
Blitzkrieg: Unity Overview
CMSC425.01 Fall 2019

Administrivia

• Get started on Unity

• Review project 1
• Variation on Roll-A-Ball tutorial

• Today – take moments to work on Unity

Today’s question

What do you need
to know to use Unity?

Today: Unity Blitzkrieg

• Lighting war
• Cover ground quickly
• Go around enemy strongholds
• Handle those later

• In Unity
• Get an overview
• Leave hard concepts for later

• Geometry, navmesh, animations

• Work along
• Experiment with Unity

Avalon Hill 1965

Two steps

1. Build
• Assemble resources
• Combine and layout in Unity GUI
• Create your world

• Project 1

2. Script
• Add behaviors
• Tie game objects together

http://www.cs.umd.edu/class/spring2019/cmsc425/projects/project1/Prog-Assgn-1/Part-2-Executable/

Unity game structure

Project

SceneScene Scene

Game ObjGame Obj Game Obj

Component Component Component

Unity game objects: elements of scene

Project

SceneScene Scene

Game ObjGame Obj Game Obj

Component Component Component

Player

NPC

Cameras

Agents

Traps

Environment

Terrain

Skybox

Lights

View

Obstacles

Audio

SndPlayer

Collectables

Weapons

Potions

Unity game components

Project

SceneScene Scene

Game ObjGame Obj Game Obj

Component Component Component

Shape
(mesh)

Appearance
(material, color,

texture)

Physics
(rigid body)

Player object has

Extent
(Collider)

Behavior
(scripts)

Unity project: game + resources

Project

SceneScene Scene

Game ObjGame Obj Game Obj

Component Component Component

Package

Prefab game objects

Assets

Components

Meshes
Images
Scripts
Shaders
Materials
Textures

Audio
Animations

more …

Resources: Asset Store

• Free and paid

• Can use in projects
• (Animations in

particular)

• But, cite your
sources

Unity runtime: game + system elements
Project

SceneScene Scene

Game ObjGame Obj Game Obj

Component Component Component

• Sources of events
• Input Manager
• Network Manager
• Physics engine/Collider

• Services
• Audio
• Visual rendering
• Access to assets
• etc.Input

Manager
Physics/
Collider

Audio
Player

Network
Manager

Interface

• Scene/game view
• Build scene
• Play scene

• Hierarchy
• Manage scene

• Inspector
• Manage game objects and

components

• Project window
• Manage resources

Editing assets externally

• Use external editors to
• Create/edit scripts
• Create/edit images, meshes, shaders
• Create character animations

• Unity does have internal editors
• Terrain
• Trees

• For C# scripts: Monodevelop or Visual Studio

Blank game

All scenes start with
Camera
Light

Add Game object

All objects have Transform
Position/orientation

Add components

Editing objects

• Add
• Shape – Mesh filter
• Collider
• Renderer – color, reflection, etc

• Edit
• Set position, orientation, scale
• Set collider offset (if needed)
• Set color, other properties

Unity coordinate system: left handed
World space:
left handed

Screen space:
Origin bottom left, positive z away

+X

+Y
+Z

Many graphics systems right handed -> depth negative

Transforms

• Translate along axes
• Rotate around axes
• Scale along axes

Object hierarchy and transforms

• Root objects
• Transform relative to World

• Child objects
• Transform relative to Parent

• Move Parent
• Move Child

• Scale Parent
• Scale Child

Camera following object

• Camera as child object

• Can also attach
camera to follow in
script (lookAt)

Multiple coordinate systems

• World
• Scene
• Camera (3d), Screen (2d)
• Object
• Object hierarchy

• Move left
in which?

