Geometry and Geometric
Programming ||

CMSC425.01 fall 2019

Daniel Brown: guest lecture, later

Administrivia

* Hw 1 out

* Practice Hw 1 out with solutions available
* Project 1a under grading

* Review Project 1b Thursday

Examples

* Rotate moon around Earth * Orient cylinder sections of 3D
around sun (multiple motions) helix

Octave Online — working through examples

Q0O (< M & octave-online.net & t a |

o G O O d fo r d O I n g exa m p | e S’ i1 Shopping v Research v Hobbies v News v Electronics v Educational v Apple v Import to Mendeley >>
0 O O Octave Online - Cloud IDE compatible with MATLAB +
verifying equations

* Vectors, Matrices, operations

e Open source version of Matlab

ave:2> ¢ = [1,2]

e Can also use app

ave:3> p = [0,0]

* Or link Octave fcns externally to
C or other languages

v=[1,1]

ave:5> dot(v, c-p)

Back to orthogonal projection

Orthogonal projection: Given a vector w and a nonzero vector v, it is often convenient to
decompose u into the sum of two vectors w = w1 + us, such that u; is parallel to v and
Us is orthogonal to v.

H (u-) i L
Uy <— (?72_),)11, Uy <— U — Uj.

2D frame of reference

Big idea — frame of reference

Global or local coordinate system in which to define pts and vectors

* 2D * 3D

Understand: work through examples

» Start with obvious example TAPECAC)N, S Sy S
1 (ﬁ"l_j)) 2 1
*u=<1,1>
e v=<]1,0> A /
u2="? u=<1,1>
>
v=<1,0>

Understand: work through examples

e Start with obvious example U, « o) 5 U, < U — Uy
° U= <1’1> (u.v)
ev=<1,0>

e ul=1/1*%<1,0> u2="? u=<1,1>

*u2 =<1,1>-<1,0>
=<0,1>

v=<1,0>

u projects onto <1,0>,<0,1> Y=

Understand: work through examples

* Work slowly to complex TAPECAC)N, S Sy S
1 (ﬁ.l—})) 2 1
*u=<0,1>
ev=<]1> A /
u2="2? u=<1,1>
>
v=<1,0>

Understand: work through examples

* Work slowly to complex
*u=<0,1>
ev=<]1,1>

* ul = (uev)/(vev) v
=%<1,1>=<%, %>
*u2=u—-ul=<0,1>-<%, %>

=<-,n>

—

U, <

AN

(u-v)
(u-v)

u2?

B U, e d—1,

/

u=<0,1> v=<1,1>

/

Observation: are ul, u2 normal vectors?

cul=<n %>
*u2=<-%,%>

U, <

AN

(u-

—_ —

(u-v)

u2?

U, e -1

-/

u=<0,1> v=<1,1>

/

Observation: are ul, u2 normal vectors?

—_ (ﬁ"l_j) - —- - —_
ul — (ﬁl_j) U, uz — Uu-— u1
cul=<h%>
*u2=<-%,%>) /
° |u1| :Sqrt(%+%) :Sqrt(‘yz) u2? u=<0,1> v=<1,1>

ul =<%, %> /[sqrt(1/2) / -

= <sqrt(2)/2, sqrt(2)/2>

NO

Problem: Ray — circle intersection

* Does the ray defined by p and v intersect the circle
defined by c and r?

&C
o S

True False

Ray — circle intersection

* Does the ray defined by p and v intersect the circle
defined by c and r?

* Solutions?
A) Do equations p(t) = p + tv and (x-xc)? + (y-yc)? = rA2 have solution?
B) Is sine of angle * length to circle less than radius?

C) Length of projection of normal less than radius?

Given vectors u, v, and w, all of type Vector3, the following operators are supported:

u v + w; // vector addition

u v - w; // vector subtraction

if (u ==v || u '=w) { ... } // vector comparison
u = v f; // scalar multiplication

v W f; // scalar division

You can access the components of a Vector3 using as either using axis names, such as, u.x, u.y,
and u.z, or through indexing, such as u[0], u[l], and u[2].

