Lecture notes
Thursty Septic
Problem: giver rector u to
 point P in coovdint sp $^{\text {sha }}$
of play
issue here are points Pl and $P 2$ left or night of 4 vector?
orthugonal progection See Amant notes lecture 4

decompusite of u into vector V, v^{\perp} ?
projed U onto $V P$

$$
\begin{aligned}
V^{\prime} & =v \cdot \frac{V}{|V|}\left(\frac{V}{|V|}\right) \\
\square V^{\prime} & =V-V^{\prime} \\
\square V^{\prime} & =V \cdot \frac{v^{\prime}}{|V|} \frac{\left(V^{\prime}\right)}{|V|}
\end{aligned}
$$

$$
V=\langle x, y\rangle
$$

$$
v^{\perp}=\langle-4, x\rangle
$$

Dut prodectinucases with poge 3 Lengith of rector

best to use normadizes rector
cross product
vector W is errs product

$$
\begin{gathered}
w=v \times v \\
w \perp v \\
w \perp v] \begin{array}{l}
w \text { orthosond } \\
\text { to } v, u
\end{array}
\end{gathered}
$$

$$
\begin{aligned}
& V=\left\langle U_{x}, v_{y}, V z\right\rangle \quad V=\left\langle V_{x}, V_{y}, v_{z}\right\rangle \\
& W_{x} v=\left|\begin{array}{lll}
\vec{l} & \vec{j} & \vec{k} \\
\frac{u_{x}}{v_{y}} & v_{z} \\
v_{x} & v_{y} & v_{z}
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& i=\langle 1,0,0\rangle \\
& j=\langle 0,1,0\rangle \\
& u=\langle 0,0,1\rangle \\
& \overrightarrow{U_{x}} \vec{v}=\vec{i}\left(v_{y} v_{z}-v_{z} v_{y}\right) \\
& -j\left(u_{x} v_{z}-u_{z} v_{x}\right) \\
& +k\left(v_{x} v_{y}-v_{y} v_{x}\right)
\end{aligned}
$$

example

$$
\begin{aligned}
& v=\langle 1,5,0\rangle \\
& v=\langle 0,1,3\rangle \\
& \begin{aligned}
U \times v & =\left|\begin{array}{ccc}
i & j & k \\
1 & 5 & 0 \\
u & 1 & 3
\end{array}\right| \\
& =i(15)-j 3+n-1 \\
& =\langle 15,-3,1\rangle \\
|\vec{U}|, \vec{v} \mid & =1 \text { nomalized } \\
\vec{U} \times \vec{v} & =1
\end{aligned}
\end{aligned}
$$

UXV if $u \perp v$

$$
u \| v \quad v \times u=0
$$

Sin rule for cross proust

$$
\begin{aligned}
&|u \times v|=|u||v| \sin \theta \\
& \theta=90^{\circ} \Rightarrow 1 \\
&|v \times v|=|v||v| \\
& \theta=0^{\circ} \Rightarrow 0 \\
&|v \times v|= 0
\end{aligned}
$$

small angle

Compating cross prituct
for triouge of 3 pots pi,p3 fage 8

$$
\begin{array}{r}
V_{21}=P_{1}-P_{2} \\
\hat{n}=\frac{V_{23} \times V_{21}}{\left|V_{23} \times V_{21}\right|}
\end{array}
$$

navrow D
cross protuct changes sish

Inportant hat triacgus in mesh go same trection, Clochusse ar conter CN, so cross probuct rector goes same Jirectuon

Tiny plant poole
\Rightarrow comer problu

CMSC 425: Lecture 5

More on Geometry and Geometric Programming

More Geometric Programming: In this lecture we continue the discussion of basic geometric programming from the previous lecture. We will discuss the cross-product, orientation testing, and homogeneous coordinates.
Cross Product: The cross product is an important vector operation in 3 -space. You are given two vectors and you want to find a third vector that is orthogonal to these two. This is handy constructing coordinate frames with orthogonal bases. There is a nice operator in 3-space which does this for us, called the cross product.
The cross product is usually defined in standard linear 3-space (since it applies to vectors, not points). So we will ignore the homogeneous coordinate here. Given two vectors in 3 -space, and \vec{v}, their cross product is defined as follows (see Fig. 1(a))

$$
\vec{u} \times \vec{v}=\left(\begin{array}{l}
u_{y} v_{z}-u_{z} v_{y} \\
u_{z} v_{x}-u_{x} v_{z} \\
u_{x} v_{y}-u_{y} v_{x}
\end{array}\right)
$$

(a)

(b)

Fig. 1: Cross product
A nice mnemonic device for remembering this formula, is to express it in terms of the following symbolic determinant:

$$
\vec{u} \times \vec{v}=\left|\begin{array}{ccc}
\vec{e}_{x} & \vec{e}_{y} & \vec{e}_{z} \\
u_{x} & u_{y} & u_{z} \\
v_{x} & v_{y} & v_{z}
\end{array}\right| .
$$

Here \vec{e}_{x}, \vec{e}_{y}, and \vec{e}_{z} are the three coordinate unit vectors for the standard basis. Note that the cross product is only defined for a pair of free vectors and only in 3-space. Furthermore, we ignore the homogeneous coordinate here. The cross product has the following important properties:

Skew symmetric: $\vec{u} \times \vec{v}=-(\vec{v} \times \vec{u})$ (see Fig. 3(b)). It follows immediately that $\vec{u} \times \vec{u}=0$ (since it is equal to its own negation).
Nonassociative: Unlike most other products that arise in algebra, the cross product is not associative. That is

$$
(\vec{u} \times \vec{v}) \times \vec{w} \neq \vec{u} \times(\vec{v} \times \vec{w}) .
$$

