
CMSC425 Fall 2019 
Homework 1: Geometric exercises 
Solutions 
 
Part a. Warm up problems 
1. Given the points p1=(-3,4) and p2=(20,15),  give the point-vector from of the ray originating 
at p1 and going through p2. For what value of t is the point (10.8,10.6) on the line? 
 
Point vector form:  𝑝(𝑡) = 𝑝1 + 𝑡 (𝑝2 − 𝑝1) = 𝑝1 + 𝑡 𝑣 = (−3,4) + 𝑡 < 23,11 > 
 
 To solve this you set 𝑝(𝑡) = (−3,4) + 𝑡 < 23,11 > = (10.8,10.6) and solve for t.  

You can do that in x or y since you have two equations and one unknown. 
 

When 𝑡 = 0.6 we have 𝑝(0.6) = (−3,4) + (0.6) ∗ < 23,11 > = (10.8,10.6) 
 
 
2. How far is C=(5,5) from the line through A=(2,5) and B=(4,-1)? 
 
 The point vector form is 𝑝(𝑡) = 𝐴 + 𝑡 (𝐵 − 𝐴) = (2,5) + 𝑡 < 2,−6 >   
  

 The perp vector is 𝑣⊥ =< 6,2 >, normalized this is �̂�⊥ =
<6,2>

√40
 

 (We normalize because we want a distance). 
 

 Distance is 𝑑 = 𝑣⊥ ∙ (𝐶 − 𝐴) =
<6,2>

√40
∙ (3,0) = 2.85 

 
3. Given the two vectors a=<5,4> and b=<3,4>, give u1 and u2 in the orthogonal projection of a 
onto b.  
 

 We have that 𝑢1 =
𝑎∙𝑏

𝑏∙𝑏
𝑏 =

<5,4>∙<3,4>

<3,4>∙<3,4>
< 3,4 > =

31

25
< 3,4 >  

 

 And that 𝑢2 = 𝑏 − 𝑢1 =< 3,4 > − 
31

25
< 3,4 > =< −0.72000 ,−0.96000 >  

 
 
4. Give the angle between the two vectors u=<-1,1,0> and v=<-1,0,1>.  
 
In this case we do have to normalize the two vectors, either before or as part of the 
 calculation. 
 

 cos(𝜃) =
�⃗� ∙�⃗⃗� 

|�⃗� ||�⃗⃗� |
=

<−1,1,0>∙<−1,0,1> 

 |<−1,1,0> ||<−1,0,1>|
= 0.5000 

 
 θ = acos(0.5000) = 1.0472 𝑟𝑎𝑑  or 60 degrees 



 
5. Given the three points P1=(1,1,1), P2=(1,2,1), P3=(3,0,4), give a convex combination of the 
points in the triangle /* any CC is ok */. *** ADDED BUT NOT REQUIRED. What convex 
combination gives the center?  
 
 The question is simple – any coefficients will work here.  
 
 Convex combination:  ½*P1 + ¼*P2 + ¼ *P3   Any three that add to 1 work. 
 
 The center would be:  1/3*P1 + 1/3*P2 + 1/3*P3 
 
 
6. Starting with the points problem (5), compute the distance of the point P4=(0,0,0) to the 
plane. 
 
 The plan is defined by a normal and a point.  
 
 The normal can be computed by the cross product of two vectors. Let 
 v = P2-P1=<0,1,0> and  u=P3-P1=<2,-1,3>  then   n = u x v = <3,0,-2> 
 Normalized we have n’ = <0.83205,0.00000,-0.55470> 
  
 A vector from the plane to the point P4 is w = P4-P1 = <-1,-1,-1> 
 
 The distance to the plane is dist = | w • n’ | = 0.27735 
 
7. For a vector v=<x,y>, the 2D perp vector 𝑣⊥ can be defined as vperp=<-y,x>. Will this vector 
always be 90 degrees counterclockwise from v?  
 
 Yes. The easiest argument is by quadrant. Given  𝑣 =< 𝑥, 𝑦 > and  𝑣⊥ =< −𝑦, 𝑥 > 
 Set 𝑣 =< 1,1 > and  𝑣⊥ =< −1,1 > . Yes. 
 Set 𝑣 =< −1,1 > and  𝑣⊥ =< −𝑦, 𝑥 >. Yes. 
 Set 𝑣 =< −1,−1 > and  𝑣⊥ =< 1,−1 >. Yes. 
 Set 𝑣 =< 1,−1 > and  𝑣⊥ =< 1,1 >. Yes. 
 This is not a proof, just a demonstration that quadrants flip as assumed. 
 
