copyright © 1998 by Hanan Samet

st13
BUILDING A HEAP

• Start at bottom level of tree
1. compare maximum of each pair of brother values with

their father
2. if father < maximum of sons, then exchange father with

maximum son and repeat as necessary with two sons

• Repeat process for remaining values on the same level,
and the remaining levels while ascending the tree

1
b

113

400

612 411

420

818

311 412

113

400

612 411

420

818

311 412

113

400

612 411

420

818

311 412

113

612

400 411

420

818

311 412

113

612

420 411

400

818

311 412

818

612

420 411

400

113

311 412

1. 2.

3. 4.

5. 6.

• Process is not stable

2
r

OK!

OK!

412

113

3
z

• Final result
Copyright © 1998 by Hanan Samet

st14

OUTPUTTING A HEAP

1. Exchange root with node at the end of the unsorted set

2. Compare root with roots of left and right subtrees

3. If root > left and root > right, then done

4. If root > max(left,right) and max(left,right)=left, then
exchange root with left son and reapply steps 1–5
to left subtree

5. Else exchange root with right son and reapply
steps 1–5 to right subtree

Copyright © 1998 by Hanan Samet

st15
EXAMPLE OF OUTPUTTING A HEAP

1
b

818

612

420 411

400

412

311 113

400

612

420 411

818

412

311 113

612

400

420 411

818

412

311 113

612

420

400 411

818

412

311 113

113

420

400 411

818

412

311 612

420

113

400 411

818

412

311 612

420

411

400 113

818

412

311 612

311

411

400 113

818

412

420 612

412

411

400 113

818

311

420 612

113

411

400 412

818

311

420 612

411

113

400 412

818

311

420 612

411

400

113 412

818

311

420 612

113

400

411 412

818

311

420 612

400

113

411 412

818

311

420 612

311

113

411 412

818

400

420 612

1. 2. 3.

4. 5. 6.

7. 8. 9.

10. 11. 12.

13. 14. 15.

2
r

exchange and output
compare and exchange

• Final result

3
z

311

113

Copyright © 1998 by Hanan Samet

st16

ANALYSIS OF HEAPSORT

1. Outputting the heap is O (n log2n)

2. Building the heap
• based on counting the number of comparisons when

each position in the heap serves as the starting point
of a comparison process
a. root is at level log2 n 
b. between 1 and n / 2  nodes at level 0
c. root is the start of at most 2 log2 n  comparison

operations
d. nodes at level 1 are start of at most 2 comparison

operations, and there are at most n / 4  of them
e. nodes at level i are the start of at most 2i comparison

operations, and there are at most n / 2i +1  of them

• C = number of comparisons =
n ⋅ i
2ii =1

log2 n ∑ .

i
2i

i =1

a
∑ = 1

2
⋅ i + 1

2i = 1
2

⋅ i
2i

i =0

a −1
∑ + 1

2
⋅ 1

2i
i =0

a −1
∑

i =0

a −1
∑

= 1
2

⋅ i
2i

i =1

a −1
∑ + 1

2
⋅
1− 1

2a

1− 1
2

= 1
2

⋅ i
2i

i =1

a
∑ − a

2a +1 + 1− 1
2a

or,
i

2i = 2 − a + 2
2a

i =1

a
∑

Substituting into C yields

C = n ⋅ 2 −
log2 n  + 2

2 log2 n 






≈ 2 ⋅n

Copyright © 1998 by Hanan Samet

PRIORITY QUEUES
st17

• Properties
1. locate the maximum (minimum) element in O(1) time
2. insert and delete an arbitrary element in O(log2 n) time

• Can implement using a heap

• If set of possible elements is known a priori, then can use
a bit representation consisting of an array corresponding
to a complete binary tree (Abel)
1. all information is stored at the bottom two levels
2. for n elements, need just 2n –1 bits
3. node bi is 1 if one of the elements below it is present

• Ex: set of possible keys
 {K1, K2, K3, K4, K5, K6, K7, K8, K9, K10, K11}

1
b

b1

b16 b17 b18 b19

b8 b9

b4

b20 b21

b10 b11

b5

b12 b13 b14 b15

b6 b7

b3b2

K1 K2 K3 K4 K5 K6

K7 K8 K9 K10 K11

2
r

For the set S = {K2, K3, K5, K6} we have
 b1 = b2 = b4 = b5 = b8 = b9 = b10 = b17 = b18 = b20 = b21 = 1

