Geometry and Geometric Programming III

CMSC425.01 fall 2019

Daniel Brown: guest lecture, later

Administrivia

- Hw 1 out
- Practice Hw 1 out with solutions available
- Project 1a under grading
- Review Project 1b Thursday

Examples

- Rotate moon around Earth around sun (multiple motions)
- Orient cylinder sections of 3D helix

Octave Online - working through examples

- Good for doing examples, verifying equations
- Vectors, Matrices, operations
- Open source version of Matlab
- Can also use app
- Or link Octave fcns externally to C or other languages

Do OctaveOnline MENU 三

Back to orthogonal projection

Orthogonal projection: Given a vector \vec{u} and a nonzero vector \vec{v}, it is often convenient to decompose \vec{u} into the sum of two vectors $\vec{u}=\vec{u}_{1}+\vec{u}_{2}$, such that \vec{u}_{1} is parallel to \vec{v} and \vec{u}_{2} is orthogonal to \vec{v}.

$$
\vec{u}_{1} \leftarrow \frac{(\vec{u} \cdot \vec{v})}{(\vec{v} \cdot \vec{v})} \vec{v}, \quad \quad \vec{u}_{2} \leftarrow \vec{u}-\vec{u}_{1}
$$

2D frame of reference

Big idea - frame of reference

Global or local coordinate system in which to define pts and vectors

- 2D
-3D

Understand: work through examples

- Start with obvious example
- $u=\langle 1,1>$

$$
\vec{u}_{1} \leftarrow \frac{(\vec{u} \cdot \vec{v})}{(\vec{u} \cdot \vec{v})} \vec{v}, \quad \vec{u}_{2} \leftarrow \vec{u}-\vec{u}_{1}
$$

- $v=\langle 1,0\rangle$

Understand: work through examples

- Start with obvious example
- $u=\langle 1,1\rangle$

$$
\vec{u}_{1} \leftarrow \frac{(\vec{u} \cdot \vec{v})}{(\vec{u} \cdot \vec{v})} \vec{v}, \quad \vec{u}_{2} \leftarrow \vec{u}-\vec{u}_{1}
$$

- $v=\langle 1,0\rangle$
- $u 1=1 / 1^{*}<1,0>$
- u2 $=\langle 1,1>-<1,0>$

$$
=<0,1\rangle
$$

u projects onto <1,0>, <0,1> u1=?

Understand: work through examples

- Work slowly to complex
- $u=\langle 0,1>$

$$
\vec{u}_{1} \leftarrow \frac{(\vec{u} \cdot \vec{v})}{(\vec{u} \cdot \vec{v})} \vec{v}, \quad \vec{u}_{2} \leftarrow \vec{u}-\vec{u}_{1}
$$

- $v=\langle 1,1\rangle$

Understand: work through examples

- Work slowly to complex
- $u=<0,1>$
- $v=\langle 1,1>$
- $u 1=(u \cdot v) /(v \bullet v) v$

$$
=1 / 2\langle 1,1\rangle=\langle 1 / 2,1 / 2\rangle
$$

- $u 2=u-u 1=\langle 0,1\rangle-\langle 1 / 2,1 / 2\rangle$ $=\langle-1 / 2,1 / 2\rangle$

$$
\vec{u}_{1} \leftarrow \frac{(\vec{u} \cdot \vec{v})}{(\vec{u} \cdot \vec{v})} \vec{v}, \quad \vec{u}_{2} \leftarrow \vec{u}-\vec{u}_{1}
$$

Observation: are u1, u2 normal vectors?

- $u 1=\langle 1 / 2,1 / 2\rangle$
- $u 2=\langle-1 / 2,1 / 2\rangle$

$$
\vec{u}_{1} \leftarrow \frac{(\vec{u} \cdot \vec{v})}{(\vec{u} \cdot \vec{v})} \vec{v}, \quad \vec{u}_{2} \leftarrow \vec{u}-\vec{u}_{1}
$$

Observation: are u1, u2 normal vectors?

- $u 1=\langle 1 / 2,1 / 2\rangle$
- $u 2=\langle-1 / 2,1 / 2\rangle$
- $|u 1|=\operatorname{sqrt}(1 / 4+1 / 4)=\operatorname{sqrt}(1 / 2)$

$$
\vec{u}_{1} \leftarrow \frac{(\vec{u} \cdot \vec{v})}{(\vec{u} \cdot \vec{v})} \vec{v}, \quad \vec{u}_{2} \leftarrow \vec{u}-\vec{u}_{1}
$$

$$
\begin{aligned}
\mathbf{u 1} & =\langle 1 / 2,1 / 2\rangle / \operatorname{sqrt}(1 / 2) \\
& =<\operatorname{sqrt}(2) / 2, \operatorname{sqrt}(2) / 2\rangle
\end{aligned}
$$

NO

Problem: Ray - circle intersection

- Does the ray defined by \mathbf{p} and \mathbf{v} intersect the circle defined by \mathbf{c} and \mathbf{r} ?

