CMSC425 Fall 2019

Homework 1: Geometric exercises

Solutions

Part a. Warm up problems

1. Given the points $p 1=(-3,4)$ and $p 2=(20,15)$, give the point-vector from of the ray originating at $p 1$ and going through $p 2$. For what value of t is the point $(10.8,10.6)$ on the line?

Point vector form: $\quad p(t)=p 1+t(p 2-p 1)=p 1+t v=(-3,4)+t<23,11\rangle$
To solve this you set $p(t)=(-3,4)+t<23,11\rangle=(10.8,10.6)$ and solve for t. You can do that in x or y since you have two equations and one unknown.

When $t=0.6$ we have $p(0.6)=(-3,4)+(0.6) *<23,11\rangle=(10.8,10.6)$
2. How far is $C=(5,5)$ from the line through $A=(2,5)$ and $B=(4,-1)$?

The point vector form is $p(t)=A+t(B-A)=(2,5)+t<2,-6>$
The perp vector is $v^{\perp}=<6,2>$, normalized this is $\hat{v}^{\perp}=\frac{\langle 6,2>}{\sqrt{40}}$
(We normalize because we want a distance).
Distance is $d=v^{\perp} \cdot(C-A)=\frac{<6,2>}{\sqrt{40}} \cdot(3,0)=2.85$
3. Given the two vectors $a=<5,4>$ and $b=<3,4>$, give $u 1$ and $u 2$ in the orthogonal projection of a onto b .

We have that $u 1=\frac{a \cdot b}{b \cdot b} b=\frac{\langle 5,4>\ll 3,4\rangle}{\langle 3,4><3,4\rangle}<3,4>=\frac{31}{25}<3,4>$
And that $u 2=b-u 1=<3,4>-\frac{31}{25}<3,4>=<-0.72000,-0.96000>$
4. Give the angle between the two vectors $u=<-1,1,0>$ and $v=<-1,0,1>$.

In this case we do have to normalize the two vectors, either before or as part of the calculation.

$$
\begin{aligned}
& \cos (\theta)=\frac{\vec{v} \cdot \vec{u}}{|\vec{v}||\vec{u}|}=\frac{\langle-1,1,0\rangle<-1,0,1\rangle}{|\langle-1,1,0\rangle||<-1,0,1\rangle \mid}=0.5000 \\
& \theta=\operatorname{acos}(0.5000)=1.0472 \mathrm{rad} \text { or } 60 \text { degrees }
\end{aligned}
$$

5. Given the three points $P 1=(1,1,1), P 2=(1,2,1), P 3=(3,0,4)$, give a convex combination of the points in the triangle /* any CC is ok */. *** ADDED BUT NOT REQUIRED. What convex combination gives the center?

The question is simple - any coefficients will work here.
Convex combination: $\quad 1 / 2 * P 1+1 / 4 * P 2+1 / 4 * P 3 \quad$ Any three that add to 1 work.

The center would be: $\quad 1 / 3^{*}$ P1 + 1/3*P2 + 1/3*P3
6. Starting with the points problem (5), compute the distance of the point $P 4=(0,0,0)$ to the plane.

The plan is defined by a normal and a point.

The normal can be computed by the cross product of two vectors. Let
$v=P 2-P 1=<0,1,0>$ and $u=P 3-P 1=<2,-1,3>$ then $n=u x v=\langle 3,0,-2>$
Normalized we have $\mathrm{n}^{\prime}=\langle 0.83205,0.00000,-0.55470>$

A vector from the plane to the point P 4 is $\mathrm{w}=\mathrm{P} 4-\mathrm{P} 1=\langle-1,-1,-1>$

The distance to the plane is dist $=\left|\mathrm{w} \bullet \mathrm{n}^{\prime}\right|=0.27735$
7. For a vector $v=\langle x, y\rangle$, the 2D perp vector v^{\perp} can be defined as vperp $=\langle-y, x\rangle$. Will this vector always be 90 degrees counterclockwise from v ?

Yes. The easiest argument is by quadrant. Given $v=\left\langle x, y>\right.$ and $v^{\perp}=\langle-y, x\rangle$
Set $v=<1,1>$ and $v^{\perp}=<-1,1>$. Yes.
Set $v=\left\langle-1,1>\right.$ and $\left.v^{\perp}=<-y, x\right\rangle$. Yes.
Set $v=<-1,-1>$ and $v^{\perp}=<1,-1>$. Yes.
Set $v=<1,-1>$ and $v^{\perp}=<1,1>$. Yes.
This is not a proof, just a demonstration that quadrants flip as assumed.

