Geometry and Geometric Programming III

CMSC425.01 fall 2019

Daniel Brown: guest lecture, later

Administrivia

- Hw 1 out
- Practice Hw 1 out with solutions available
- Project 1a under grading
- Review Project 1b Thursday

Examples

• Rotate moon around Earth around sun (multiple motions)

 Orient cylinder sections of 3D helix

Octave Online – working through examples

- Good for doing examples, verifying equations
- Vectors, Matrices, operations
- Open source version of Matlab
- Can also use app
- Or link Octave fcns externally to C or other languages

••• <	>	ק
Shopping V	Research V Hobbies V News V Electronics V Educational V Apple V Import to Mendeley	>>
	Octave Online · Cloud IDE compatible with MATLAB	+
b Octa	IVE Online MENU	Ξ
Vars	م ا	r
ans	te	-
1x2] c 1x2] p		
1x2] v		
	<pre>octave:2> c = [1,2] c =</pre>	
	1 2	
	<pre>octave:3> p = [0,0] p =</pre>	
	0 0	
	<pre>octave:4> v=[1,1] v =</pre>	
	1 1	
	<pre>octave:5> dot(v, c-p) ans = 3</pre>	
	»	

Back to orthogonal projection

Orthogonal projection: Given a vector \vec{u} and a nonzero vector \vec{v} , it is often convenient to decompose \vec{u} into the sum of two vectors $\vec{u} = \vec{u}_1 + \vec{u}_2$, such that \vec{u}_1 is parallel to \vec{v} and \vec{u}_2 is orthogonal to \vec{v} .

$$\vec{u}_1 \leftarrow \frac{(\vec{u} \cdot \vec{v})}{(\vec{v} \cdot \vec{v})} \vec{v}, \qquad \vec{u}_2 \leftarrow \vec{u} - \vec{u}_1.$$

2D frame of reference

Big idea – frame of reference

Global or local coordinate system in which to define pts and vectors

- Start with obvious example
- u = <1,1>
- v = <1,0>

- Work slowly to complex
- u = <0,1>
- v = <1,1>

- Work slowly to complex
- u = <0,1>
- v = <1,1>
- u1 = (u•v)/(v•v) v = ½ <1,1> = < ½, ½ >
- $u^2 = u u^2 = \langle 0, 1 \rangle \langle \frac{1}{2}, \frac{1}{2} \rangle$ = $\langle -\frac{1}{2}, \frac{1}{2} \rangle$

 $\vec{u}_1 \leftarrow \frac{(\vec{u} \cdot \vec{v})}{(\vec{u} \cdot \vec{v})} \vec{v}, \qquad \vec{u}_2 \leftarrow \vec{u} - \vec{u}_1$

Observation: are u1, u2 normal vectors?

- u1 = < ½, ½ >
- $u_2 = < -\frac{1}{2}, \frac{1}{2} >$

Observation: are u1, u2 normal vectors?

- u1 = < ½, ½ >
- $u_2 = < -\frac{1}{2}, \frac{1}{2} >$
- |u1| = sqrt(½ + ½) = sqrt(½)

NO

Problem: Ray – circle intersection

 Does the ray defined by p and v intersect the circle defined by c and r?

Ray – circle intersection

 Does the ray defined by p and v intersect the circle defined by c and r?

- Solutions?
- A) Do equations p(t) = p + tv and $(x-xc)^2 + (y-yc)^2 = r^2$ have solution?
- B) Is sine of angle * length to circle less than radius?
- C) Length of projection of normal less than radius?

Given vectors u, v, and w, all of type Vector3, the following operators are supported:

```
u = v + w; // vector addition
u = v - w; // vector subtraction
if (u == v || u != w) { ... } // vector comparison
u = v * 2.0f; // scalar multiplication
v = w / 2.0f; // scalar division
```

You can access the components of a Vector3 using as either using axis names, such as, u.x, u.y, and u.z, or through indexing, such as u[0], u[1], and u[2].