Materials

• Standard, default material
• Tricky - starts greyed out
• Can't edit directly

• Instead
• Create new Material in Project
• Drag onto Object to replace

Standard material
• Edit

• Can code with Shaders

Material properties

• Albedo (RGB color)
• Metallic (mirror-ness)
• Smoothness (shininess)

• Try yourself with sphere

Texture mapping
• Albedo map – color
• Normal map –local orientation
• Height map – local displacement

Unity stage one (build) summary

• Structure of game
• Project-scene-object-component
• Resources-packages-prefabs-assets

• Interface
• Project(assets)-Hierarchy(objects)-Inspector(components)
• Scene view(build)
• Game view(play)
• External editors

• Key components
• Shape, transform, material

Stage 2: With scripts you can

• Create and destroy objects
• Initialize objects
• Activate and inactivate objects
• Move objects
• Activate animations
• Change object appearance
• Keep score
• And more

Topics
1. Events
2. Life of an object
3. Event loop
4. Accessing data
5. Key Unity data types

Scripting: UnityEvents

• C#
• Event driven
• No main
• Multiple scripts

possible per
object
• Base class for

UnityEvents:
MonoBehaviour

using UnityEngine; // basic objects
using System.Collections; // basic structures
public class MyGameObject : MonoBehaviour {
void Start () {

// ... initializations
}

void Update () {
// ... code repeated each frame tick
}

}

Example: rotating cube

public class MyGameObject : MonoBehaviour {

void Start () {

transform.rotation = Quaternion.Euler(0,0,0);

}

void Update () {

transform.Rotate (new Vector3 (0, 45, 0) * Time.deltaTime);

}

}

// This shows: accessing component, use of delta time, Quaternions

Comparing: event program in Processing

void setup() {
size(400,400);

}
void draw() {
}
void mousePressed() {

ellipse(mouseX,mouseY,20,20);
}
void keyPressed() {

save("pic.jpg");
}

• setup – called once on program
start

• draw – called every frame (rate
adjustable)

• mousePressed – called once
when mouse is pressed

• keyPressed – called once when
key is pressed

Scripting: UnityEvents

using UnityEngine; // basic objects
using System.Collections; // basic structures

public class MyGameObject : MonoBehaviour {

void Start () { // ... LIKE SETUP

}
void Update () { // ... LIKE DRAW(but, no draw cmds)

}

void OnMouseDown() {// ... LIKE MOUSEPRESSED

}

}

Tracking events through console log

Types of events

A. Object initialization and state
B. Object updates
C. Physics events including collisions and trigger
D. User input events

2. Lifetime of objects

• Some objects persist throughout the game – player, etc

• Some objects only need be enabled when their room is entered
• Avoid spending time calling their update, etc, when not used or viewed

• Some objects only needed to be rendered when viewable
• Don't try to render things behind you, or too far away

• Some objects have short lifetime – create and destroy quickly
• Projectiles, spell animations, and so on

A. Object initialization and state events

• void Awake - when object is initialized (set up all objects)

• void Start - when object is enabled (eg, when room is entered)
(enough for now)

• object.enable - turns off update, rendering, but not all physics

• object.active - turns off all components/events

• Tricky! Can't re-enable in Update if that's turned off

Create new object from prefab

• Load Missile prefab
public class RocketShipController : MonoBehaviour {

public GameObject mPrefab;
void Start () {

GameObject mPrefab = Resources.Load("Missile") as GameObject;
}

• Instantiate
void ShootMissile () {

GameObject m = Instantiate(mPrefab , transform.position ,
transform.rotation);

m.velocity = transform.TransformDirection(Vector3.forward*10);

}

B. Object updates

• void Update - called at frame rate
- intervals not constant

• void FixedUpdate - called at fixed interval
- Time.fixedDeltaTime
- for accurate physics

• void LateUpdate - called after Update calls are done
- for objects that react to all others

C. Physics: collisions and triggers

• Events when objects overlap

• For colliders: When two objects collide!
• void OnCollisionEnter()
• void OnCollisionStay()
• void OnCollisionExit()

• For triggers: Put invisible objects in doors, pads
• void OnTriggerEnter()
• void OnTriggerStay()
• void OnTriggerExit()

D. User input events

• Event handlers

void OnMouseDown()

void OnMouseUp()

void OnMouseOver()

void OnMouseDrag(){

print("dragging");