3
z

• To locate the maximum element:
 1. j←1
 2. while j<n do j← 2j + b2j+1

4
g

• To locate the minimum element:
 1. j←1
 2. while j<n do j← 2j+1 – b2j

Copyright © 1998 by Hanan Samet

st18
QUICKSORT

• Key:

1. break file into successive halves such that each half
contains all keys greater than a certain value

2. recursive application of this partitioning scheme to
halves yields a sorted list once a partition has only one
element

• Algorithm:

1. pick an item in the array at random, say x

2. scan the array of keys from the left until ai ≥ x is found

3. scan the array of keys from the right until aj ≤ x is found

4. exchange ai and aj and continue the scan and swap
process until the two scans meet (note that x itself may
also be moved)

• Ex:

1
b

 pick item 5 at random (i.e. 411) and scan starting at
position 1

1
113

2
400

3
818

4
612

5
411

6
311

7
412

8
420

2
r

113 400 311 612 411 818 412 420
 exchange 818 and 311

3
z

 exchange 612 and 411

 stop with j = 4 and i = 5
 now, partition the two subhalves (1,j) and (i, 8)…

113 400 311 411 612 818 412 420

4
g

• Average O (n log2n): log2n passes to partition the file into
singletons, each pass makes n comparison operations

Copyright © 1998 by Hanan Samet

st19

DRAWBACKS OF QUICKSORT

1. Taking random elements may be overkill

• solution: always work with first or last element in a
sublist

• problem: worst case of the algorithm arises when the
file is initially in sorted order

• solution: take a small subset and use its median as
the partition value

2. Reduce stack requirements by processing the shortest
partition first

3. Use insertion sort for small partitions

4. Not stable due to scan-and-swap process

Copyright © 1998 by Hanan Samet

st20

COMPUTING MEDIANS

• More generally, find the k th value in increasing order from
a set containing n values

• No need to sort the entire list

• Process partition containing entry ak

• Algorithm:

1. Partition set: x = splitting value

ah ≤ x ∀h < i
ah ≥ x ∀h > j





 i > j

2. if k ≥ i, then partition right subhalf
if k ≤ j, then partition left subhalf
otherwise, k th value is ak since j<k<i

• Ex: want 6th largest element

1 2 3 4 5 6 7 8
113 400 818 612 411 311 412 420

pick item 5 at random (i.e. 411):

113 400 311 411 612 818 412 420

k = 6 ≥ 5 = i, so partition right half
use item 8 as the splitting value (i.e., 420):

420 412 818 612

k = 6 = j, so partition left half
use item 6 as the splitting value (i.e., 412)

412 420

420 is the 6th value in increasing order, since k = 6 ≥ i = 6

Copyright © 1998 by Hanan Samet

st21

ANALYSIS OF MEDIAN COMPUTATION

1. Average log2n partitions

2. Only process one partition

3. i th partition has an average of n 2i elements

• i.e., n 2i comparisons

4. Total average running time is

n + n
2i

i =1

log2 n 
∑ = n + n ⋅ 1

2i
i =1

log2 n 
∑ = n + n ⋅1= 2n

Copyright © 1998 by Hanan Samet

st22
RADIX-EXCHANGE SORTING

• Quicksort sorts a list on the basis of its values

• Can also partition on the basis of the bits (more generally
the characters or digits) that make up the values

1
b

1
113

2
400

3
818

4
612

5
411

6
311

7
412

8
420

partition
values

–

step

start

element number

• Algorithm:
1. test most significant bit and partition into two sublists

(i.e., bM–1=0 and bM–1=1)

2. recur on sublists testing successive bit positions
3. terminate when no bits are left to test, or sublist is

empty
• Ex:

number
113
400
818
612
411
311
412
420

binary representation
0001110001
0110010000
1100110010
1001100100
0110011011
0100110111
0110011100
0110100100

• Assume each value is
represented by an M bit
number bM–1 bM–2 … b1 b0
(i.e., ranging from 0 to 2M –1)

