
Perlin Noise I
CMSC425.01 Fall 2019

Administrivia

• Practice exam and list of potential problems on
• Will get additional practice problems up

• Small winged edge homework on Elms now

Parametric line segments

𝑝 𝑡 = 𝑝 + 𝑡𝑣

with 𝑣 = 𝑞 − 𝑝

for t = 0 to 1 by deltat

x = px + t * vx

y = py + t * vy

plot(x,y) // or line(lx,ly,x,y) p

q

p(t)

Parametric planar patches

𝑝 𝑠, 𝑡 = 𝑝 + 𝑡𝑣 + 𝑠𝑢

for t = 0 to 1 by deltat

for s = 0 to 1 by deltas

x = px + t * vx + s * ux

y = py + t * vy + s * uy

z = pz + t * vz + s * uz

plot(x,y,z)
u

v
tv

su
p(t)

Creating planar mesh

• How create mesh data structure
from parametric patch?

• List of vertices
• List of edges
• List of faces

s

t

0

1

0 1

0

s

1

0

t

1
V

U

Bilinear patches and interpolation

• Interpolation of four points
• May not be co-planar

• Ruled surface – swept out by
straight line

• Developed equations in class

Today’s question

How do you convert the output of
a pseudo-random number generator into

a smooth, naturalistic function?

Randomness – useful tool

// RandomRain
void setup() {

size(400,400);
background(255);
colorMode(HSB,360,100,100);

}

void draw() {
float x = random(0,400);
float y = random(0,400);
float hue = random(0,60);
fill(hue,100,100);
ellipse(x,y,20,20);

}

How make it natural and pleasing?

• Pure randomness – white noise
• Each data point independent of

rest

White noise

• Pure randomness – white noise
• Each data point independent of

rest
• Frequency plot uniform

Pink noise

• Shaped randomness
– pink noise
• Still independent
• Frequency plot 1/f

Brown noise

• Random walk – Brownian noise
• Each point random position from

last (deltaY = random(-d,d))
• Frequency plot 1/f2

Colors of noise

https://archive.org/details/TenMinutesOfWhiteNoisePinkNoiseAndBrownianNoise/BrownianNoise.flac

• Music – close to pink
noise 1/f
• Natural objects –

close to brown 1/f2

• Some physical objects
– close to white 1/f0

• Model object,

https://archive.org/details/TenMinutesOfWhiteNoisePinkNoiseAndBrownianNoise/BrownianNoise.flac

Generating 1/fx noise

• Fourier Cosine (sine) Series
• Frequency set by n

Generating 1/fx noise

• Fourier Cosine (sine) Series
• Frequency set by n

• Generate random terms of
frequency, phase
• Decrease amplitude (height) as

you increase frequency (n)

More energy higher frequencies => rugged

Application: midpoint displacement

• Recursive curve generation
• Given two points:
• Create perp bisector
• Randomly pick t in (-h,h), generate point
• Repeat for two new line segments

• Works in 3D

Application: midpoint displacement

• Recursive curve generation
• Given two points:
• Create perp bisector
• Randomly pick t in (-h,h), generate point
• Repeat for two new line segments

• Works in 3D

• Question

• How would you tune midpoint
displacement to get more or
less rugged landscapes?

Perlin noise

• Ken Perlin 1983
• (a) height map (b) resulting landscape

(a) (b)

Perlin noise

• Ken Perlin 1983
• Vary frequency component => control ruggedness

Noise fcn f(x) - interpolating random points

• Generate series 𝑌 = 𝑦1, 𝑦2, 𝑦3, … , 𝑦5
at uniformly placed 𝑋 = 𝑥1, 𝑥2, 𝑥3, … , 𝑥5

1

0

(a)

1

0

(b)

1

0

(c)

Random points Piecewise linear interpolation Cosine interpolation

Interpolating weight functions

• Generate series 𝑌 = 𝑦1, 𝑦2, 𝑦3, … , 𝑦5
at uniformly placed 𝑋 = 𝑥1, 𝑥2, 𝑥3, … , 𝑥5

1

0

(a) (b)
0 1

1

0
0 1

↵

1� ↵

(1� cos(⇡↵))/2

(cos(⇡↵) + 1)/2

↵ ↵

Interpolating weight functions

1

0

(a)

1

0

(b)

1

0

(c)

