
Geometry and Geometric
Programming III

CMSC425.01 fall 2019

Daniel Brown: guest lecture, later

Administrivia

• Hw 1 out

• Practice Hw 1 out with solutions available

• Project 1a under grading

• Review Project 1b Thursday

Examples

• Orient cylinder sections of 3D
helix

• Rotate moon around Earth
around sun (multiple motions)

Octave Online – working through examples

• Good for doing examples,
verifying equations
• Vectors, Matrices, operations
• Open source version of Matlab
• Can also use app
• Or link Octave fcns externally to

C or other languages

Back to orthogonal projection

2D frame of reference

Big idea – frame of reference
Global or local coordinate system in which to define pts and vectors

• 2D • 3D

Y

X

Z

Understand: work through examples

• Start with obvious example
• u = <1,1>
• v = <1,0>

𝑢" ←
$%&
($%&)

𝑣⃗, 𝑢, ← 𝑢 − 𝑢"

u=<1,1>

v=<1,0>

u2=?

u1=?

Understand: work through examples

• Start with obvious example
• u = <1,1>
• v = <1,0>

• u1 = 1/1*<1,0>
• u2 = <1,1>-<1,0>

= <0,1>

u projects onto <1,0>, <0,1>

𝑢" ←
$%&
($%&)

𝑣⃗, 𝑢, ← 𝑢 − 𝑢"

u=<1,1>

v=<1,0>

u2=?

u1=?

Understand: work through examples

• Work slowly to complex
• u = <0,1>
• v = <1,1>

𝑢" ←
$%&
($%&)

𝑣⃗, 𝑢, ← 𝑢 − 𝑢"

u=<1,1>

v=<1,0>

u2=?

u1=?

Understand: work through examples

• Work slowly to complex
• u = <0,1>
• v = <1,1>

• u1 = (u•v)/(v•v) v
= ½ <1,1> = < ½, ½ >

• u2 = u – u1 = <0,1> - < ½, ½ >
= < - ½ , ½ >

𝑢" ←
$%&
($%&)

𝑣⃗, 𝑢, ← 𝑢 − 𝑢"

v=<1,1>u=<0,1>u2?

Observation: are u1, u2 normal vectors?

• u1 = < ½, ½ >
• u2 = < - ½ , ½ >

𝑢" ←
$%&
($%&)

𝑣⃗, 𝑢, ← 𝑢 − 𝑢"

v=<1,1>u=<0,1>u2?

Observation: are u1, u2 normal vectors?

• u1 = < ½, ½ >
• u2 = < - ½ , ½ >

• |u1| = sqrt(¼ + ¼) = sqrt(½)

u1 = < ½, ½ > /sqrt(1/2)
= <sqrt(2)/2, sqrt(2)/2>

NO

𝑢" ←
$%&
($%&)

𝑣⃗, 𝑢, ← 𝑢 − 𝑢"

v=<1,1>u=<0,1>u2?

Problem: Ray – circle intersection

• Does the ray defined by p and v intersect the circle
defined by c and r?

p
v

rC

p

v rC

True False

Ray – circle intersection

• Does the ray defined by p and v intersect the circle
defined by c and r?

• Solutions?
A) Do equations p(t) = p + tv and (x-xc)2 + (y-yc)2 = r^2 have solution?
B) Is sine of angle * length to circle less than radius?
C) Length of projection of normal less than radius?

Instant Hw1 – Ray – circle intersection

• Does the ray defined by p and v intersect the circle
defined by c and r?