Ray - circle intersection

- Does the ray defined by \mathbf{p} and \mathbf{v} intersect the circle defined by \mathbf{c} and \mathbf{r} ?
- Solutions?
A) Do equations $p(t)=p+t v$ and $(x-x c)^{2}+(y-y c)^{2}=r^{\wedge} 2$ have solution?
B) Is sine of angle * length to circle less than radius?
C) Length of projection of normal less than radius?

Given vectors u, v, and w, all of type Vector3, the following operators are supported:

```
u = v + w; // vector addition
u = v - w; // vector subtraction
if (u == v || u != w) { ... } // vector comparison
u = v * 2.0f; // scalar multiplication
v = w / 2.Of; // scalar division
```

You can access the components of a Vector3 using as either using axis names, such as, u.x, u.y, and $u . z$, or through indexing, such as $u[0], u[1]$, and $u[2]$.
The Vector3 class also has the following members and static functions.

```
float x = v.magnitude; // length of v
Vector3 u = v.normalize; // unit vector in v's direction
float a = Vector3.Angle (u, v); // angle (degrees) between u and v
float b = Vector3.Dot (u, v); // dot product between u and v
Vector3 u1 = Vector3.Project (u, v); // orthog proj of u onto v
Vector3 u2 = Vector3.ProjectOnPlane (u, v); // orthogonal complement
```

Some of the Vector3 functions apply when the objects are interpreted as points. Let p and q be points declared to be of type Vector3. The function Vector3.Lerp is short for linear interpolation. It is essentially a two-point special case of a convex combination. (The combination parameter is assumed to lie between 0 and 1.)

```
float b = Vector3.Distance (p, q); // distance between p and q
Vector3 midpoint = Vector3.Lerp(p, q, 0.5f); // convex combination
```


Instant Hw1 - Ray - circle intersection

- Does the ray defined by \mathbf{p} and \mathbf{v} intersect the circle defined by \mathbf{c} and \mathbf{r} ?
C) Length of projection of normal less than radius?

1) Compute v_perp
2) Normalize v_perp
3) Length of projection: PC•v_perp
4) Is PC•v_perp < r ?

Moving to 3D - frame of reference

- Left handed system XYZ

Moving to 3D - frame of reference

- In Unity - (right, up, forward)
- Forward - moving forward
- Up - a sense of gravity
- Right - turn direction

Applying cross product

- Computing normal vector
- To triangle
- To plane
- Computing local 3D orthonormal basis

- Point-normal form of plane
- $n \bullet(p-v 0)=0$ means p is on the plane

Homogeneous coordinates: points

- Step 2: Add origin to sum

$$
p=\alpha_{0} \vec{u}_{0}+\alpha_{1} \vec{u}_{1}+O
$$

- Now
- point $=\langle x, y, 1\rangle$
- vector $=\langle x, y, 0\rangle$

$$
\begin{aligned}
& p=3 \cdot \vec{e}_{0}+2 \cdot \vec{e}_{1}+1 \cdot O \\
& \quad \Rightarrow p_{[F]}=(3,2,1) \\
& v=2 \cdot \vec{e}_{0}+1 \cdot \vec{e}_{1}+0 \cdot O \\
& \quad \Rightarrow v_{[F]}=(2,1,0)
\end{aligned}
$$

Affine transformations

- Key: translation, rotation, scale

rotation

translation

uniform scaling

nonuniform scaling

reflection
shearing

Scaling

- Coordinate free - uniform scale s

$$
v=s u
$$

- Coordinate based
$<v_{x}, v_{y}, v_{z}>=<s u_{x}, s u_{y}, s u_{z}>$

- Scaling sizes and moves

Scaling

- Coordinate free - uniform scale s

$$
v=s u
$$

- Coordinate based
$<v_{x}, v_{y}, v_{z}>=<s u_{x}, s u_{y}, s u_{z}>$

- Scaling sizes and moves
- Homogeneous coordinates - vector

$$
<v_{x}, v_{y}, v_{z}, 0>=<s u_{x}, s u_{y}, s u_{z}, 0>
$$

- Homogeneous coordinates - points (simple scalar * doesn't work)

$$
\left(v_{x}, v_{y}, v_{z}, 1\right)=\left(s u_{x}, s u_{y}, s u_{z}, s\right)
$$