}

• Polling

public void Update() {

if(Input.GetButtonDown("Fire1")) {

Debug.Log(Input.mousePosition);

}

}

• Choice: efficiency, code complexity

3. Unity game loop

Initialize game
do

Physics (+collision)
Input
Game logic(new)
Rendering
GUI rendering

loop
Clean up

• Events handled in order during loop
• https://docs.unity3d.com/Manual/ExecutionOrder.html

https://docs.unity3d.com/Manual/ExecutionOrder.html
https://docs.unity3d.com/Manual/ExecutionOrder.html

Review: Time!

• Frame time (not constant)
• Things executed every frame
• Most important is rendering of scene

• Physics time
• Steps in physics simulation
• May run faster than frame time to get physics right (avoid big steps)

• Real time
• System clock
• For syncing music, video, other things that need real time

Event loops and time: 45 degrees/second

• Frame time (not constant)
void Update () {

transform.Rotate (new Vector3 (0, 45, 0) * Time.deltaTime);

}

• Physics time
void FixedUpdate () {

transform.Rotate (new Vector3 (0, 45, 0) * Time.fixedDeltaTime);

}

// 0.02 typically

Going slower than frame rate?

• Coroutines
• Yield control each loop with "yield" command
• Call in Update, resumed with each new Update

IEnumerator Fade() { // gradually fade from opaque to transparent
for (float f = 1f; f >= 0; f -= 0.1f) {

Color c = renderer.material.color;
c.a = f;
renderer.material.color = c;

yield return null; // return to Unity to redraw the scene
}

}

4. Key Unity components and data types

• Transform - Position and orientation
• Vector3: Vector3 u = new Vector3(1, 2, -3);
• Ray: Ray ray = new Ray(FromVector, ToVector);
• Quaternion: Quaternion q1 = Quaternion.Euler(0,30,0);

• Rigid body - Physical properties
• rb.mass = 10f; // change this body’s mass
• rb.AddForce(Vector3.up * 10f); //up force

• Collider - Extent of game object
• Material - Color and surface properties

Motion options

• Rigid body Has mass, extent, other properties
Nudge by forces

• Kinematic object Set position and velocity directly

• Static object Doesn’t move
So don't do static/static collision detection

5. Accessing data in a script

• Access public script variables
public float floatSpeed = 10.0f; // how fast ball floats up
public float jumpForce = 4.0f; // force applied when ball jumps

• Access object components of your object
Rigidbody rb = GetComponent <Rigidbody >();

• Access other game objects by game or tag
GameObject camera = GameObject.Find ("Main Camera");
GameObject player = GameObject.FindWithTag("Player");
GameObject[] enemies =

GameObject.FindGameObjectsWithTag("Enemy");

C# vs Java

• Similar
• OOP, garbage collection, bytecode, data types, control structures

• Differences that matter in Unity
• yield statement allows coroutines in Unity
• inheritance system different- can packages up objects more completely

• Will leave it to you to learn the details of C#

Summary

• After today you should be able:
Have a better handle on Unity tutorials
1) Explain the hierarchical structure of a Unity game
2) List the usual components of a game object
3) Use the Unity interface to create and edit Unity projects and elements
4) Explain and use the Unity left handed coordinate system
5) Use transform component to move and orient an object
6) Explain how the parent child relationship effects object position
7) Explain some basic properties of the material component
8) Start on writing Unity C# scripts with an understanding of events, object

life, event loop, accessing data inside and outside objects, key data types

Readings

• David Mount's lecture
• "Intro to Unity"
• Roll-A-Ball tutorial
• Project 1 assignment
• Unity Manual (browse as you need)
• Find other tutorials, use the manual as you wish
• https://www.raywenderlich.com/980-introduction-to-unity-scripting

https://www.cs.umd.edu/class/fall2018/cmsc425/Lects/lect03-unity.pdf
https://www.raywenderlich.com/980-introduction-to-unity-scripting