The Vector3 class also has the following members and static functions.

```
float x = v.magnitude; // length of v
Vector3 u = v.normalize; // unit vector in v's direction
float a = Vector3.Angle (u, v); // angle (degrees) between u and v
float b = Vector3.Dot (u, v); // dot product between u and v
Vector3 u1 = Vector3.Project (u, v); // orthog proj of u onto v
Vector3 u2 = Vector3.ProjectOnPlane (u, v); // orthogonal complement
```

Some of the Vector3 functions apply when the objects are interpreted as points. Let p and q be points declared to be of type Vector3. The function Vector3.Lerp is short for *linear interpolation*. It is essentially a two-point special case of a convex combination. (The combination parameter is assumed to lie between 0 and 1.)

```
float b = Vector3.Distance (p, q); // distance between p and q
Vector3 midpoint = Vector3.Lerp(p, q, 0.5f); // convex combination
```

Instant Hw1 – Ray – circle intersection

р

- Does the ray defined by p and v intersect the circle defined by c and r?
- C) Length of projection of normal less than radius?
- 1) Compute v_perp
- 2) Normalize v_perp
- 3) Length of projection: PC•v_perp
- 4) Is $PC \cdot v_perp < r$?

Moving to 3D – frame of reference

• Left handed system XYZ

Moving to 3D – frame of reference

- In Unity (right, up, forward)
- Forward moving forward
- Up a sense of gravity
- Right turn direction

Applying cross product

- Computing normal vector
 - To triangle
 - To plane
- Computing local 3D orthonormal basis

- Point-normal form of plane
 - n•(p-v0) = 0 means p is on the plane

Homogeneous coordinates: points

• Step 2: Add origin to sum

$$p = \alpha_0 \vec{u}_0 + \alpha_1 \vec{u}_1 + O$$

Affine transformations

• Key: translation, rotation, scale

Scaling

• Coordinate free - uniform scale s

v = su

Coordinate based

 $< v_x, v_y, v_z > = < su_x, su_y, su_z >$

• Scaling sizes and moves

Scaling

• Coordinate free – uniform scale s

v = su

• Coordinate based $< v_x, v_y, v_z > = < su_x, su_y, su_z >$

- Scaling sizes and moves
- Homogeneous coordinates vector
 $< v_x$, v_y , v_z , $0> = < su_x$, su_y , su_z , 0>
- Homogeneous coordinates points (simple scalar * doesn't work) $(v_x, v_y, v_z, 1) = (su_x, su_y, su_z, s)$

Scaling

• Matrix form 2D $v^t = M_s u^t$

$$M_s = \begin{bmatrix} s & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• Vector

 $< v_x, v_y, 0 > = < su_x, su_y, 1 * 0 >$ coordinate w

• Point

$$(q_x, q_y, 1) = \langle sp_x, sp_y, 1 * 1 \rangle$$

- Matrix multiplication on the right with transpose of vector v^t
- Works for vectors and points
- Maintains homogeneous
 coordinate w

Translation

lacksquare

- Matrix form 2D
 Translate point
 - $v = M_t u \qquad (q_x, q_y, 1) = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix}$ $M_t = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \qquad (q_x, q_y, 1) = (p_x + t_x, p_y + t_y, 1)$

First version: coordinate based equations

- Translation by v: q = p + T(v)
 Add vector v
- Scale by a: q = a p Multiply by scalar a
- Rotate by t: (qx,qy) = <px*cos(t) py*sin(t), px*sin(t) + py*cos(t)>

- Repeated scalings and translations:
- q = a (p + T(V)) = a ((a p +T(V)) + T(v)) = and so on ...
- Complex

Second version: Homogeneous coordinates

• Unify all transformations in matrix notation

(1 0	0	0			(1	0	0	tx				sx	0	0	0		
	0 1	0	0			0	1	0	ty				0	sy	0	0		
	0 0	1	0			0	0	1	tz				0	0	sz	0		
	0 0	0	1	J		(o	0	0	1)				0	0	0	1	J	
Identity Matrix						glTranslatef(tx,ty,tz)						glScalef(sx,sy,sz)						
/				``	,	(`		/						
1	0	0		0		cos(d)	0	sin(d)	0		c	os(d)	-sin	(d)	0	0	
0	cos(d)	-sin(d)	0		0	1	0		0		si	n(d)	cos	(d)	0	0	
0	sin(d)	cos(d)	0		-sin(d)	0 (cos	(d)	0			0	0)	1	0	
0	0	0		1)		0	0	0		1)			0	0)	0	1	
glRotatef(d,1,0,0)						glRotatef(d,0,1,0)						glRotatef(d,0,0,1						