Bilinear: The cross product is linear in both arguments. For example:

$$
\vec{u} \times(\alpha \vec{v})=\alpha(\vec{u} \times \vec{v}),
$$

$$
\vec{u} \times(\vec{v}+\vec{w})=(\vec{u} \times \vec{v})+(\vec{u} \times \vec{w}) .
$$

Perpendicular: If \vec{u} and \vec{v} are not linearly dependent, then $\vec{u} \times \vec{v}$ is perpendicular to \vec{u} and \vec{v}, and is directed according the right-hand rule.
Angle and Area: The length of the cross product vector is related to the lengths of and angle between the vectors. In particular:

$$
|\vec{u} \times \vec{v}|=|u||v| \sin \theta,
$$

where θ is the angle between \vec{u} and \vec{v}. The cross product is usually not used for computin angles because the dot product can be used to compute the cosine of the angle (in any angles because the dot product can be used to compute the cosine of the angle (in any
dimension) and it can be computed more efficiently. This length is also equal to the area dimension) and it can be computed more efficiently. This length is also equal
of the parallelogram whose sides are given by \vec{u} and \vec{v}. This is often useful.

The cross product is commonly used in computer graphics for generating coordinate frames Given two basis vectors for a frame, it is useful to generate a third vector that is orthogonal the first two. The cross product does exactly this. It is also useful for generating surface normals. Given two tangent vectors for a surface, the cross product generate a vector that is normal to the surface

Example-Tiny-planet frame: Inspired by tiny-planet photos (see Fig. 2(a)), let us consider how to construct a local coordinate system for a player object standing on the sphere. Let c denote the sphere's center point, and let p denote the point on the sphere where the player object is standing (see Fig. 2(b)). In order to indicate the direction in which the player is facing, second point $q \neq p$ is given on the surface of the sphere. These two points define a great-circle on the sphere. The player's up axis \vec{u} is directed along a ray from c through p, the forward axis \vec{f} is tangent to the minor great-circle arc from p to q, and the right axis \vec{r} is orthogonal to these two and is directed to the player's right (see Fig. 2(c)).

Question: Given c, p, and q, how can we construct the vectors \vec{u}, f, and \vec{r} of the player local coordinate frame?
Answer: First, the player's up-vector \vec{u} is just the normalization of the vector from c through p, that is

$$
\vec{u} \leftarrow \operatorname{normalize}(p-c)=\frac{p-c}{\|p-c\|} .
$$

(Recall that the length of a vector \vec{v} can be computed as $\|\vec{v}\| \leftarrow \sqrt{\vec{v} \cdot \vec{v}}$.)
Next, to compute the player's right-vector \vec{r}, we observe that it must be perpendicula to the equatorial plane containing p and q, or equivalently, it must be perpendicular to both of the up-vector \vec{u} and $\vec{w}=q-c$. Using the standard right-handed cross product we have

$$
\vec{r} \leftarrow \text { normalize }(\vec{w} \times \vec{u}) \text {, where } \vec{w} \leftarrow q-c
$$

You might wonder why \vec{r} is not coming out of c. Recall that these are free vectors and hence they are not associated with any particular location in space. (Note that the

Trenslatems and SCalings
translete

$$
p^{\prime}=p+T\langle 3,4\rangle
$$

scale

$$
\begin{aligned}
& p^{\prime}=\not \angle p \\
& p^{\prime}=2 p
\end{aligned}
$$

$$
\begin{aligned}
& P_{1}, P_{2}, P_{3}, P_{d} \\
& \times 2
\end{aligned}
$$

 transition

$$
\begin{gathered}
T=\Delta \Delta x, \Delta y\rangle \\
\operatorname{shope}^{\prime}=O(\text { shape }-T)+T \\
\left.=\alpha_{1}\left(O_{1}\left(\text { shape }-T_{1}\right)+T_{1}\right)-T_{2}\right)+T_{2}
\end{gathered}
$$

complicated expressions with segreara of translations and scaling 5 .

Homageneors coortintes
3.t coortinate

$$
P=(x, 4, w) \text { is hamagenas } \frac{\text { corrtinte }}{}
$$

trood
points

$$
\begin{aligned}
& p_{1}=(2,3,1) \quad \frac{w=1}{\text { Lsvally } 1 .} \\
& P_{2}=(-5,6,1) \quad \\
& v=p_{2}-p_{1}=\langle-7,3,0\rangle \\
& v_{1}+v_{2}=\left\langle v_{x_{1}}+v_{x_{2}}, v_{1 u_{4}}+v_{y}, 0\right\rangle \\
& P_{1}+P_{2}=\left\langle-3,9, \frac{1+1\rangle}{2}\right.
\end{aligned}
$$

points- $w=1$

$$
\text { rectors }-w=0
$$

add two pts set $w=2$, nut goud subtract tropts, get rector inl $w=0$
(unhinigg translettus and Ecalngs In homogeneas coortinats Usius horrogeneas matrices 14

$$
\begin{aligned}
& N N^{*}=\left[\begin{array}{lll}
\alpha & 0 & 0 \\
0 & \alpha & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
& =\left[\begin{array}{cc}
a x \\
a & 4 \\
1
\end{array}\right] \\
& N_{T_{H}}{ }^{* P}=\left[\begin{array}{ccc}
1 & 0 & \Delta x \\
0 & 1 & \Delta y \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
1+x+\Delta x \cdot 1 \\
4+\Delta y \\
1
\end{array}\right] \\
& M_{t} * M_{S} * M_{-}(P)
\end{aligned}
$$