The Vector3 class also has the following members and static functions.

float x v.magnitude; // length of v

Vector3 u = v.normalize; // unit vector in v’s direction

float a = Vector3.Angle (u, v); // angle (degrees) between u and v
float b Vector3.Dot (u, v); // dot product between u and v

Vector3 ul = Vector3.Project (u, v); // orthog proj of u onto v
Vector3 u2 = Vector3.ProjectOnPlane (u, v); // orthogonal complement

Some of the Vector3 functions apply when the objects are interpreted as points. Let p and ¢
be points declared to be of type Vector3. The function Vector3.Lerp is short for linear inter-
polation. It is essentially a two-point special case of a convex combination. (The combination
parameter is assumed to lie between 0 and 1.)

float b = Vector3.Distance (p, q); // distance between p and q
Vector3 midpoint = Vector3.Lerp(p, q, 0.5f); // convex combination

Instant Hw1 — Ray — circle intersection

* Does the ray defined by p and v intersect the circle
defined by c and r?

C) Length of projection of normal less than radius? ol
K
1) Compute v_perp ’

e vV_perp
2) Normalize v_perp /
3) Length of projection: PCev_perp

N

4) |s PCev_perp<r? %PC

P

Moving to 3D — frame of reference

* Left handed system XYZ A
Y

Moving to 3D — frame of reference

* In Unity — (right, up, forward) $ Y -Transform.up
* Forward — moving forward
Z - Transform.forward

* Up — a sense of gravity

e Right — turn direction

>
X - Transform.right

Applying cross product

e Computing normal vector

* To triangle
* To plane

* Computing local 3D orthonormal
basis

* Point-normal form of plane
* ne(p-v0) = 0 means p is on the plane

Homogeneous coordinates: points

 Step 2: Add origin to sum

» = ooy + g + O

* Now
* point =<x,y,1>
* vector =<x,y,0>

ll

i
-

()

p=3-¢g+2-¢1+1-0

v=2-e+1-€1+0-0

= U = (2.1.0)

Affine transformations

* Key: translation, rotation, scale

rotation translation uniform nonuniform reflection shearing
scaling scaling

Scaling

 Coordinate free - uniform scale s
vV =Ssu

 Coordinate based
< Vy, Uy, Uy > =< SUy, SUy, SU, >

»
|

* Scaling sizes and moves

v

Scaling “

* Coordinate free — uniform scale s
v=>5u A

e Coordinate based R

< Uy Uy, Uy 2 =< SUy, SUy, SUZ > o Scaling sizes and moves
* Homogeneous coordinates — vector
< U, vy,vZ,O > =< Sux,suy,suZ,O >

* Homogeneous coordinates — points (simple scalar * doesn't work)
(v, Uy, Uy, 1) = (su,, SUy, SU, S)

v

Scaling

e Matrix form 2D * Matrix multiplication on the
vt = Mut right with transpose of vector vt
s 0 O
* Works for vectors and points
M;=10 s O P
0 0 1
* Vector * Maintains homogeneous

< Uy, Uy, 0 > =< su,,su,,1*0 > coordinate w

* Point
(qx dy) 1) =<sp,, SPy» 11>

Translation

e Matrix form 2D * Translate point
v = M,u 1 0 t][Px
(gx 4y, 1) =10 1 Ly | | Py
1 0 ¢t,] 0 0 14L1.
M,=(0 1 ¢,
0 0 1. (qx: dy, 1) — (px + tx»py + ty» 1)

First version: coordinate based equations

e Translation byv: qg=p + T(v) Add vector v
 Scale by a: g=ap Multiply by scalar a
e Rotate by t: (gx,qy) = <px*cos(t) — py*sin(t), px*sin(t) + py*cos(t)>

* Repeated scalings and translations:
eg=a(p+T(V))=a((ap+T(V))+T(v))=and soon ...