- Euler angles
- Angle Axis
- Quaternions

Roll – around forward direction Pitch – around right direction Yaw – around up direction

• In Unity

transform.Rotate(x, y, z))

- Euler angles in order x,y,z

- Euler angles
- Angle Axis
- Quaternions

Roll – around forward direction Pitch – around right direction Yaw – around up direction

• In Unity

transform.Rotate(x, y, z))

- Euler angles in order x,y,z

• Angle Axis

Quaternion.AngleAxis

public static <u>Quaternion</u> AngleAxis(float angle, <u>Vector3</u> axis);

Description

Creates a rotation which rotates angle degrees around axis.

```
using UnityEngine;
public class Example : MonoBehaviour
{
    void Start()
    {
        // Sets the transforms rotation to rotate 30 degrees around the y-axis
        transform.rotation = Quaternion.AngleAxis(30, Vector3.up);
    }
}
```


Interpolating transformations

- Translation. Easy move v*dt each frame
- Scale. Easy scale by s*dt each frame
- Interpolating rotations? Harder
 - Interpolate Euler angles? Doesn't work well
 - Interpolate Axis Angle? Better
 - Interpolate Quaternions? Best

Why Unity uses them.

Quaternion.Slerp

public static <u>Quaternion</u> **Slerp**(<u>Quaternion</u> **a**, <u>Quaternion</u> **b**, float **t**);

Description

Spherically interpolates between a and b by t. The parameter t is clamped to the range [0, 1].

```
// Interpolates rotation between the rotations "from" and "to"
// (Choose from and to not to be the same as
// the object you attach this script to)
using UnityEngine;
using System.Collections;
public class ExampleClass : MonoBehaviour
{
    public Transform from;
    public <u>Transform</u> to;
    private float timeCount = 0.0f;
    void <u>Update()</u>
    {
        transform.rotation = <u>Quaternion.Slerp(from.rotation, to.rotation, timeCount);</u>
        timeCount = timeCount + <u>Time.deltaTime;</u>
}
```

• Angle Axis

Quaternion.AngleAxis

public static <u>Quaternion</u> AngleAxis(float angle, <u>Vector3</u> axis);

Description

Creates a rotation which rotates angle degrees around axis.

```
using UnityEngine;
public class Example : MonoBehaviour
{
    void Start()
    {
        // Sets the transforms rotation to rotate 30 degrees around the y-axis
        transform.rotation = Quaternion.AngleAxis(30, Vector3.up);
    }
}
```


Interpolating transformations

- Translation. Easy move v*dt each frame
- Scale. Easy scale by s*dt each frame
- Interpolating rotations? Harder
 - Interpolate Euler angles? Doesn't work well
 - Interpolate Axis Angle? Better
 - Interpolate Quaternions? Best

Why Unity uses them.

Quaternion.Slerp

public static <u>Quaternion</u> **Slerp**(<u>Quaternion</u> **a**, <u>Quaternion</u> **b**, float **t**);

Description

Spherically interpolates between a and b by t. The parameter t is clamped to the range [0, 1].

```
// Interpolates rotation between the rotations "from" and "to"
// (Choose from and to not to be the same as
// the object you attach this script to)
using UnityEngine;
using System.Collections;
public class ExampleClass : MonoBehaviour
{
    public <u>Transform</u> from;
    public <u>Transform</u> to;
    private float timeCount = 0.0f;
    void <u>Update()</u>
     {
        transform.rotation = <u>Quaternion.Slerp(from.rotation, to.rotation, timeCount);</u>
        timeCount = timeCount + <u>Time.deltaTime;</u>
    3
}
```

Readings

• David Mount's lectures on Geometry and Geometric Programming