C) Length of projection of normal less than radius?
1) Compute v_perp
2) Normalize v_perp
3) Length of projection: PC•v_perp
4) Is PC•v_perp < r ?

p

v r
CPC

v_perp

Moving to 3D – frame of reference

• Left handed system XYZ
Y

X

Z

Moving to 3D – frame of reference

• In Unity – (right, up, forward)

• Forward – moving forward

• Up – a sense of gravity

• Right – turn direction

Y -Transform.up

X - Transform.right

Z - Transform.forward

Applying cross product

• Computing normal vector
• To triangle
• To plane

• Computing local 3D orthonormal
basis

• Point-normal form of plane
• n•(p-v0) = 0 means p is on the plane

Homogeneous coordinates: points

• Step 2: Add origin to sum

• Now
• point = <x,y,1>
• vector = <x,y,0>

Affine transformations

• Key: translation, rotation, scale

Scaling

• Coordinate free - uniform scale s
𝑣 = 𝑠𝑢

• Coordinate based
< 𝑣1, 𝑣2, 𝑣3 > =< 𝑠𝑢1, 𝑠𝑢2, 𝑠𝑢3 > • Scaling sizes and moves

s = 2

Scaling

• Coordinate free – uniform scale s
𝑣 = 𝑠𝑢

• Coordinate based
< 𝑣1, 𝑣2, 𝑣3 > =< 𝑠𝑢1, 𝑠𝑢2, 𝑠𝑢3 > • Scaling sizes and moves

s = 2

• Homogeneous coordinates – vector
< 𝑣1, 𝑣2, 𝑣3 , 0 > =< 𝑠𝑢1, 𝑠𝑢2, 𝑠𝑢3 , 0 >

• Homogeneous coordinates – points (simple scalar * doesn't work)
(𝑣1, 𝑣2, 𝑣3 , 1) = (𝑠𝑢1, 𝑠𝑢2, 𝑠𝑢3 , 𝑠)

Scaling

• Matrix form 2D
𝑣7 = 𝑀9𝑢7

𝑀9 =
𝑠 0 0
0 𝑠 0
0 0 1

• Vector
< 𝑣1, 𝑣2, 0 > =< 𝑠𝑢1, 𝑠𝑢2, 1 ∗ 0 >
• Point
(𝑞1, 𝑞2, 1) =< 𝑠𝑝1, 𝑠𝑝2, 1 ∗ 1 >

• Matrix multiplication on the
right with transpose of vector vt

• Works for vectors and points

• Maintains homogeneous
coordinate w

Translation

• Matrix form 2D
•

𝑣 = 𝑀7𝑢

𝑀7 =
1 0 𝑡1
0 1 𝑡2
0 0 1

• Translate point

(𝑞1, 𝑞2, 1) =
1 0 𝑡1
0 1 𝑡2
0 0 1

𝑝1
𝑝2
1

(𝑞1, 𝑞2, 1) = 𝑝1 + 𝑡1, 𝑝2 + 𝑡2, 1

First version: coordinate based equations

• Translation by v: q = p + T(v) Add vector v
• Scale by a: q = a p Multiply by scalar a
• Rotate by t: (qx,qy) = <px*cos(t) – py*sin(t), px*sin(t) + py*cos(t)>

• Repeated scalings and translations:

• q = a (p + T(V)) = a ((a p +T(V)) + T(v)) = and so on …

• Complex

Second version: Homogeneous coordinates

• Unify all transformations in matrix notation

Defining rotations
• Euler angles Roll – around forward direction
• Angle Axis Pitch – around right direction
• Quaternions Yaw – around up direction

• In Unity
transform.Rotate(x, y, z)) - Euler angles in order x,y,z

Defining rotations
• Euler angles Roll – around forward direction
• Angle Axis Pitch – around right direction
• Quaternions Yaw – around up direction

• In Unity
transform.Rotate(x, y, z)) - Euler angles in order x,y,z

Defining rotations
• Angle Axis

Interpolating transformations

• Translation. Easy – move v*dt each frame
• Scale. Easy – scale by s*dt each frame

• Interpolating rotations? Harder

• Interpolate Euler angles? Doesn’t work well
• Interpolate Axis Angle? Better
• Interpolate Quaternions? Best Why Unity uses them.

Defining rotations
• Angle Axis

Interpolating transformations

• Translation. Easy – move v*dt each frame
• Scale. Easy – scale by s*dt each frame

• Interpolating rotations? Harder

• Interpolate Euler angles? Doesn’t work well
• Interpolate Axis Angle? Better
• Interpolate Quaternions? Best Why Unity uses them.

Readings

• David Mount's lectures on Geometry and Geometric Programming