Random points Piecewise linear interpolation Cosine interpolation

1

0

(a) (b)
0 1

1

0
0 1

↵

1� ↵

(1� cos(⇡↵))/2

(cos(⇡↵) + 1)/2

↵ ↵

Cosine – smoother because

Slower to leave p0

Faster to arrive at p1

𝛼 sin(𝜔𝑡)
• Wavelength: The distance between

successive wave crests
• Frequency: The number of crests

per unit distance, that is, the
reciprocal of the wavelength
• Amplitude: The height of the

crests

• 𝛼 – amplitude
• 𝜔 – frequency
• 2𝜋/𝜔 – wavelength

wavelength

amplitude

Periodic noise function

• 𝑓 𝑥 defined	on	range	[0,n]
• With 𝑓 0 = 𝑓(𝑛)

• Now	define

• noise 𝑡 = 𝑓 𝑡 𝑚𝑜𝑑 𝑛

• Not sine – randomly created
• Same curve – self-similar

1

0

1

0

1

0

noise(t)

noise(2t)

noise(4t)

Frequency octaves

• noise 𝑡
• noise 2𝑡
• noise 4𝑡
• …
• noise 2S𝑡

1

0

1

0

1

0

noise(t)

noise(2t)

noise(4t)

Persistence

• 𝑝1noise 𝑡 𝑝 = 2
3

• 𝑝2noise 2𝑡
• 𝑝3noise 4𝑡
• …
• 𝑝Snoise 2S𝑡

perlin 𝑡 = V
SW1

X

𝑝Snoise 2S𝑡

1

0

1
2

0

0

noise(t)

1
2 · noise(2t)

1
4 · noise(4t)1

4

1

0

perlin(t) = the sum of these

Perlin noise summary

• Perlin noise is
• Constant after generation
• Periodic
• Fractally self-similar

• Unity
public static float PerlinNoise(float x, float y);

returns value in [0,1.0]

(Set y = constants to get 1D function)

https://cpetry.github.io/TextureGenerator-Online/

https://cpetry.github.io/TextureGenerator-Online/

Unity: Scripting Perlin => Terrain
float[,] heights = new float[width, height];

for (int i = 0; i < width; i++) {
for (int k = 0; k < height; k++) {

heights [i,k] = baseHeight + (float)hillHeight *

(Mathf.PerlinNoise (

((float)i / (float)width) * tileSize,

((float)k / (float)height) * tileSize));
}

}

terrain.terrainData.SetHeights (0, 0, heights);

https://forum.unity.com/threads/perlin-noise-based-terrain-hill-generator-working-script.214701/

http://www.google.com/search?q=new+msdn.microsoft.com
https://forum.unity.com/threads/perlin-noise-based-terrain-hill-generator-working-script.214701/

Question

• How would the idea of multiple scales apply to …

• Generating plants for a game

• Generating cities/towns/etc for a game

• Creating plot variations/bosses

• 1. Metrics for best path on map
• 2. Navmesh process (R_D_P algorithm,

triangulation)
• 3. Walkable terrain
• 4. Find paths on triangulated space
• 5. Configuration spaces
• 6. Quality of path
• 7. C-obstacles
• 8. Minkowski sums
• 9. Navmesh - grid, mulitresolution grid
• 10. Visibility graph
• 11. Medial axis
• 12. Randomized placement
• 13. Rapidly-expanded Random Trees

(RRTs)

• 14. L-system plus turtle
• 15. Fractal dimension
• 16. Randomized and 3D L-systems
• 17. Particle systems
• 18. Flocking
• 19. Mandelbrot sets
• 20. Constructive solid geometry
• 21. Shading equation
• 22. Bump mapping
• 23. Polygonal meshes - basics, Euler's

formula
• 24. DECL data structures
• 25. Perlin noise
• 26. A*
• 27. Admissible heuristic

Problem – configuration spaces

• How many dimensions are there in the configuration spaces for each of the following motion-
planning problems. Justify your answer in each case by explaining what each coordinate of the
space corresponds to.

• (i) Moving a cylindrical shape in 3-dimensional space, which may be translated and rotated (see
the figure below (a)).

• (ii) Moving a brick in 3-dimensional space, which may be translated and rotated (see the figure
below (b)).

• (iii) Moving a pair of scissors in 3-dimensional space, which may be translated, rotated, and
swung open and closed (see the figure below (c)).

Problem – Fractal curve

• Derive an L-system that generates
FL and FR. In particular, please
provide the recursive rules for FL
and FR.
• Consider the curve FL in the limit.

Derive its fractal dimension.
• Each generation distances are

scaled by σ = 1/5, and each
individual segment of the basic
length is replaced by 25 segments
of the next smaller size.

Problem – DECL intersection

• Compute a list L = ⟨e1,e2,...,em⟩
of edges that intersect a line
segment ab
• Given:
• Faces fa and fb that contain a and

b, respectively
• Function e.cross(a,b) that returns

true/false if edge e crosses ab

