Skeletons and Skin

CMSC425.01 Fall 2019

Administrivia

- Hw 2 out - due next Thursday
- Project 2 out - due in $21 / 2$ weeks

Today's question

Animating articulated figures: Skeletons and Skin

Skeletons and rigging

- Character animation
- Create a skeleton
- Define transforms between parts
- Interpolate transforms to move
- Rig with "flesh"
- Create behavior animations
- Blend between animations for smooth actions in game
- Can find as Unity Assets
- Use Mecanim tool
- https://www.youtube.com/watch? v=HPwu7elwjV8

Unity: Mecanim

Skeleton: bones and joints, bind pose

Skeletal model as joint tree

Motion as transform propagation

- Queen's wave
- Use wrist (j5) to rotate hand
- Use elbow (j4) to rotate forearm
- Use shoulder (j3) to rotate arm
- Parent relation
- $p(j)=$ parent joint
- $p(j 5)=j 4$
- Rotating parent rotates child

- Rotating child does not rotate parent

Traversing joint tree with transform stack

- Start with transform $\mathrm{M}=\mathrm{I}$ (identity)
- Visit j0
- $M^{\prime}=M^{*} M_{1} 0$
- Visit j1
- $M^{\prime \prime}=M^{*} M-1$
- Push $\mathrm{M}^{\prime \prime}$ on stack

(a)

(b)

(c)
- Visit j2
- $\mathrm{M}^{\prime \prime \prime}=\mathrm{M}^{\prime \prime *} \mathrm{M}_{-}$J2
- Transform points attached to j2
- Pop stack
- Visit j3
- $M^{\prime \prime \prime}=M^{\prime *} M^{\prime} 3$
- Multiply on right down a branch
- Push when need to revisit
- Apply M to points on branch

Scene graph - similar tree for all objects

- Directed graph of all objects in scene
- Nodes have shape, appearance, transform, camera, light info

Joint constraints: degrees of freedom (DOF)

- Number of rotations supported by joint
- Knee - 1 degree
- Foot - 2 degrees
- Wrist?
- Elbow?
- Shoulder?

(a)

(b)

(c)
- Limits on each joint
- Rotation in range [angle1,angle2]

Aside: Learn figure animation, learn robots

Kinematics - study of motion w/out forces

- Kinematics
- Forward - given joints and transformations, estimate end position
- Reverse - given end position estimate transformations
- Forward - "easy"
- Reverse - hard!

(a)

(b)

(c)

Joint transformations: simple

- Initial: resting pose
- $T_{[j 1 \leftarrow j 0]}=M_{T(2,0)}$

- $T_{[j 1 \leftarrow j 0]} * \mathrm{p}=M_{T(2,0)} *(1,0)=(3,0)$

Joint transformations: simple

- Initial: resting pose

- $T_{[j 1 \leftarrow j 0]}=M_{T(2,0)}$ j0 j1
- $T_{[j 1 \leftarrow j 0]} * \mathrm{p}=M_{T(2,0)} *(1,0,1)=(3,0,1)$
- Rotate wrist 45 degrees in j0 coordinates

- $M_{R(45)} *(1,0,1)=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 1\right)$

Joint transformations: simple

- Initial: resting pose
- $T_{[j 1 \leftarrow j 0]}=M_{T(2,0)}$
- $T_{[j 1 \leftarrow j 0]} * p_{j 0}=M_{T(2,0)} *(1,0,1)=(3,0,1)$
- Rotate wrist 45 degrees in j0 coordinates
- $M_{R(45)} *(1,0,1)=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 1\right)$
- Rotate shoulder 45 degrees in j1 coordinates
- $p^{\prime \prime}{ }_{j 1}=M_{R(45)} * T_{[j 1 \leftarrow j 0]} * p^{\prime}{ }_{j 0}=(\sqrt{2}, 1+\sqrt{2}, 1)$

Coordinate transformations - points (location)

$$
\begin{aligned}
& F \cdot x_{[G]}=\left(\frac{2}{5},-\frac{1}{5}, 0\right) \\
& F \cdot y_{[G]}=\left(\frac{1}{5}, \frac{2}{5}, 0\right) \\
& F \cdot o_{[G]}=(-2,0,1)
\end{aligned}
$$

Coordinate transforms - vectors (orientation)

$p_{[F]}=(1,3,1)$
$\vec{v}_{[F]}=(3,-1,0)$

Arm example

- Three joints
- Wrist:
k
$T[k<-j]$
- Elbow:
$j \quad T[j<-i]$
- Shoulder:
- Binding pose
- Translations
- One reflection

$$
\begin{aligned}
& v_{[k]}=(2,0,1) \\
& v_{[j]}=(6,0,1) \\
& v_{[i]}=(3,6,1)
\end{aligned}
$$

(a)
(b)

Forward kinematics - rotate elbow, shoulder

- Have binding transforms
- T[k <-j]
- $T[j<-i]$
- Have two rotations
- M_R(30)
- $M_{-} R(45)$

(a)

(b)

(c)
- Apply in what order?

Summary

- Animated character has

Skeleton which has

Joints which have

Transforms

(a)

(b)

Meta joints

- Collocated joints
- Simplify transforms
- Each joint has rotation around one axis - 1 DOF
- Combine to get multiple DOFs

(a)

(b)
- No translation

Animating skeletons

- Key framing.
- Motion capture.
- https://www.youtube.com/watch? v=tNqGT2wnNSM
- Goal oriented.
- Also - parametric equations

- Pick ups in Project 1b

Data representation of motion/animation

- Joint positions over time
- T-translation
- Q - Quaternion
- Interpolation between key frames/samples
- Cubic for position
- Spherical for quaternions

Skinning

- Bind mesh to bone between joints
- Moves with parent joint
- Problems
- Cracking and distortion

(a)

(b)

Skinning

- Bind mesh to bone between joints
- Moves with parent joint
- Problems
- Cracking and distortion
- Cheats!
- Use fantasy character with disconnected parts
- Use robot with mechanical joints that require no skinning

Blending at joints

- Bind mesh vertices to one joint
- Move with joint (bone between)
- Cracks!
- Bind to two joints
- Interpolate

Reference pose

(a)

(c)

Weighted linear blending

shoulder elbow

(b)

$$
v^{\prime}=\frac{3}{4} v_{1}^{\prime}+\frac{1}{4} v_{2}^{\prime}
$$

(c)

(d)

State of art rigging - muscles and more

Need to get anatomy right for realistic movement