Scaling

- Matrix form 2D

$$
v^{t}=M_{s} u^{t}
$$

$$
M_{s}=\left[\begin{array}{lll}
s & 0 & 0 \\
0 & s & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Matrix multiplication on the right with transpose of vector v^{t}
- Works for vectors and points
- Maintains homogeneous
$<v_{x}, v_{y}, 0>=<s u_{x}, s u_{y}, 1 * 0>$ coordinate w
- Point

$$
\left(q_{x}, q_{y}, 1\right)=<s p_{x}, s p_{y}, 1 * 1>
$$

Translation

- Matrix form 2D

$$
v=M_{t} u
$$

$$
M_{t}=\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]
$$

- Translate point

$$
\begin{gathered}
\left(q_{x}, q_{y}, 1\right)=\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
p_{x} \\
p_{y} \\
1
\end{array}\right] \\
\left(q_{x}, q_{y}, 1\right)=\left(p_{x}+t_{x}, p_{y}+t_{y}, 1\right)
\end{gathered}
$$

First version: coordinate based equations

- Translation by v:

- Scale by a:
- Repeated scalings and translations:
- $q=a(p+T(V))=a((a p+T(V))+T(v))=$ and so on ...
- Complex

Second version: Homogeneous coordinates

- Unify all transformations in matrix notation

Defining rotations

- Euler angles
- Angle Axis
- Quaternions

Roll - around forward direction
Pitch - around right direction
Yaw - around up direction

- In Unity
transform.Rotate ($\mathrm{x}, \mathrm{y}, \mathrm{z}$))
- Euler angles in order x, y, z

Pitch

Roll

Yaw

Unity

Defining rotations

- Euler angles
- Angle Axis
- Quaternions

Roll - around forward direction
Pitch - around right direction
Yaw - around up direction

- In Unity
transform.Rotate ($\mathrm{x}, \mathrm{y}, \mathrm{z}$))
- Euler angles in order x, y, z

Pitch

Roll

Yaw

Unity

Defining rotations

- Angle Axis

Quaternion.AngleAxis

public static Quaternion AngleAxis(float angle, $\underline{\text { Vector3 }} \mathbf{~ a x i s) ; ~}$

Description


```
using UnityEngine;
public class Example : MonoBehaviour
{
    void Start()
    {
                // Sets the transforms rotation to rotate 30 degrees around the y-axis
        transform.rotation = Quaternion.AngleAxis(30, Vector3.up);
    }
}
```


Interpolating transformations

- Translation.
- Scale.

Easy - move v*dt each frame
Easy - scale by s*dt each frame

- Interpolating rotations? Harder
- Interpolate Euler angles? Doesn't work well
- Interpolate Axis Angle? Better
- Interpolate Quaternions? Best

Why Unity uses them.

Quaternion.Slerp

public static Quaternion Slerp(Quaternion \mathbf{a}, Quaternion b, float t);

Description

Spherically interpolates between a and b by t. The parameter t is clamped to the range $[0,1]$

```
// Interpolates rotation between the rotations "from" and "to"
// (Choose from and to not to be the same as
// the object you attach this script to)
using UnityEngine;
using System.Collections;
public class ExampleClass : MonoBehaviour
{
    public Transform from;
    public Transform to;
    private float timeCount = 0.0f;
    void Update()
    {
        transform.rotation = Quaternion.Slerp(from.rotation, to.rotation, timeCount);
        timeCount = timeCount + Time.deltaTime;
    }
}
```


Defining rotations

- Angle Axis

Quaternion.AngleAxis

public static Quaternion AngleAxis(float angle, $\underline{\text { Vector3 }} \mathbf{~ a x i s) ; ~}$

Description


```
using UnityEngine;
public class Example : MonoBehaviour
{
    void Start()
    {
                // Sets the transforms rotation to rotate 30 degrees around the y-axis
        transform.rotation = Quaternion.AngleAxis(30, Vector3.up);
    }
}
```


Interpolating transformations

- Translation.
- Scale.

Easy - move v*dt each frame
Easy - scale by s*dt each frame

- Interpolating rotations? Harder
- Interpolate Euler angles? Doesn't work well
- Interpolate Axis Angle? Better
- Interpolate Quaternions? Best

Why Unity uses them.

Quaternion.Slerp

public static Quaternion Slerp(Quaternion a, Quaternion b, float t);

Description

Spherically interpolates between a and b by t . The parameter t is clamped to the range $[0,1]$.

```
// Interpolates rotation between the rotations "from" and "to"
// (Choose from and to not to be the same as
// the object you attach this script to)
using UnityEngine;
using System.Collections;
public class ExampleClass : MonoBehaviour
{
    public Transform from;
    public Transform to;
    private float timeCount = 0.0f;
    void Update()
    {
        transform.rotation = Quaternion.Slerp(from.rotation, to.rotation, timeCount);
        timeCount = timeCount + Time.deltaTime;
    }
}
```


Readings

- David Mount's lectures on Geometry and Geometric Programming