2
r

bit 9 512 113 400 420 412 411 311 612 818

3
z

bit 8 256,768 113 400 420 412 411 311 612 818

4
g

bit 7 384 311 420 412 411 400

5
v

bit 6 448 420 412 411 400

6
r

bit 5 416 400 412 411 420

7
z

bit 4 400 400 412 411

8
g

bit 3 408 400 412 411

9
v

bit 2 412 411 412

• As in quicksort, not stable due to scan-and-swap process

Copyright © 1998 by Hanan Samet

st23
RADIX SORTING

• Radix-exchange sorting does not work too well when
leading bits of the items being sorted are identical

• Alternative is to sort based on the trailing bits using a
stable method such as distribution counting

• Assume each value is represented by an M bit number
bM–1 bM–2 … b1 b0 (i.e., ranging from 0 to 2M –1)

1
b

step

start
1

113
2

400
3

818
4

612
5

411
6

311
7

412
8

420

element number

• Ex: highlight elements where tested bit has value 1

number
113
400
818
612
411
311
412
420

binary representation
0 0 0 1 1 1 0 0 0 1
0 1 1 0 0 1 0 0 0 0
1 1 0 0 1 1 0 0 1 0
1 0 0 1 1 0 0 1 0 0
0 1 1 0 0 1 1 0 1 1
0 1 0 0 1 1 0 1 1 1
0 1 1 0 0 1 1 1 0 0
0 1 1 0 1 0 0 1 0 0

2
r

bit 0 400 818 612 412 420 113 411 311

3
z

bit 1 400 612 412 420 113 818 411 311

4
g

bit 2 400 113 818 411 612 412 420 311

5
v

bit 3 400 113 818 612 420 311 411 412

6
r

bit 4 612 420 400 113 818 311 411 412

7
z

bit 5 400 411 412 612 420 113 818 311

8
g

bit 6 400 411 412 420 818 311 612 113

9
v

bit 7 818 311 612 113 400 411 412 420

10
r

bit 8 612 113 818 311 400 411 412 420

11
z

bit 9 113 311 400 411 412 420 612 818

Copyright © 1998 by Hanan Samet

st24
PROPERTIES OF RADIX SORTING

• Slow when the set of numbers being sorted is small while
the range of values is large

• Can speed up by using larger groups of bits such as 4 or
even the base 10 digits of the numbers

• Ex:

1
b

step

start
1

113
2

400
3

818
4

612
5

411
6

311
7

412
8

420

element number

2
r

digit 0 400 420 411 311 612 412 113 818

3
z

digit 1 400 411 311 612 412 113 818 420

4
g

digit 2 113 311 400 411 412 420 612 818

5
v

• Radix sorting differs from radix-exchange sorting in that
we can’t use the scan-and-swap process to rearrange the
sublist currently being processed since it is not stable

• Need space for the output list and the counters for sorting
by distribution counting

• O (n log2M) time

• Analogous to techniques used to sort punched cards in
prior times

• M is the range of values being sorted

Copyright © 1998 by Hanan Samet

st25
MERGE SORTING

• Bottom-up quicksort

• Small partitions are repeatedly merged to yield larger lists

• Ex:

1
b

step

start
1

113
2

400
3

818
4

612
5

411
6

311
7

412
8

420

element number

2
r

1 113 400 612 818 311 411 412 420

3
z

2 113 400 612 818 311 411 412 420

4
g

3 113 311 400 411 412 420 612 818

5
v

• Observations:
1. O (n log2n) time as log2n passes and n items

2. stable as it retains duplicate items and in same order
3. not in-place as need room to store the output on each

pass but can be reused
4. can avoid space for output list by using linked allocation

instead of an array for the lists
5. similar to Shellsort with increment sequence 2k, …, 2, 1

• must modify merge sorting not to use consecutive items
• Shellsort usually uses insertion sort while for this

increment sequence it can also be implemented with
merging
a. result is still not stable as the lists being merged

are overlapping rather than consecutive
b. process is not in-place because of merging

• yields a version of Shellsort running in O (n log2n) time
but needs extra space