A better solution given by students notes that the perp vector is defined by a 90 deg rotation:

$$
M * p=\left[\begin{array}{cc}
\cos 90 & -\sin 90 \\
\sin 90 & \cos 90
\end{array}\right] *\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] *\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-y \\
x
\end{array}\right]
$$

Part b. Application

1. Cylinder collider. Assume you have a cylinder collider defined by 3D points \mathbf{p} and $\mathbf{p p}$, that give the central axis of the cylinder, and R, which is the radius of the cylinder. The points define a unit vector u as shown on the middle diagram. p, pp and R are enough to define the cylinder.

Now assume you have a point $\boldsymbol{q}=\left(q_{x}, q_{y}, q_{z}\right)$, somewhere in 3D space (here \boldsymbol{q} is shown outside the cylinder but could be inside.) We want to compute whether \boldsymbol{q} is inside or outside the cylinder as a boolean flag. Show how to do this in mathematical notation (not code).
(a) Given the points P1 and q, show how to compute the coordinates of the vector $v=\left\langle v_{x}, v_{y}, v_{z}\right\rangle$ directed from p to q .
Solution: $\quad v=q-p=\left(q_{x}, q_{y}, q_{z}\right)-\left(p_{x}, p_{y}, p_{z}\right)$
(b) Given (a), show how to decompose \boldsymbol{v} as the sum of two vectors \boldsymbol{v}^{\prime} and $\boldsymbol{v}^{\prime \prime}$ such that \boldsymbol{v}^{\prime} is parallel to \boldsymbol{u} and $\boldsymbol{v}^{\prime \prime}$ is perpendicular to \boldsymbol{u}.
Solution:

$$
\boldsymbol{v}^{\prime}=\frac{v \bullet u}{u \bullet u} u \quad \text { and } \quad \boldsymbol{v}^{\prime \prime}=v-v^{\prime}
$$

(c) Given your answer to (b), show how to compute the lengths of \boldsymbol{v}^{\prime} and $\boldsymbol{v}^{\prime \prime}$

Solution:

$$
\left|\boldsymbol{v}^{\prime}\right|=\left|\frac{v \cdot u}{u \cdot u} u\right| \quad \text { and } \quad\left|\boldsymbol{v}^{\prime \prime}\right|=\left|v-v^{\prime}\right|
$$

We also need the vector \mathbf{u} which we'll define as $\boldsymbol{u}=p-p p$
2. Cylinder collider in code. Assuming your answer to (1) above is correct, convert the mathematical equations into a Unity C\# method that takes p, pp, R and q, and returns a Boolean true if q is in the cylinder, and false if not.

A point is in the cylinder under two conditions.
a) The point is within a distance R from the line between p and q.
b) The projection of the point onto the line is between the endpoints p and p.

Pseudocode solution:

1. Compute $v=p-q$
2. Compute v^{\prime} and $v^{\prime \prime}$ as in problem (c)
3. Compute distance d from q to line is the magnitude of $v^{\prime \prime}$ or $\left|v-v^{\prime}\right|$
4. If $d>R$, reject as not in cylinder
5. Otherwise find projection of q onto line

5a. Let length $=$ distance from p to $p p=|p-p p|$
$5 b$. Let $s=s i g n$ of $u \bullet v$
$5 c$. If $s>0$, reject as the projection of q is past p
5 d . If $\mathrm{s}<=0$, then
6a. If $\left|\boldsymbol{v}^{\prime}\right| \leq$ length then accept since q projects between p and $p p$
6 b . If $\left|\boldsymbol{v}^{\prime}\right|>$ length reject as q projects on the line past pp.
b) Give a Unity method using Vector3 that implements a solution.

```
int inCylinder(float radius, Vector3 p, Vector3 pp, Vector3 q) {
    // Returns 1 if point in cylinder, O otherwise
    int result = 0:
    Vector3 u = p - pp;
    Vector3 v = q - p;
    Vector3 vprime = Vector3.dot(v,u)/Vector3.dot(u,u)*u;
    Vector3 vdblprime = v - vprime;
    float dist = Vector3.magnitude(vdblprime);;
    float length = Vector3.mangitude(u);
    if (dist > R)
        result = 0; // Reject
    else {
            float length = Vector3.magnitude(u);
            float sign = (Vector3.dot(u,v) > 0): 1 else -1;
            if (sign > 0)
                result = 0; //Reject
            else if (length > Vector3.magnitude(vprime))
                    result = 0; //Reject
            else
                    result = 1; // Accept
            }
        return result;
        }
```