A better solution given by students notes that the perp vector is defined by a 90 deg rotation: 
 

𝑀 ∗ 𝑝 = [
cos 90 − sin 90
sin 90 cos 90

] ∗ [
𝑥
𝑦] = [

0 −1
1 0

] ∗ [
𝑥
𝑦] = [

−𝑦
𝑥

] 

 
  



Part b. Application 
1. Cylinder collider. Assume you have a cylinder collider defined by 3D points p and pp, that 
give the central axis of the cylinder, and R, which is the radius of the cylinder. The points define 
a unit vector u as shown on the middle diagram. p, pp and R are enough to define the cylinder. 
 

 
 

Now assume you have a point 𝒒 = (𝑞𝑥, 𝑞𝑦 , 𝑞𝑧), somewhere in 3D space (here q is shown 

outside the cylinder but could be inside.) We want to compute whether q is inside or outside 
the cylinder as a boolean flag. Show how to do this in mathematical notation (not code). 
 
(a) Given the points P1 and q, show how to compute the coordinates of the vector 
 𝒗 = 〈𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧〉  directed from p to q. 

Solution:  𝒗 = 𝑞 − 𝑝 = (𝑞𝑥, 𝑞𝑦 , 𝑞𝑧)-(𝑝𝑥, 𝑝𝑦 , 𝑝𝑧) 

 
(b) Given (a), show how to decompose 𝒗 as the sum of two vectors 𝒗′ and 𝒗′′ such that 𝒗′  is 
parallel to u and 𝒗′′ is perpendicular to u.  
Solution:   

  𝒗′ =
𝑣•𝑢

𝑢•𝑢
𝑢  and   𝒗′′ = 𝑣 − 𝑣′ 

 
(c) Given your answer to (b), show how to compute the lengths of 𝒗′ and 𝒗′′    
Solution:  
 

  |𝒗′| = |
𝑣•𝑢

𝑢•𝑢
𝑢|  and   |𝒗′′| = |𝑣 − 𝑣′| 

 
We also need the vector u which we’ll define as 𝒖 = 𝑝 − 𝑝𝑝 
  



2. Cylinder collider in code. Assuming your answer to (1) above is correct, convert the 
mathematical equations into a Unity C# method that takes p, pp, R and q, and returns a 
Boolean true if q is in the cylinder, and false if not.  
 
A point is in the cylinder under two conditions.  
a) The point is within a distance R from the line between p and q. 
b) The projection of the point onto the line is between the endpoints p and pp.  
 
Pseudocode solution: 
 1. Compute 𝑣 = 𝑝 − 𝑞 
 2. Compute v’ and v’’ as in problem (c)  

3. Compute distance d from q to line is the magnitude of v’’ or |v-v’|  
4. If d > R, reject as not in cylinder 
5. Otherwise find projection of q onto line  
 5a. Let length = distance from p to pp = |p-pp| 
 5b. Let s = sign of u•v 
 5c. If s > 0, reject as the projection of q is past p 

5d. If s <= 0, then 
6a. If |𝒗′| ≤ 𝐥𝐞𝐧𝐠𝐭𝐡 then accept since q projects between p and pp 
6b. If |𝒗′| > 𝐥𝐞𝐧𝐠𝐭𝐡 reject as q projects on the line past pp.  

 
b) Give a Unity method using Vector3 that implements a solution.  

int inCylinder(float radius, Vector3 p, Vector3 pp, Vector3 q) { 

 // Returns 1 if point in cylinder, 0 otherwise 

 int result = 0: 

 Vector3 u = p – pp; 

 Vector3 v = q – p; 

 Vector3 vprime = Vector3.dot(v,u)/Vector3.dot(u,u)*u; 

 Vector3 vdblprime = v – vprime; 

 float dist = Vector3.magnitude(vdblprime);; 

 float length = Vector3.mangitude(u); 

 if (dist > R)  

    result = 0; // Reject 

 else { 

   float length = Vector3.magnitude(u); 

        float sign   = (Vector3.dot(u,v) > 0): 1 else -1; 

   if (sign > 0)  

            result = 0; //Reject 

        else if (length > Vector3.magnitude(vprime)) 

            result = 0; //Reject 

        else 

            result = 1; // Accept 

      } 

  return result; 

  }  

 



 