6. used in tape sorting
• number of records is large and can’t keep all in memory
• merge sorting needs little memory as usually

comparing one element against an adjacent one
Copyright © 1998 by Hanan Samet

st26

POLYPHASE MERGE

• Merge sorting can be sped up by starting with larger
ordered sequences of records (termed runs or suites)

• Ex:

Suite #1 Suite #2 Suite #3 Suite #4

12 4242 44 55 6 18 67 90 72 88 15 37 98

• k –1 tapes with s suites apiece may be merged onto a
remaining tape to form s suites on it

• Each tape contains a different number of suites initially:
tape # 1 2 3 4 5
of suites 9 13 6 15 0

After the first merge (onto tape 5):
3 7 0 9 6

Rewinding tapes 3 and 5 and merging onto tape 3 yields:
0 4 3 6 3

• Working backwards leads to an optimal distribution of
suites on the tapes:

Tape #
Pass 1 2 3 4 5
n 1 0 0 0 0

n–1 0 1 1 1 1 Because on the next pass the
n–2 1 0 2 2 2 → maximum number of suites on
n–3 3 2 0 4 4 tapes 2, 3, 4 or 5 is 1
n–4 7 6 4 0 8
n–5 15 14 12 8 0 Pass i –1 must create the largest
n–6 0 29 27 23 15 number of suites on pass i, so pass
n–7 29 0 56 54 44 i –1 must merge onto this tape

• Each of the distribution patterns provides a starting point
for polyphase merge — i.e., initially require 1, 4, 7, 13, 25,
49, 92, 181, … suites

• These numbers can be obtained formally using
recurrence relations

Copyright © 1998 by Hanan Samet

st27

INITIAL SUITE DISTRIBUTION

• Performance of polyphase merge methods can be
improved when the initial suites contain more records
(implies less suites!)

1. fill the working store (WS) to capacity

2. when a record is output (R), it is replaced by the next
record from the input (N)
• if N > R, then N will eventually be output in same

suite
• if N < R, then N is part of new suite being formed in WS

• Summary: there are 2 suites in the working store!

• Ex: |WS| = 3 [] = elements of new suite

memory output
1 2 3
44 55 12 12
44 55 42 42
44 55 94 44
[6] 55 94 55
[6] 67 94 67
[6] [18] 94 94
[6] [18] [70] end of suite
6 18 70 6
98 18 70 18
98 82 70 70
98 82 [37] 82

.

.

.

• Theorem: the average length of a suite is 2·|WS|
(see Knuth)

Copyright © 1998 by Hanan Samet

st28

COMPARISON

• Merge sorting is a bottom-up variant of quicksort

• Can also have top-down merge sorting

1. quicksort is partition-and-divide

2. top-down merge sorting is divide-and-merge at start

3. key to comparison is time at which recursion (≡divide)
takes place
• quicksort: at end
• top-down merge sorting: at start

• Merge sorting is best for external sorting (i.e., on disk or
tape)

• Radix methods are generally impractical as the range of
values is usually large and thus many counters or many
steps are needed (when sorting by distribution counting is
used to reduce the number of steps)

• Linked storage lessens the impact of exchange
operations

1. in-place selection sort can be made stable

2. quicksort and radix-exchange sorting need doubly-
linked lists as they process the lists in both directions

3. top-down merge sorting is impractical as need to know
how many elements are in each sublist

• Heapsort and Shellsort are in-place (don’t require extra
space) while quicksort and radix-exchange sorting are
also in-place but need space for the stack

Copyright © 1998 by Hanan Samet

st29

SPEED CONSIDERATIONS

• Quicksort is n log2n on the average but can be as bad as
O (n 2)

• Heapsort and merge sorting are always O (n log2n)

• Quicksort has fastest inner loop

• Merge sorting lies somewhere inbetween quicksort and
heapsort

• Shellsort is comparable to merge sorting and is not
sensitive to the data being in sorted order unlike quicksort

• When data set is small, use one of basic sorting methods

1. insertion sort or selection sort are comparable

2. insertion sort is preferable
• easy to implement a stable in-place variant
• selection sort always requires n 2 or n 2/2 operations
• requires between n or n (n +1)/2 operations
• only n operations when input is sorted in increasing

order

Copyright © 1998 by Hanan Samet

