Skeletons and Skin

CMSC425.01 Fall 2019

Administrivia

- Hw 2 out due next Thursday
- Project 2 out due in 2 ½ weeks

Today's question

Animating articulated figures: Skeletons and Skin

Skeletons and rigging

- Character animation
 - Create a skeleton
 - Define transforms between parts
 - Interpolate transforms to move
 - Rig with "flesh"
 - Create behavior animations
 - Blend between animations for smooth actions in game
- Can find as Unity Assets
- Use Mecanim tool
- <u>https://www.youtube.com/watch?</u>
 <u>v=HPwu7elwjV8</u>

Unity: Mecanim

Skeleton: bones and joints, bind pose

(a) (b)

(c)

Skeletal model as joint tree

Motion as transform propagation

- Queen's wave
 - Use wrist (j5) to rotate hand
 - Use elbow (j4) to rotate forearm
 - Use shoulder (j3) to rotate arm
- Parent relation
 - p(j) = parent joint
 - p(j5) = j4
- Rotating parent rotates child (
- Rotating child does not rotate parent

Traversing joint tree with transform stack

- Start with transform M = I (identity)
- Visit j0
 - M' = M*M_j0
- Visit j1
 - M'' = M*M_j1
 - Push M" on stack
- Visit j2
 - M''' = M''*M_J2
 - Transform points attached to j2
 - Pop stack
- Visit j3
 - M'''' = M''*M_j3

- Multiply on right down a branch
- Push when need to revisit
- Apply M to points on branch

Scene graph – similar tree for all objects

- Directed graph of all objects in scene
- Nodes have shape, appearance, transform, camera, light info

Joint constraints: degrees of freedom (DOF)

- Number of rotations supported by joint
 - Knee 1 degree
 - Foot 2 degrees
 - Wrist?
 - Elbow?
 - Shoulder?

- Limits on each joint
 - Rotation in range [angle1,angle2]

Aside: Learn figure animation, learn robots

Kinematics – study of motion w/out forces

• Kinematics

- Forward given joints and transformations, estimate end position
- Reverse given end position estimate transformations
- Forward "easy"
- Reverse hard!

Joint transformations: simple

- Initial: resting pose
- $T_{[j1 \leftarrow j0]} = M_{T(2,0)}$

•
$$T_{[j1 \leftarrow j0]} * p = M_{T(2,0)} * (1,0) = (3,0)$$

Joint transformations: simple

j0

 \mathbf{O}

j0

pj0

p'j0

j1

i1

- Initial: resting pose
- $T_{[j1 \leftarrow j0]} = M_{T(2,0)}$

•
$$T_{[j1 \leftarrow j0]} * p = M_{T(2,0)} * (1,0,1) = (3,0,1)$$

• Rotate wrist 45 degrees in j0 coordinates

•
$$M_{R(45)}$$
 * (1,0,1) = $(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 1)$

Joint transformations: simple

- Initial: resting pose
- $T_{[j1 \leftarrow j0]} = M_{T(2,0)}$
- $T_{[j1 \leftarrow j0]} * p_{j0} = M_{T(2,0)} * (1,0,1) = (3,0,1)$
- Rotate wrist 45 degrees in j0 coordinates

•
$$M_{R(45)}$$
 * (1,0,1) = $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 1\right)$

• Rotate shoulder 45 degrees in j1 coordinates

•
$$p''_{j1} = M_{R(45)} * T_{[j1 \leftarrow j0]} * p'_{j0} = (\sqrt{2}, 1 + \sqrt{2}, 1)$$

Coordinate transformations – points (location)

Coordinate transforms – vectors (orientation)

Arm example

- Three joints
 - Wrist: k T[k <- j]
 - Elbow: j T[j <- i]

i

- Shoulder:
- Binding pose
 - Translations
 - One reflection

(a)

$$v_{[k]} = (2, 0, 1)$$

 $v_{[j]} = (6, 0, 1)$
 $v_{[i]} = (3, 6, 1)$

(b)

Forward kinematics – rotate elbow, shoulder

- Have binding transforms
 - T[k <- j]
 - T[j <- i]
- Have two rotations
 - M_R(30)
 - M_R(45)

• Apply in what order?

Summary

• Animated character has

Skeleton which has

Joints which have

Transforms

Meta joints

- Collocated joints
- Simplify transforms
- Each joint has rotation around one axis 1 DOF
- Combine to get multiple DOFs

• No translation

Animating skeletons

- Key framing.
- Motion capture.
 - <u>https://www.youtube.com/watch?</u>
 <u>v=tNqGT2wnNSM</u>
- Goal oriented.
- Also parametric equations
 - Pick ups in Project 1b

Data representation of motion/animation

- Joint positions over time
 - T translation
 - Q Quaternion
- Interpolation between key frames/samples
 - Cubic for position
 - Spherical for quaternions

Skinning

- Bind mesh to bone between joints
- Moves with parent joint
- Problems
 - Cracking and distortion

Skinning

- Bind mesh to bone between joints
- Moves with parent joint
- Problems
 - Cracking and distortion
- Cheats!
 - Use fantasy character with disconnected parts
 - Use robot with mechanical joints that require no skinning

Blending at joints

- Bind mesh vertices to one joint
- Move with joint (bone between)
- Cracks!

Weighted linear blending

State of art rigging – muscles and more

Need to get anatomy right for realistic movement