* Complex

Second version: Homogeneous coordinates

e Unify all transformations in matrix notation

1 0 0 o) (1 0 0 tx sx 0 0 0)

0O 1 0 0 0 1 0 ¢ty 0 sy 0 O

O 0 1 0 0O 0 1 ¢tz 0O 0 sz O

0 0 0 1| L0 0 0 1) 0 0 0 1|

Identity Matrix glTranslatef(tx,ty,tz) glScalef(sx,sy,sz)
(1 0 0 0) (costd o sin@ 0] (cos(d) -sin(d) 0 0)
0 cos(d) -sin(d) 0 0 1 0 0 sin(d) cos(d) 0 0O
0 sin(d) cos(d) 0 -sin(d) 0 cos(d) 0 0 0 1 0
I o 1) Lo o o 1) Lo 0 0 1)

glRotatef(d,1,0,0) glRotatef(d,0,1,0) glRotatef(d,0,0,1)

Defining rotations

* Euler angles
* Angle Axis
* Quaternions

* In Unity
transform.Rotate(x, vy, z))

Roll — around forward direction
Pitch — around right direction
Yaw — around up direction

- Euler angles in order x,y,z

Defining rotations

* Euler angles
* Angle Axis
* Quaternions

* In Unity
transform.Rotate(x, vy, z))

Roll — around forward direction
Pitch — around right direction
Yaw — around up direction

- Euler angles in order x,y,z

Defining rotations ‘L Rotation axis
* Angle Axis

Quaternion.AngleAxis

public static Quaternion AngleAxis(float angle, Vector3 axis);

Description Rotation angle

Creates a rotation which rotates angle degrees around axis.

using UnityEngine;
g yEng >

public class Example : MonoBehaviour

{
void Start()
{
// Sets the transforms rotation to rotate 30 degrees around the y-axis
transform.rotation = Quaternion.AngleAxis(30, Vector3.up);
3

Interpolating transtformations

* Translation. Easy — move v*dt each frame
* Scale. Easy — scale by s*dt each frame
* Interpolating rotations? Harder

* Interpolate Euler angles? Doesn’t work well
* Interpolate Axis Angle? Better
* Interpolate Quaternions? Best Why Unity uses them.

Quaternion.Slerp

public static Quaternion Slerp(Quaternion a, Quaternion b, float t);

Description

Spherically interpolates between a and b by t. The parameter t is clamped to the range [0, 1].

// Interpolates rotation between the rotations "from" and "to"
// (Choose from and to not to be the same as
// the object you attach this script to)

using UnityEngine;
using System.Collections;

public class ExampleClass : MonoBehaviour

{

public Transform from;
public Transform to;

private float timeCount = 0.0f;

void Update()

{
transform.rotation = Quaternion.Slerp(from.rotation, to.rotation, timeCount);
timeCount = timeCount + Time.deltaTime;

Defining rotations ‘L Rotation axis
* Angle Axis

Quaternion.AngleAxis

public static Quaternion AngleAxis(float angle, Vector3 axis);

Description Rotation angle

Creates a rotation which rotates angle degrees around axis.

using UnityEngine;
g yEng >

public class Example : MonoBehaviour

{
void Start()
{
// Sets the transforms rotation to rotate 30 degrees around the y-axis
transform.rotation = Quaternion.AngleAxis(30, Vector3.up);
3

Interpolating transtformations

* Translation. Easy — move v*dt each frame
* Scale. Easy — scale by s*dt each frame
* Interpolating rotations? Harder

* Interpolate Euler angles? Doesn’t work well
* Interpolate Axis Angle? Better
* Interpolate Quaternions? Best Why Unity uses them.

Quaternion.Slerp

public static Quaternion Slerp(Quaternion a, Quaternion b, float t);

Description

Spherically interpolates between a and b by t. The parameter t is clamped to the range [0, 1].

// Interpolates rotation between the rotations "from" and "to"
// (Choose from and to not to be the same as
// the object you attach this script to)

using UnityEngine;
using System.Collections;

public class ExampleClass : MonoBehaviour

{

public Transform from;
public Transform to;

private float timeCount = 0.0f;

void Update()

{
transform.rotation = Quaternion.Slerp(from.rotation, to.rotation, timeCount);
timeCount = timeCount + Time.deltaTime;

Readings

* David Mount's lectures on Geometry and Geometric Programming

